메뉴 건너뛰기




Volumn 131, Issue , 2015, Pages 282-303

Multi-model adaptive soft sensor modeling method using local learning and online support vector regression for nonlinear time-variant batch processes

Author keywords

Adaptive soft sensor; Batch process; Bayesian ensemble learning; Offset compensation; Online support vector regression; Within batch and between batch time variant changes

Indexed keywords

BATCH DATA PROCESSING; FERMENTATION; PROCESS CONTROL; QUERY PROCESSING; REGRESSION ANALYSIS; SOCIAL NETWORKING (ONLINE);

EID: 84928348714     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2015.03.038     Document Type: Article
Times cited : (94)

References (85)
  • 1
    • 59349107270 scopus 로고    scopus 로고
    • A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
    • Ahmed F., Nazir S., Yeo Y.K. A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant. Korean J. Chem. Eng. 2009, 26:14-20.
    • (2009) Korean J. Chem. Eng. , vol.26 , pp. 14-20
    • Ahmed, F.1    Nazir, S.2    Yeo, Y.K.3
  • 2
    • 0031073475 scopus 로고    scopus 로고
    • Locally weighted learning for control
    • Springer, Netherlands, New York, D.W. Aha (Ed.)
    • Atkeson C.G., Moore A.W., Schaal S. Locally weighted learning for control. Lazy Learning 1997, 75-113. Springer, Netherlands, New York. first ed. D.W. Aha (Ed.).
    • (1997) Lazy Learning , pp. 75-113
    • Atkeson, C.G.1    Moore, A.W.2    Schaal, S.3
  • 3
    • 0037110983 scopus 로고    scopus 로고
    • A modular simulation package for fed-batch fermentation: penicillin production
    • Birol G., Ündey C., Cinar A. A modular simulation package for fed-batch fermentation: penicillin production. Comput. Chem. Eng. 2002, 26:1553-1565.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1553-1565
    • Birol, G.1    Ündey, C.2    Cinar, A.3
  • 5
    • 0032625723 scopus 로고    scopus 로고
    • Lazy learning for local modelling and control design
    • Bontempi G., Birattari M., Bersini H. Lazy learning for local modelling and control design. Int. J. Control 1999, 72:643-658.
    • (1999) Int. J. Control , vol.72 , pp. 643-658
    • Bontempi, G.1    Birattari, M.2    Bersini, H.3
  • 6
    • 58349104545 scopus 로고    scopus 로고
    • Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
    • Castro-Neto M., Jeong Y.-S., Jeong M.-K., Han L.D. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 2009, 36:6164-6173.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 6164-6173
    • Castro-Neto, M.1    Jeong, Y.-S.2    Jeong, M.-K.3    Han, L.D.4
  • 9
    • 61849183105 scopus 로고    scopus 로고
    • Bagging for Gaussian process regression
    • Chen T., Ren J. Bagging for Gaussian process regression. Neurocomputing 2009, 72:1605-1610.
    • (2009) Neurocomputing , vol.72 , pp. 1605-1610
    • Chen, T.1    Ren, J.2
  • 10
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C., Chiu M.-S. A new data-based methodology for nonlinear process modeling. Chem. Eng. Sci. 2004, 59:2801-2810.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.-S.2
  • 11
    • 14844303316 scopus 로고    scopus 로고
    • Nonlinear process monitoring using JITL-PCA
    • Cheng C., Chiu M.-S. Nonlinear process monitoring using JITL-PCA. Chemom. Intell. Lab. Syst. 2005, 76:1-13.
    • (2005) Chemom. Intell. Lab. Syst. , vol.76 , pp. 1-13
    • Cheng, C.1    Chiu, M.-S.2
  • 13
    • 84855946000 scopus 로고    scopus 로고
    • Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation
    • Cui L., Xie P., Sun J., Yu T., Yuan J. Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation. Comput. Chem. Eng. 2012, 36:386-391.
    • (2012) Comput. Chem. Eng. , vol.36 , pp. 386-391
    • Cui, L.1    Xie, P.2    Sun, J.3    Yu, T.4    Yuan, J.5
  • 14
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 27444433806 scopus 로고    scopus 로고
    • Soft-sensor development for fed-batch bioreactors using support vector regression
    • Desai K., Badhe Y., Tambe S.S., Kulkarni B.D. Soft-sensor development for fed-batch bioreactors using support vector regression. Biochem. Eng. J. 2006, 27:225-239.
    • (2006) Biochem. Eng. J. , vol.27 , pp. 225-239
    • Desai, K.1    Badhe, Y.2    Tambe, S.S.3    Kulkarni, B.D.4
  • 20
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using c correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using c correlation-based just-in-time modeling. AIChE J. 2009, 55:1754-1765.
    • (2009) AIChE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 21
    • 78650524009 scopus 로고    scopus 로고
    • A comparative study of just-in-time-learning based methods for online soft sensor modeling
    • Ge Z., Song Z. A comparative study of just-in-time-learning based methods for online soft sensor modeling. Chemom. Intell. Lab. Syst. 2010, 104:306-317.
    • (2010) Chemom. Intell. Lab. Syst. , vol.104 , pp. 306-317
    • Ge, Z.1    Song, Z.2
  • 22
    • 84887725182 scopus 로고    scopus 로고
    • Ensemble independent component regression models and soft sensing application
    • Ge Z., Song Z. Ensemble independent component regression models and soft sensing application. Chemom. Intell. Lab. Syst. 2014, 130:115-122.
    • (2014) Chemom. Intell. Lab. Syst. , vol.130 , pp. 115-122
    • Ge, Z.1    Song, Z.2
  • 23
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga J., Meleiro L., Kiang C., Maciel Filho R. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput. Chem. Eng. 2009, 33:43-49.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 43-49
    • Gonzaga, J.1    Meleiro, L.2    Kiang, C.3    Maciel Filho, R.4
  • 24
    • 84880339799 scopus 로고    scopus 로고
    • Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
    • Grbić R., Slišković D., Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput. Chem. Eng. 2013, 58:84-97.
    • (2013) Comput. Chem. Eng. , vol.58 , pp. 84-97
    • Grbić, R.1    Slišković, D.2    Kadlec, P.3
  • 25
    • 84879310945 scopus 로고    scopus 로고
    • Data-derived soft-sensors for biological wastewater treatment plants: an overview
    • Haimi H., Mulas M., Corona F., Vahala R. Data-derived soft-sensors for biological wastewater treatment plants: an overview. Environ. Model. Softw. 2013, 47:88-107.
    • (2013) Environ. Model. Softw. , vol.47 , pp. 88-107
    • Haimi, H.1    Mulas, M.2    Corona, F.3    Vahala, R.4
  • 26
    • 33947266512 scopus 로고    scopus 로고
    • Development of a soft sensor for a batch distillation column using support vector regression techniques
    • Jain P., Rahman I., Kulkarni B. Development of a soft sensor for a batch distillation column using support vector regression techniques. Chem. Eng. Res. Des. 2007, 85:283-287.
    • (2007) Chem. Eng. Res. Des. , vol.85 , pp. 283-287
    • Jain, P.1    Rahman, I.2    Kulkarni, B.3
  • 27
    • 61749095807 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems
    • Jassar S., Liao Z., Zhao L. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems. Build. Environ. 2009, 44:1609-1616.
    • (2009) Build. Environ. , vol.44 , pp. 1609-1616
    • Jassar, S.1    Liao, Z.2    Zhao, L.3
  • 28
    • 84905686213 scopus 로고    scopus 로고
    • Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes
    • Jin H., Chen X., Yang J., Wu L. Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes. Comput. Chem. Eng. 2014, 71:77-93.
    • (2014) Comput. Chem. Eng. , vol.71 , pp. 77-93
    • Jin, H.1    Chen, X.2    Yang, J.3    Wu, L.4
  • 29
    • 84919445476 scopus 로고    scopus 로고
    • Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process
    • Jin H., Chen X., Yang J., Wu L., Wang L. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process. ISA Trans. 2014, 53:1822-1837.
    • (2014) ISA Trans. , vol.53 , pp. 1822-1837
    • Jin, H.1    Chen, X.2    Yang, J.3    Wu, L.4    Wang, L.5
  • 30
    • 84924229688 scopus 로고    scopus 로고
    • Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process
    • Jin H., Chen X., Yang J., Wang L., Wu L. Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process. Chemom. Intell. Lab. Syst. 2015, 143:58-78. 10.1016/j.chemolab.2015.02.018.
    • (2015) Chemom. Intell. Lab. Syst. , vol.143 , pp. 58-78
    • Jin, H.1    Chen, X.2    Yang, J.3    Wang, L.4    Wu, L.5
  • 32
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J. 2011, 57:1288-1301.
    • (2011) AIChE J. , vol.57 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 33
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 34
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P., Grbić R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2011, 35:1-24.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 35
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J. 2009, 55:87-98.
    • (2009) AIChE J. , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 36
    • 79959784751 scopus 로고    scopus 로고
    • Maintenance-free soft sensor models with time difference of process variables
    • Kaneko H., Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom. Intell. Lab. Syst. 2011, 107:312-317.
    • (2011) Chemom. Intell. Lab. Syst. , vol.107 , pp. 312-317
    • Kaneko, H.1    Funatsu, K.2
  • 37
    • 80055094175 scopus 로고    scopus 로고
    • A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
    • Kaneko H., Funatsu K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom. Intell. Lab. Syst. 2011, 109:197-206.
    • (2011) Chemom. Intell. Lab. Syst. , vol.109 , pp. 197-206
    • Kaneko, H.1    Funatsu, K.2
  • 38
    • 84879309312 scopus 로고    scopus 로고
    • Classification of the degradation of soft sensor models and discussion on adaptive models
    • Kaneko H., Funatsu K. Classification of the degradation of soft sensor models and discussion on adaptive models. AIChE J. 2013, 59:2339-2347.
    • (2013) AIChE J. , vol.59 , pp. 2339-2347
    • Kaneko, H.1    Funatsu, K.2
  • 39
    • 84883140452 scopus 로고    scopus 로고
    • Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size
    • Kaneko H., Funatsu K. Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size. Comput. Chem. Eng. 2013, 58:288-297.
    • (2013) Comput. Chem. Eng. , vol.58 , pp. 288-297
    • Kaneko, H.1    Funatsu, K.2
  • 40
    • 84903588321 scopus 로고    scopus 로고
    • Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants
    • Kaneko H., Funatsu K. Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants. Chemom. Intell. Lab. Syst. 2014, 137:57-66.
    • (2014) Chemom. Intell. Lab. Syst. , vol.137 , pp. 57-66
    • Kaneko, H.1    Funatsu, K.2
  • 41
    • 84892441284 scopus 로고    scopus 로고
    • Application of online support vector regression for soft sensors
    • Kaneko H., Funatsu K. Application of online support vector regression for soft sensors. AIChE J. 2014, 60:600-612.
    • (2014) AIChE J. , vol.60 , pp. 600-612
    • Kaneko, H.1    Funatsu, K.2
  • 42
    • 84872920533 scopus 로고    scopus 로고
    • Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications
    • Kano M., Fujiwara K. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications. J. Chem. Eng. Jpn. 2013, 46:1-17.
    • (2013) J. Chem. Eng. Jpn. , vol.46 , pp. 1-17
    • Kano, M.1    Fujiwara, K.2
  • 43
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
    • Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 2008, 32:12-24.
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 44
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: good practice and questionnaire survey
    • Kano M., Ogawa M. The state of the art in chemical process control in Japan: good practice and questionnaire survey. J. Process. Control 2010, 20:969-982.
    • (2010) J. Process. Control , vol.20 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 45
    • 84888306466 scopus 로고    scopus 로고
    • Design of inferential sensors in the process industry: a review of Bayesian methods
    • Khatibisepehr S., Huang B., Khare S. Design of inferential sensors in the process industry: a review of Bayesian methods. J. Process. Control 2013, 23:1575-1596.
    • (2013) J. Process. Control , vol.23 , pp. 1575-1596
    • Khatibisepehr, S.1    Huang, B.2    Khare, S.3
  • 46
    • 84883736569 scopus 로고    scopus 로고
    • Long-term industrial applications of inferential control based on just-in-time soft-sensors: economical impact and challenges
    • Kim S., Kano M., Hasebe S., Takinami A., Seki T. Long-term industrial applications of inferential control based on just-in-time soft-sensors: economical impact and challenges. Ind. Eng. Chem. Res. 2013, 52:12346-12356.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 12346-12356
    • Kim, S.1    Kano, M.2    Hasebe, S.3    Takinami, A.4    Seki, T.5
  • 47
    • 61349165676 scopus 로고    scopus 로고
    • Multiple model soft sensor based on affinity propagation, gaussian process and bayesian committee machine
    • Li X., Su H., Chu J. Multiple model soft sensor based on affinity propagation, gaussian process and bayesian committee machine. Chin. J. Chem. Eng. 2009, 17:95-99.
    • (2009) Chin. J. Chem. Eng. , vol.17 , pp. 95-99
    • Li, X.1    Su, H.2    Chu, J.3
  • 49
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • Liu J. On-line soft sensor for polyethylene process with multiple production grades. Control Eng. Pract. 2007, 15:769-778.
    • (2007) Control Eng. Pract. , vol.15 , pp. 769-778
    • Liu, J.1
  • 50
    • 84879060636 scopus 로고    scopus 로고
    • Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
    • Liu Y., Chen J. Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes. J. Process. Control 2013, 23:793-804.
    • (2013) J. Process. Control , vol.23 , pp. 793-804
    • Liu, Y.1    Chen, J.2
  • 52
    • 1042268071 scopus 로고    scopus 로고
    • Sub-PCA modeling and on-line monitoring strategy for batch processes
    • Lu N., Gao F., Wang F. Sub-PCA modeling and on-line monitoring strategy for batch processes. AIChE J. 2004, 50:255-259.
    • (2004) AIChE J. , vol.50 , pp. 255-259
    • Lu, N.1    Gao, F.2    Wang, F.3
  • 53
    • 19844382757 scopus 로고    scopus 로고
    • Stage-based process analysis and quality prediction for batch processes
    • Lu N., Gao F. Stage-based process analysis and quality prediction for batch processes. Ind. Eng. Chem. Res. 2005, 44:3547-3555.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 3547-3555
    • Lu, N.1    Gao, F.2
  • 54
    • 84904335114 scopus 로고    scopus 로고
    • Batch process monitoring based on just-in-time learning and multiple-subspace principal component analysis
    • Lv Z., Yan X., Jiang Q. Batch process monitoring based on just-in-time learning and multiple-subspace principal component analysis. Chemom. Intell. Lab. Syst. 2014, 137:128-139.
    • (2014) Chemom. Intell. Lab. Syst. , vol.137 , pp. 128-139
    • Lv, Z.1    Yan, X.2    Jiang, Q.3
  • 55
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • Ma J., Theiler J., Perkins S. Accurate on-line support vector regression. Neural Comput. 2003, 15:2683-2703.
    • (2003) Neural Comput. , vol.15 , pp. 2683-2703
    • Ma, J.1    Theiler, J.2    Perkins, S.3
  • 56
    • 33645417998 scopus 로고    scopus 로고
    • Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process
    • Mu S., Zeng Y., Liu R., Wu P., Su H., Chu J. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. J. Process. Control 2006, 16:557-566.
    • (2006) J. Process. Control , vol.16 , pp. 557-566
    • Mu, S.1    Zeng, Y.2    Liu, R.3    Wu, P.4    Su, H.5    Chu, J.6
  • 57
    • 70449580824 scopus 로고    scopus 로고
    • Model learning with local gaussian process regression
    • Nguyen-Tuong D., Seeger M., Peters J. Model learning with local gaussian process regression. Adv. Robot. 2009, 23:2015-2034.
    • (2009) Adv. Robot. , vol.23 , pp. 2015-2034
    • Nguyen-Tuong, D.1    Seeger, M.2    Peters, J.3
  • 58
    • 84861071787 scopus 로고    scopus 로고
    • Moving-window GPR for nonlinear dynamic system modeling with dual updating and dual preprocessing
    • Ni W., Tan S.K., Ng W.J., Brown S.D. Moving-window GPR for nonlinear dynamic system modeling with dual updating and dual preprocessing. Ind. Eng. Chem. Res. 2012, 51:6416-6428.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 6416-6428
    • Ni, W.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4
  • 59
    • 84862208873 scopus 로고    scopus 로고
    • Localized, adaptive recursive partial least squares regression for dynamic system modeling
    • Ni W., Tan S.K., Ng W.J., Brown S.D. Localized, adaptive recursive partial least squares regression for dynamic system modeling. Ind. Eng. Chem. Res. 2012, 51:8025-8039.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 8025-8039
    • Ni, W.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4
  • 60
    • 84896913551 scopus 로고    scopus 로고
    • A localized adaptive soft sensor for dynamic system modeling
    • Ni W., Brown S.D., Man R. A localized adaptive soft sensor for dynamic system modeling. Chem. Eng. Sci. 2014, 111:350-363.
    • (2014) Chem. Eng. Sci. , vol.111 , pp. 350-363
    • Ni, W.1    Brown, S.D.2    Man, R.3
  • 61
    • 78650945964 scopus 로고    scopus 로고
    • Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
    • Niu D.-p., Wang F.-l., Zhang L.-l., He D.-k., Jia M..-x. Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression. Chemom. Intell. Lab. Syst. 2011, 105:125-130.
    • (2011) Chemom. Intell. Lab. Syst. , vol.105 , pp. 125-130
    • Niu, D.-P.1    Wang, F.-L.2    Zhang, L.-L.3    He, D.-K.4    Jia, M.-X.5
  • 62
    • 68549106544 scopus 로고    scopus 로고
    • (Master[U+05F3]s thesis), Department of Information Science, University of Genoa, Italy
    • Parrella F. Online Support Vector Regression 2007, (Master[U+05F3]s thesis), Department of Information Science, University of Genoa, Italy.
    • (2007) Online Support Vector Regression
    • Parrella, F.1
  • 63
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin S.J. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22:503-514.
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 65
    • 84924240378 scopus 로고    scopus 로고
    • State of the art in the development of adaptive soft sensors based on just-in-time models
    • Saptoro A. State of the art in the development of adaptive soft sensors based on just-in-time models. Procedia Chem. 2014, 9:226-234.
    • (2014) Procedia Chem. , vol.9 , pp. 226-234
    • Saptoro, A.1
  • 66
    • 0036639869 scopus 로고    scopus 로고
    • Scalable techniques from nonparametric statistics for real time robot learning
    • Schaal S., Atkeson C.G., Vijayakumar S. Scalable techniques from nonparametric statistics for real time robot learning. Appl. Intell. 2002, 17:49-60.
    • (2002) Appl. Intell. , vol.17 , pp. 49-60
    • Schaal, S.1    Atkeson, C.G.2    Vijayakumar, S.3
  • 67
    • 84857548668 scopus 로고    scopus 로고
    • Methods for plant data-based process modeling in soft-sensor development
    • Sliskovic D., Grbic R., Hocenski Z. Methods for plant data-based process modeling in soft-sensor development. Automatika 2011, 52:306-318.
    • (2011) Automatika , vol.52 , pp. 306-318
    • Sliskovic, D.1    Grbic, R.2    Hocenski, Z.3
  • 68
    • 84949117585 scopus 로고    scopus 로고
    • A dynamic and on-line ensemble regression for changing environments
    • Soares S.G., Araújo R. A dynamic and on-line ensemble regression for changing environments. Expert Syst. Appl. 2014, 42:2935-2948. 10.1016/j.eswa.2014.11.053.
    • (2014) Expert Syst. Appl. , vol.42 , pp. 2935-2948
    • Soares, S.G.1    Araújo, R.2
  • 69
    • 84910607774 scopus 로고    scopus 로고
    • An on-line weighted ensemble of regressor models to handle concept drifts
    • Soares S.G., Araújo R. An on-line weighted ensemble of regressor models to handle concept drifts. Eng. Appl. Artif. Intell. 2015, 37:392-406.
    • (2015) Eng. Appl. Artif. Intell. , vol.37 , pp. 392-406
    • Soares, S.G.1    Araújo, R.2
  • 70
    • 0345399126 scopus 로고
    • The probable error of a mean
    • Student The probable error of a mean. Biometrika 1908, 6:1-25.
    • (1908) Biometrika , vol.6 , pp. 1-25
  • 73
    • 27144556425 scopus 로고    scopus 로고
    • Incremental online learning in high dimensions
    • Vijayakumar S., D'souza A., Schaal S. Incremental online learning in high dimensions. Neural Comput. 2005, 17:2602-2634.
    • (2005) Neural Comput. , vol.17 , pp. 2602-2634
    • Vijayakumar, S.1    D'souza, A.2    Schaal, S.3
  • 74
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang X., Kruger U., Irwin G.W. Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res. 2005, 44:5691-5702.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 75
    • 0029199640 scopus 로고    scopus 로고
    • On data-based modelling techniques for fermentation processes
    • Warnes M.R., Glassey J., Montague G.A., Kara B. On data-based modelling techniques for fermentation processes. Process. Biochem. 1996, 31:147-155.
    • (1996) Process. Biochem. , vol.31 , pp. 147-155
    • Warnes, M.R.1    Glassey, J.2    Montague, G.A.3    Kara, B.4
  • 77
    • 84891520527 scopus 로고    scopus 로고
    • Novel just-in-time learning-based soft sensor utilizing non-gaussian information
    • Xie L., Zeng J., Gao C. Novel just-in-time learning-based soft sensor utilizing non-gaussian information. IEEE Trans. Control Syst. Technol. 2014, 22:360-368.
    • (2014) IEEE Trans. Control Syst. Technol. , vol.22 , pp. 360-368
    • Xie, L.1    Zeng, J.2    Gao, C.3
  • 78
    • 84859911625 scopus 로고    scopus 로고
    • Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
    • Xie X., Shi H. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Ind. Eng. Chem. Res. 2012, 51:5497-5505.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5497-5505
    • Xie, X.1    Shi, H.2
  • 79
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
    • (2012) Comput. Chem. Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 80
    • 84868224530 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
    • Yu J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind. Eng. Chem. Res. 2012, 51:13227-13237.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 13227-13237
    • Yu, J.1
  • 81
    • 84864805251 scopus 로고    scopus 로고
    • Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
    • Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem. Eng. Sci. 2012, 82:22-30.
    • (2012) Chem. Eng. Sci. , vol.82 , pp. 22-30
    • Yu, J.1
  • 82
    • 84874515333 scopus 로고    scopus 로고
    • A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty
    • Yu J., Chen K., Rashid M.M. A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty. Chem. Eng. Sci. 2013, 93:96-109.
    • (2013) Chem. Eng. Sci. , vol.93 , pp. 96-109
    • Yu, J.1    Chen, K.2    Rashid, M.M.3
  • 83
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008, 54:1811-1829.
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 84
    • 84906872234 scopus 로고    scopus 로고
    • Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes
    • Yuan X., Ge Z., Song Z. Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes. Ind. Eng. Chem. Res. 2014, 53:13736-13749.
    • (2014) Ind. Eng. Chem. Res. , vol.53 , pp. 13736-13749
    • Yuan, X.1    Ge, Z.2    Song, Z.3
  • 85
    • 58149308461 scopus 로고    scopus 로고
    • Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction
    • Zhao C., Wang F., Gao F. Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction. Chemom. Intell. Lab. Syst. 2009, 95:107-121.
    • (2009) Chemom. Intell. Lab. Syst. , vol.95 , pp. 107-121
    • Zhao, C.1    Wang, F.2    Gao, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.