-
1
-
-
59349107270
-
A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
-
Ahmed F., Nazir S., Yeo Y.K. A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant. Korean J. Chem. Eng. 2009, 26:14-20.
-
(2009)
Korean J. Chem. Eng.
, vol.26
, pp. 14-20
-
-
Ahmed, F.1
Nazir, S.2
Yeo, Y.K.3
-
2
-
-
0031073475
-
Locally weighted learning for control
-
Springer, Netherlands, New York, D.W. Aha (Ed.)
-
Atkeson C.G., Moore A.W., Schaal S. Locally weighted learning for control. Lazy Learning 1997, 75-113. Springer, Netherlands, New York. first ed. D.W. Aha (Ed.).
-
(1997)
Lazy Learning
, pp. 75-113
-
-
Atkeson, C.G.1
Moore, A.W.2
Schaal, S.3
-
3
-
-
0037110983
-
A modular simulation package for fed-batch fermentation: penicillin production
-
Birol G., Ündey C., Cinar A. A modular simulation package for fed-batch fermentation: penicillin production. Comput. Chem. Eng. 2002, 26:1553-1565.
-
(2002)
Comput. Chem. Eng.
, vol.26
, pp. 1553-1565
-
-
Birol, G.1
Ündey, C.2
Cinar, A.3
-
5
-
-
0032625723
-
Lazy learning for local modelling and control design
-
Bontempi G., Birattari M., Bersini H. Lazy learning for local modelling and control design. Int. J. Control 1999, 72:643-658.
-
(1999)
Int. J. Control
, vol.72
, pp. 643-658
-
-
Bontempi, G.1
Birattari, M.2
Bersini, H.3
-
6
-
-
58349104545
-
Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
-
Castro-Neto M., Jeong Y.-S., Jeong M.-K., Han L.D. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 2009, 36:6164-6173.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 6164-6173
-
-
Castro-Neto, M.1
Jeong, Y.-S.2
Jeong, M.-K.3
Han, L.D.4
-
8
-
-
84905715171
-
-
Springer, Berlin, Heidelberg, New York
-
Chen L.Z., Nguang S.K., Chen X.D. Modelling and Optimization of Biotechnological Processes: Artificial Intelligence Approaches 2006, Springer, Berlin, Heidelberg, New York.
-
(2006)
Modelling and Optimization of Biotechnological Processes: Artificial Intelligence Approaches
-
-
Chen, L.Z.1
Nguang, S.K.2
Chen, X.D.3
-
9
-
-
61849183105
-
Bagging for Gaussian process regression
-
Chen T., Ren J. Bagging for Gaussian process regression. Neurocomputing 2009, 72:1605-1610.
-
(2009)
Neurocomputing
, vol.72
, pp. 1605-1610
-
-
Chen, T.1
Ren, J.2
-
10
-
-
2942558590
-
A new data-based methodology for nonlinear process modeling
-
Cheng C., Chiu M.-S. A new data-based methodology for nonlinear process modeling. Chem. Eng. Sci. 2004, 59:2801-2810.
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 2801-2810
-
-
Cheng, C.1
Chiu, M.-S.2
-
11
-
-
14844303316
-
Nonlinear process monitoring using JITL-PCA
-
Cheng C., Chiu M.-S. Nonlinear process monitoring using JITL-PCA. Chemom. Intell. Lab. Syst. 2005, 76:1-13.
-
(2005)
Chemom. Intell. Lab. Syst.
, vol.76
, pp. 1-13
-
-
Cheng, C.1
Chiu, M.-S.2
-
12
-
-
0141427255
-
-
CRC Press, New York
-
Cinar A., Parulekar S.J., Undey C., Birol G. Batch Fermentation: Modeling: Monitoring, and Control 2003, CRC Press, New York.
-
(2003)
Batch Fermentation: Modeling: Monitoring, and Control
-
-
Cinar, A.1
Parulekar, S.J.2
Undey, C.3
Birol, G.4
-
13
-
-
84855946000
-
Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation
-
Cui L., Xie P., Sun J., Yu T., Yuan J. Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation. Comput. Chem. Eng. 2012, 36:386-391.
-
(2012)
Comput. Chem. Eng.
, vol.36
, pp. 386-391
-
-
Cui, L.1
Xie, P.2
Sun, J.3
Yu, T.4
Yuan, J.5
-
14
-
-
34249753618
-
Support-vector networks
-
Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
16
-
-
27444433806
-
Soft-sensor development for fed-batch bioreactors using support vector regression
-
Desai K., Badhe Y., Tambe S.S., Kulkarni B.D. Soft-sensor development for fed-batch bioreactors using support vector regression. Biochem. Eng. J. 2006, 27:225-239.
-
(2006)
Biochem. Eng. J.
, vol.27
, pp. 225-239
-
-
Desai, K.1
Badhe, Y.2
Tambe, S.S.3
Kulkarni, B.D.4
-
17
-
-
77950827509
-
-
Springer-Verlag, Berlin, Heidelberg
-
do Carmo Nicoletti M., Jain L.C. Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control 2009, Springer-Verlag, Berlin, Heidelberg.
-
(2009)
Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control
-
-
do Carmo Nicoletti, M.1
Jain, L.C.2
-
19
-
-
44349146289
-
-
Springer-Verlag, London
-
Fortuna L., Graziani S., Rizzo A., Xibilia M.G. Soft Sensors for Monitoring and Control of Industrial Processes 2007, Springer-Verlag, London.
-
(2007)
Soft Sensors for Monitoring and Control of Industrial Processes
-
-
Fortuna, L.1
Graziani, S.2
Rizzo, A.3
Xibilia, M.G.4
-
20
-
-
68049143320
-
Soft-sensor development using c correlation-based just-in-time modeling
-
Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using c correlation-based just-in-time modeling. AIChE J. 2009, 55:1754-1765.
-
(2009)
AIChE J.
, vol.55
, pp. 1754-1765
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
-
21
-
-
78650524009
-
A comparative study of just-in-time-learning based methods for online soft sensor modeling
-
Ge Z., Song Z. A comparative study of just-in-time-learning based methods for online soft sensor modeling. Chemom. Intell. Lab. Syst. 2010, 104:306-317.
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.104
, pp. 306-317
-
-
Ge, Z.1
Song, Z.2
-
22
-
-
84887725182
-
Ensemble independent component regression models and soft sensing application
-
Ge Z., Song Z. Ensemble independent component regression models and soft sensing application. Chemom. Intell. Lab. Syst. 2014, 130:115-122.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.130
, pp. 115-122
-
-
Ge, Z.1
Song, Z.2
-
23
-
-
57049112694
-
ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
-
Gonzaga J., Meleiro L., Kiang C., Maciel Filho R. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput. Chem. Eng. 2009, 33:43-49.
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 43-49
-
-
Gonzaga, J.1
Meleiro, L.2
Kiang, C.3
Maciel Filho, R.4
-
24
-
-
84880339799
-
Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
-
Grbić R., Slišković D., Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput. Chem. Eng. 2013, 58:84-97.
-
(2013)
Comput. Chem. Eng.
, vol.58
, pp. 84-97
-
-
Grbić, R.1
Slišković, D.2
Kadlec, P.3
-
25
-
-
84879310945
-
Data-derived soft-sensors for biological wastewater treatment plants: an overview
-
Haimi H., Mulas M., Corona F., Vahala R. Data-derived soft-sensors for biological wastewater treatment plants: an overview. Environ. Model. Softw. 2013, 47:88-107.
-
(2013)
Environ. Model. Softw.
, vol.47
, pp. 88-107
-
-
Haimi, H.1
Mulas, M.2
Corona, F.3
Vahala, R.4
-
26
-
-
33947266512
-
Development of a soft sensor for a batch distillation column using support vector regression techniques
-
Jain P., Rahman I., Kulkarni B. Development of a soft sensor for a batch distillation column using support vector regression techniques. Chem. Eng. Res. Des. 2007, 85:283-287.
-
(2007)
Chem. Eng. Res. Des.
, vol.85
, pp. 283-287
-
-
Jain, P.1
Rahman, I.2
Kulkarni, B.3
-
27
-
-
61749095807
-
Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems
-
Jassar S., Liao Z., Zhao L. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems. Build. Environ. 2009, 44:1609-1616.
-
(2009)
Build. Environ.
, vol.44
, pp. 1609-1616
-
-
Jassar, S.1
Liao, Z.2
Zhao, L.3
-
28
-
-
84905686213
-
Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes
-
Jin H., Chen X., Yang J., Wu L. Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes. Comput. Chem. Eng. 2014, 71:77-93.
-
(2014)
Comput. Chem. Eng.
, vol.71
, pp. 77-93
-
-
Jin, H.1
Chen, X.2
Yang, J.3
Wu, L.4
-
29
-
-
84919445476
-
Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process
-
Jin H., Chen X., Yang J., Wu L., Wang L. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process. ISA Trans. 2014, 53:1822-1837.
-
(2014)
ISA Trans.
, vol.53
, pp. 1822-1837
-
-
Jin, H.1
Chen, X.2
Yang, J.3
Wu, L.4
Wang, L.5
-
30
-
-
84924229688
-
Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process
-
Jin H., Chen X., Yang J., Wang L., Wu L. Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process. Chemom. Intell. Lab. Syst. 2015, 143:58-78. 10.1016/j.chemolab.2015.02.018.
-
(2015)
Chemom. Intell. Lab. Syst.
, vol.143
, pp. 58-78
-
-
Jin, H.1
Chen, X.2
Yang, J.3
Wang, L.4
Wu, L.5
-
32
-
-
79954599740
-
Local learning-based adaptive soft sensor for catalyst activation prediction
-
Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J. 2011, 57:1288-1301.
-
(2011)
AIChE J.
, vol.57
, pp. 1288-1301
-
-
Kadlec, P.1
Gabrys, B.2
-
33
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
34
-
-
78649468188
-
Review of adaptation mechanisms for data-driven soft sensors
-
Kadlec P., Grbić R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2011, 35:1-24.
-
(2011)
Comput. Chem. Eng.
, vol.35
, pp. 1-24
-
-
Kadlec, P.1
Grbić, R.2
Gabrys, B.3
-
35
-
-
58449118276
-
Development of a new soft sensor method using independent component analysis and partial least squares
-
Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J. 2009, 55:87-98.
-
(2009)
AIChE J.
, vol.55
, pp. 87-98
-
-
Kaneko, H.1
Arakawa, M.2
Funatsu, K.3
-
36
-
-
79959784751
-
Maintenance-free soft sensor models with time difference of process variables
-
Kaneko H., Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom. Intell. Lab. Syst. 2011, 107:312-317.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.107
, pp. 312-317
-
-
Kaneko, H.1
Funatsu, K.2
-
37
-
-
80055094175
-
A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
-
Kaneko H., Funatsu K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom. Intell. Lab. Syst. 2011, 109:197-206.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.109
, pp. 197-206
-
-
Kaneko, H.1
Funatsu, K.2
-
38
-
-
84879309312
-
Classification of the degradation of soft sensor models and discussion on adaptive models
-
Kaneko H., Funatsu K. Classification of the degradation of soft sensor models and discussion on adaptive models. AIChE J. 2013, 59:2339-2347.
-
(2013)
AIChE J.
, vol.59
, pp. 2339-2347
-
-
Kaneko, H.1
Funatsu, K.2
-
39
-
-
84883140452
-
Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size
-
Kaneko H., Funatsu K. Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size. Comput. Chem. Eng. 2013, 58:288-297.
-
(2013)
Comput. Chem. Eng.
, vol.58
, pp. 288-297
-
-
Kaneko, H.1
Funatsu, K.2
-
40
-
-
84903588321
-
Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants
-
Kaneko H., Funatsu K. Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants. Chemom. Intell. Lab. Syst. 2014, 137:57-66.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.137
, pp. 57-66
-
-
Kaneko, H.1
Funatsu, K.2
-
41
-
-
84892441284
-
Application of online support vector regression for soft sensors
-
Kaneko H., Funatsu K. Application of online support vector regression for soft sensors. AIChE J. 2014, 60:600-612.
-
(2014)
AIChE J.
, vol.60
, pp. 600-612
-
-
Kaneko, H.1
Funatsu, K.2
-
42
-
-
84872920533
-
Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications
-
Kano M., Fujiwara K. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications. J. Chem. Eng. Jpn. 2013, 46:1-17.
-
(2013)
J. Chem. Eng. Jpn.
, vol.46
, pp. 1-17
-
-
Kano, M.1
Fujiwara, K.2
-
43
-
-
35548968908
-
Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
-
Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 2008, 32:12-24.
-
(2008)
Comput. Chem. Eng.
, vol.32
, pp. 12-24
-
-
Kano, M.1
Nakagawa, Y.2
-
44
-
-
77956444702
-
The state of the art in chemical process control in Japan: good practice and questionnaire survey
-
Kano M., Ogawa M. The state of the art in chemical process control in Japan: good practice and questionnaire survey. J. Process. Control 2010, 20:969-982.
-
(2010)
J. Process. Control
, vol.20
, pp. 969-982
-
-
Kano, M.1
Ogawa, M.2
-
45
-
-
84888306466
-
Design of inferential sensors in the process industry: a review of Bayesian methods
-
Khatibisepehr S., Huang B., Khare S. Design of inferential sensors in the process industry: a review of Bayesian methods. J. Process. Control 2013, 23:1575-1596.
-
(2013)
J. Process. Control
, vol.23
, pp. 1575-1596
-
-
Khatibisepehr, S.1
Huang, B.2
Khare, S.3
-
46
-
-
84883736569
-
Long-term industrial applications of inferential control based on just-in-time soft-sensors: economical impact and challenges
-
Kim S., Kano M., Hasebe S., Takinami A., Seki T. Long-term industrial applications of inferential control based on just-in-time soft-sensors: economical impact and challenges. Ind. Eng. Chem. Res. 2013, 52:12346-12356.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 12346-12356
-
-
Kim, S.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
Seki, T.5
-
47
-
-
61349165676
-
Multiple model soft sensor based on affinity propagation, gaussian process and bayesian committee machine
-
Li X., Su H., Chu J. Multiple model soft sensor based on affinity propagation, gaussian process and bayesian committee machine. Chin. J. Chem. Eng. 2009, 17:95-99.
-
(2009)
Chin. J. Chem. Eng.
, vol.17
, pp. 95-99
-
-
Li, X.1
Su, H.2
Chu, J.3
-
48
-
-
33847162850
-
A systematic approach for soft sensor development
-
Lin B., Recke B., Knudsen J.K., Jørgensen S.B. A systematic approach for soft sensor development. Comput. Chem. Eng. 2007, 31:419-425.
-
(2007)
Comput. Chem. Eng.
, vol.31
, pp. 419-425
-
-
Lin, B.1
Recke, B.2
Knudsen, J.K.3
Jørgensen, S.B.4
-
49
-
-
34147222905
-
On-line soft sensor for polyethylene process with multiple production grades
-
Liu J. On-line soft sensor for polyethylene process with multiple production grades. Control Eng. Pract. 2007, 15:769-778.
-
(2007)
Control Eng. Pract.
, vol.15
, pp. 769-778
-
-
Liu, J.1
-
50
-
-
84879060636
-
Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
-
Liu Y., Chen J. Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes. J. Process. Control 2013, 23:793-804.
-
(2013)
J. Process. Control
, vol.23
, pp. 793-804
-
-
Liu, Y.1
Chen, J.2
-
52
-
-
1042268071
-
Sub-PCA modeling and on-line monitoring strategy for batch processes
-
Lu N., Gao F., Wang F. Sub-PCA modeling and on-line monitoring strategy for batch processes. AIChE J. 2004, 50:255-259.
-
(2004)
AIChE J.
, vol.50
, pp. 255-259
-
-
Lu, N.1
Gao, F.2
Wang, F.3
-
53
-
-
19844382757
-
Stage-based process analysis and quality prediction for batch processes
-
Lu N., Gao F. Stage-based process analysis and quality prediction for batch processes. Ind. Eng. Chem. Res. 2005, 44:3547-3555.
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 3547-3555
-
-
Lu, N.1
Gao, F.2
-
54
-
-
84904335114
-
Batch process monitoring based on just-in-time learning and multiple-subspace principal component analysis
-
Lv Z., Yan X., Jiang Q. Batch process monitoring based on just-in-time learning and multiple-subspace principal component analysis. Chemom. Intell. Lab. Syst. 2014, 137:128-139.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.137
, pp. 128-139
-
-
Lv, Z.1
Yan, X.2
Jiang, Q.3
-
55
-
-
0141765796
-
Accurate on-line support vector regression
-
Ma J., Theiler J., Perkins S. Accurate on-line support vector regression. Neural Comput. 2003, 15:2683-2703.
-
(2003)
Neural Comput.
, vol.15
, pp. 2683-2703
-
-
Ma, J.1
Theiler, J.2
Perkins, S.3
-
56
-
-
33645417998
-
Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process
-
Mu S., Zeng Y., Liu R., Wu P., Su H., Chu J. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. J. Process. Control 2006, 16:557-566.
-
(2006)
J. Process. Control
, vol.16
, pp. 557-566
-
-
Mu, S.1
Zeng, Y.2
Liu, R.3
Wu, P.4
Su, H.5
Chu, J.6
-
57
-
-
70449580824
-
Model learning with local gaussian process regression
-
Nguyen-Tuong D., Seeger M., Peters J. Model learning with local gaussian process regression. Adv. Robot. 2009, 23:2015-2034.
-
(2009)
Adv. Robot.
, vol.23
, pp. 2015-2034
-
-
Nguyen-Tuong, D.1
Seeger, M.2
Peters, J.3
-
58
-
-
84861071787
-
Moving-window GPR for nonlinear dynamic system modeling with dual updating and dual preprocessing
-
Ni W., Tan S.K., Ng W.J., Brown S.D. Moving-window GPR for nonlinear dynamic system modeling with dual updating and dual preprocessing. Ind. Eng. Chem. Res. 2012, 51:6416-6428.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 6416-6428
-
-
Ni, W.1
Tan, S.K.2
Ng, W.J.3
Brown, S.D.4
-
59
-
-
84862208873
-
Localized, adaptive recursive partial least squares regression for dynamic system modeling
-
Ni W., Tan S.K., Ng W.J., Brown S.D. Localized, adaptive recursive partial least squares regression for dynamic system modeling. Ind. Eng. Chem. Res. 2012, 51:8025-8039.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 8025-8039
-
-
Ni, W.1
Tan, S.K.2
Ng, W.J.3
Brown, S.D.4
-
60
-
-
84896913551
-
A localized adaptive soft sensor for dynamic system modeling
-
Ni W., Brown S.D., Man R. A localized adaptive soft sensor for dynamic system modeling. Chem. Eng. Sci. 2014, 111:350-363.
-
(2014)
Chem. Eng. Sci.
, vol.111
, pp. 350-363
-
-
Ni, W.1
Brown, S.D.2
Man, R.3
-
61
-
-
78650945964
-
Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
-
Niu D.-p., Wang F.-l., Zhang L.-l., He D.-k., Jia M..-x. Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression. Chemom. Intell. Lab. Syst. 2011, 105:125-130.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.105
, pp. 125-130
-
-
Niu, D.-P.1
Wang, F.-L.2
Zhang, L.-L.3
He, D.-K.4
Jia, M.-X.5
-
62
-
-
68549106544
-
-
(Master[U+05F3]s thesis), Department of Information Science, University of Genoa, Italy
-
Parrella F. Online Support Vector Regression 2007, (Master[U+05F3]s thesis), Department of Information Science, University of Genoa, Italy.
-
(2007)
Online Support Vector Regression
-
-
Parrella, F.1
-
63
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Qin S.J. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22:503-514.
-
(1998)
Comput. Chem. Eng.
, vol.22
, pp. 503-514
-
-
Qin, S.J.1
-
64
-
-
25444448065
-
-
The MIT Press, Cambridge, Massachusetts, London, England
-
Rasmussen C.E., Williams C.K.I. Gaussian Processes for Machine Learning 2006, The MIT Press, Cambridge, Massachusetts, London, England.
-
(2006)
Gaussian Processes for Machine Learning
-
-
Rasmussen, C.E.1
Williams, C.K.I.2
-
65
-
-
84924240378
-
State of the art in the development of adaptive soft sensors based on just-in-time models
-
Saptoro A. State of the art in the development of adaptive soft sensors based on just-in-time models. Procedia Chem. 2014, 9:226-234.
-
(2014)
Procedia Chem.
, vol.9
, pp. 226-234
-
-
Saptoro, A.1
-
66
-
-
0036639869
-
Scalable techniques from nonparametric statistics for real time robot learning
-
Schaal S., Atkeson C.G., Vijayakumar S. Scalable techniques from nonparametric statistics for real time robot learning. Appl. Intell. 2002, 17:49-60.
-
(2002)
Appl. Intell.
, vol.17
, pp. 49-60
-
-
Schaal, S.1
Atkeson, C.G.2
Vijayakumar, S.3
-
67
-
-
84857548668
-
Methods for plant data-based process modeling in soft-sensor development
-
Sliskovic D., Grbic R., Hocenski Z. Methods for plant data-based process modeling in soft-sensor development. Automatika 2011, 52:306-318.
-
(2011)
Automatika
, vol.52
, pp. 306-318
-
-
Sliskovic, D.1
Grbic, R.2
Hocenski, Z.3
-
68
-
-
84949117585
-
A dynamic and on-line ensemble regression for changing environments
-
Soares S.G., Araújo R. A dynamic and on-line ensemble regression for changing environments. Expert Syst. Appl. 2014, 42:2935-2948. 10.1016/j.eswa.2014.11.053.
-
(2014)
Expert Syst. Appl.
, vol.42
, pp. 2935-2948
-
-
Soares, S.G.1
Araújo, R.2
-
69
-
-
84910607774
-
An on-line weighted ensemble of regressor models to handle concept drifts
-
Soares S.G., Araújo R. An on-line weighted ensemble of regressor models to handle concept drifts. Eng. Appl. Artif. Intell. 2015, 37:392-406.
-
(2015)
Eng. Appl. Artif. Intell.
, vol.37
, pp. 392-406
-
-
Soares, S.G.1
Araújo, R.2
-
70
-
-
0345399126
-
The probable error of a mean
-
Student The probable error of a mean. Biometrika 1908, 6:1-25.
-
(1908)
Biometrika
, vol.6
, pp. 1-25
-
-
-
73
-
-
27144556425
-
Incremental online learning in high dimensions
-
Vijayakumar S., D'souza A., Schaal S. Incremental online learning in high dimensions. Neural Comput. 2005, 17:2602-2634.
-
(2005)
Neural Comput.
, vol.17
, pp. 2602-2634
-
-
Vijayakumar, S.1
D'souza, A.2
Schaal, S.3
-
74
-
-
22944436794
-
Process monitoring approach using fast moving window PCA
-
Wang X., Kruger U., Irwin G.W. Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res. 2005, 44:5691-5702.
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 5691-5702
-
-
Wang, X.1
Kruger, U.2
Irwin, G.W.3
-
75
-
-
0029199640
-
On data-based modelling techniques for fermentation processes
-
Warnes M.R., Glassey J., Montague G.A., Kara B. On data-based modelling techniques for fermentation processes. Process. Biochem. 1996, 31:147-155.
-
(1996)
Process. Biochem.
, vol.31
, pp. 147-155
-
-
Warnes, M.R.1
Glassey, J.2
Montague, G.A.3
Kara, B.4
-
77
-
-
84891520527
-
Novel just-in-time learning-based soft sensor utilizing non-gaussian information
-
Xie L., Zeng J., Gao C. Novel just-in-time learning-based soft sensor utilizing non-gaussian information. IEEE Trans. Control Syst. Technol. 2014, 22:360-368.
-
(2014)
IEEE Trans. Control Syst. Technol.
, vol.22
, pp. 360-368
-
-
Xie, L.1
Zeng, J.2
Gao, C.3
-
78
-
-
84859911625
-
Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
-
Xie X., Shi H. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Ind. Eng. Chem. Res. 2012, 51:5497-5505.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 5497-5505
-
-
Xie, X.1
Shi, H.2
-
79
-
-
84859392648
-
A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
-
Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
-
(2012)
Comput. Chem. Eng.
, vol.41
, pp. 134-144
-
-
Yu, J.1
-
80
-
-
84868224530
-
Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
-
Yu J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind. Eng. Chem. Res. 2012, 51:13227-13237.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 13227-13237
-
-
Yu, J.1
-
81
-
-
84864805251
-
Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
-
Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem. Eng. Sci. 2012, 82:22-30.
-
(2012)
Chem. Eng. Sci.
, vol.82
, pp. 22-30
-
-
Yu, J.1
-
82
-
-
84874515333
-
A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty
-
Yu J., Chen K., Rashid M.M. A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty. Chem. Eng. Sci. 2013, 93:96-109.
-
(2013)
Chem. Eng. Sci.
, vol.93
, pp. 96-109
-
-
Yu, J.1
Chen, K.2
Rashid, M.M.3
-
83
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008, 54:1811-1829.
-
(2008)
AIChE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
84
-
-
84906872234
-
Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes
-
Yuan X., Ge Z., Song Z. Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes. Ind. Eng. Chem. Res. 2014, 53:13736-13749.
-
(2014)
Ind. Eng. Chem. Res.
, vol.53
, pp. 13736-13749
-
-
Yuan, X.1
Ge, Z.2
Song, Z.3
-
85
-
-
58149308461
-
Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction
-
Zhao C., Wang F., Gao F. Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction. Chemom. Intell. Lab. Syst. 2009, 95:107-121.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.95
, pp. 107-121
-
-
Zhao, C.1
Wang, F.2
Gao, F.3
|