메뉴 건너뛰기




Volumn 137, Issue , 2014, Pages 57-66

Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants

Author keywords

Bayes' rule; Degradation; Ensemble learning; Online support vector regression; Process control; Soft sensor

Indexed keywords

ADAPTIVE SOFT SENSOR; ANALYTIC METHOD; ARTICLE; BAYESIAN LEARNING; CALCULATION; CHEMICAL REACTION; INFORMATION SYSTEM; NONLINEAR SYSTEM; ONLINE SUPPORT VECTOR REGRESSION; PLANT; PREDICTION; PRIORITY JOURNAL; QUANTITATIVE STUDY; SENSOR; SUPPORT VECTOR MACHINE;

EID: 84903588321     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.06.008     Document Type: Article
Times cited : (103)

References (31)
  • 1
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
    • Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 2008, 32:12-24.
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 2
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 3
    • 84872920533 scopus 로고    scopus 로고
    • Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications
    • Kano M., Fujiwara K. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications. J. Chem. Eng. Jpn 2013, 46:1-17.
    • (2013) J. Chem. Eng. Jpn , vol.46 , pp. 1-17
    • Kano, M.1    Fujiwara, K.2
  • 4
    • 84879309312 scopus 로고    scopus 로고
    • Classification of the degradation of soft sensor models and discussion on adaptive models
    • Kaneko H., Funatsu K. Classification of the degradation of soft sensor models and discussion on adaptive models. AICHE J. 2013, 59:2339-2347.
    • (2013) AICHE J. , vol.59 , pp. 2339-2347
    • Kaneko, H.1    Funatsu, K.2
  • 5
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P., Grbic R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2011, 35:1-24.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Grbic, R.2    Gabrys, B.3
  • 6
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin S.J. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22:503-514.
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 7
    • 78449310514 scopus 로고    scopus 로고
    • Development of self-validating soft sensors using fast moving window partial least squares
    • Liu J.L., Chen D.S., Shen J.F. Development of self-validating soft sensors using fast moving window partial least squares. Ind. Eng. Chem. Res. 2010, 49:11530-11546.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 11530-11546
    • Liu, J.L.1    Chen, D.S.2    Shen, J.F.3
  • 8
    • 0036639869 scopus 로고    scopus 로고
    • Scalable techniques from onparametric statistics for real time robot learning
    • Schaal S., Atkeson C.G., Vijayakumar S. Scalable techniques from onparametric statistics for real time robot learning. Appl. Intell. 2002, 17:49-60.
    • (2002) Appl. Intell. , vol.17 , pp. 49-60
    • Schaal, S.1    Atkeson, C.G.2    Vijayakumar, S.3
  • 9
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C., Chiu M.S. A new data-based methodology for nonlinear process modeling. Chem. Eng. Sci. 2004, 59:2801-2810.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 10
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AICHE J. 2009, 55:1754-1765.
    • (2009) AICHE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 11
    • 79959784751 scopus 로고    scopus 로고
    • Maintenance-free soft sensor models with time difference of process variables
    • Kaneko H., Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom. Intell. Lab. Syst. 2011, 107:312-317.
    • (2011) Chemom. Intell. Lab. Syst. , vol.107 , pp. 312-317
    • Kaneko, H.1    Funatsu, K.2
  • 12
    • 80055094175 scopus 로고    scopus 로고
    • A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
    • Kaneko H., Funatsu K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom. Intell. Lab. Syst. 2011, 109:197-206.
    • (2011) Chemom. Intell. Lab. Syst. , vol.109 , pp. 197-206
    • Kaneko, H.1    Funatsu, K.2
  • 13
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AICHE J. 2010, 57:1288-1301.
    • (2010) AICHE J. , vol.57 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 14
    • 84880339799 scopus 로고    scopus 로고
    • Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
    • Grbića R., Slišković D., Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput. Chem. Eng. 2013, 58:84-97.
    • (2013) Comput. Chem. Eng. , vol.58 , pp. 84-97
    • Grbića, R.1    Slišković, D.2    Kadlec, P.3
  • 15
    • 84868224530 scopus 로고    scopus 로고
    • Multiway gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
    • Yu J. Multiway gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind. Eng. Chem. Res. 2012, 51:13227-13237.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 13227-13237
    • Yu, J.1
  • 16
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
    • (2012) Comput. Chem. Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 17
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • Ma J., Theliler J., Perkins S. Accurate on-line support vector regression. Neural Comput. 2003, 15:2683-2703.
    • (2003) Neural Comput. , vol.15 , pp. 2683-2703
    • Ma, J.1    Theliler, J.2    Perkins, S.3
  • 19
    • 84892441284 scopus 로고    scopus 로고
    • Application of online support vector regression for soft sensors
    • Kaneko H., Funatsu K. Application of online support vector regression for soft sensors. AICHE J. 2014, 60:600-612.
    • (2014) AICHE J. , vol.60 , pp. 600-612
    • Kaneko, H.1    Funatsu, K.2
  • 20
    • 84883140452 scopus 로고    scopus 로고
    • Adaptive soft sensor model using online support vector regression with the time variable and discussion on appropriate hyperparameters and window size
    • Kaneko H., Funatsu K. Adaptive soft sensor model using online support vector regression with the time variable and discussion on appropriate hyperparameters and window size. Comput. Chem. Eng. 2013, 58:288-297.
    • (2013) Comput. Chem. Eng. , vol.58 , pp. 288-297
    • Kaneko, H.1    Funatsu, K.2
  • 21
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W., Shao H., Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 2004, 28:1489-1498.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 22
    • 84888306466 scopus 로고    scopus 로고
    • Design of inferential sensors in the process industry: a review of Bayesian methods
    • Khatibisepehr S., Huang B.A., Khare S. Design of inferential sensors in the process industry: a review of Bayesian methods. J. Process Control 2013, 23:1575-1596.
    • (2013) J. Process Control , vol.23 , pp. 1575-1596
    • Khatibisepehr, S.1    Huang, B.A.2    Khare, S.3
  • 23
    • 84892445860 scopus 로고    scopus 로고
    • Mixture semisupervised principal component regression model and soft sensor application
    • Ge Z.Q., Huang B.A., Song Z.H. Mixture semisupervised principal component regression model and soft sensor application. AICHE J. 2014, 60:533-545.
    • (2014) AICHE J. , vol.60 , pp. 533-545
    • Ge, Z.Q.1    Huang, B.A.2    Song, Z.H.3
  • 24
    • 84884574602 scopus 로고    scopus 로고
    • Criterion for evaluating the predictive ability of nonlinear regression models without cross-validation
    • Kaneko H., Funatsu K. Criterion for evaluating the predictive ability of nonlinear regression models without cross-validation. J. Chem. Inf. Model. 2013, 53:2341-2348.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2341-2348
    • Kaneko, H.1    Funatsu, K.2
  • 25
    • 54249125512 scopus 로고    scopus 로고
    • Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection
    • Tetko I.V., Sushko I., Pandey A.K., Zhu H., Tropsha A., Papa E., Öberg T., Todeschini R., Fourches D., Varnek A. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J. Chem. Inf. Model. 2008, 48:1733-1746.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1733-1746
    • Tetko, I.V.1    Sushko, I.2    Pandey, A.K.3    Zhu, H.4    Tropsha, A.5    Papa, E.6    Öberg, T.7    Todeschini, R.8    Fourches, D.9    Varnek, A.10
  • 27
    • 68149160790 scopus 로고    scopus 로고
    • Predicting the predictability: a unified approach to the applicability domain problem of QSAR models
    • Horvath D., Marcou G., Varnek A. Predicting the predictability: a unified approach to the applicability domain problem of QSAR models. J. Chem. Inf. Model. 2009, 49:1762-1776.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1762-1776
    • Horvath, D.1    Marcou, G.2    Varnek, A.3
  • 28
    • 79955611348 scopus 로고    scopus 로고
    • Applicability domains and accuracy of prediction of soft sensor models
    • Kaneko H., Arakawa M., Funatsu K. Applicability domains and accuracy of prediction of soft sensor models. AICHE J. 2011, 57:1506-1513.
    • (2011) AICHE J. , vol.57 , pp. 1506-1513
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 29
    • 81755166220 scopus 로고    scopus 로고
    • Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection
    • Kim S., Kano M., Nakagawa H., Hasebe S. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. Int. J. Pharm. 2011, 421:269-274.
    • (2011) Int. J. Pharm. , vol.421 , pp. 269-274
    • Kim, S.1    Kano, M.2    Nakagawa, H.3    Hasebe, S.4
  • 30
    • 72149085992 scopus 로고    scopus 로고
    • An accumulative error based adaptive design of experiments for offline metamodeling
    • Li G., Aute V., Azarm S. An accumulative error based adaptive design of experiments for offline metamodeling. Struct. Multidiscip. Optim. 2010, 40:137-155.
    • (2010) Struct. Multidiscip. Optim. , vol.40 , pp. 137-155
    • Li, G.1    Aute, V.2    Azarm, S.3
  • 31
    • 84889677253 scopus 로고    scopus 로고
    • Database monitoring index for adaptive soft sensors and the application to industrial process
    • Kaneko H., Funatsu K. Database monitoring index for adaptive soft sensors and the application to industrial process. AICHE J. 2014, 60:160-169.
    • (2014) AICHE J. , vol.60 , pp. 160-169
    • Kaneko, H.1    Funatsu, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.