-
1
-
-
35548968908
-
Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
-
Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 2008, 32:12-24.
-
(2008)
Comput. Chem. Eng.
, vol.32
, pp. 12-24
-
-
Kano, M.1
Nakagawa, Y.2
-
2
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
3
-
-
84872920533
-
Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications
-
Kano M., Fujiwara K. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications. J. Chem. Eng. Jpn 2013, 46:1-17.
-
(2013)
J. Chem. Eng. Jpn
, vol.46
, pp. 1-17
-
-
Kano, M.1
Fujiwara, K.2
-
4
-
-
84879309312
-
Classification of the degradation of soft sensor models and discussion on adaptive models
-
Kaneko H., Funatsu K. Classification of the degradation of soft sensor models and discussion on adaptive models. AICHE J. 2013, 59:2339-2347.
-
(2013)
AICHE J.
, vol.59
, pp. 2339-2347
-
-
Kaneko, H.1
Funatsu, K.2
-
5
-
-
78649468188
-
Review of adaptation mechanisms for data-driven soft sensors
-
Kadlec P., Grbic R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2011, 35:1-24.
-
(2011)
Comput. Chem. Eng.
, vol.35
, pp. 1-24
-
-
Kadlec, P.1
Grbic, R.2
Gabrys, B.3
-
6
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Qin S.J. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22:503-514.
-
(1998)
Comput. Chem. Eng.
, vol.22
, pp. 503-514
-
-
Qin, S.J.1
-
7
-
-
78449310514
-
Development of self-validating soft sensors using fast moving window partial least squares
-
Liu J.L., Chen D.S., Shen J.F. Development of self-validating soft sensors using fast moving window partial least squares. Ind. Eng. Chem. Res. 2010, 49:11530-11546.
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, pp. 11530-11546
-
-
Liu, J.L.1
Chen, D.S.2
Shen, J.F.3
-
8
-
-
0036639869
-
Scalable techniques from onparametric statistics for real time robot learning
-
Schaal S., Atkeson C.G., Vijayakumar S. Scalable techniques from onparametric statistics for real time robot learning. Appl. Intell. 2002, 17:49-60.
-
(2002)
Appl. Intell.
, vol.17
, pp. 49-60
-
-
Schaal, S.1
Atkeson, C.G.2
Vijayakumar, S.3
-
9
-
-
2942558590
-
A new data-based methodology for nonlinear process modeling
-
Cheng C., Chiu M.S. A new data-based methodology for nonlinear process modeling. Chem. Eng. Sci. 2004, 59:2801-2810.
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 2801-2810
-
-
Cheng, C.1
Chiu, M.S.2
-
10
-
-
68049143320
-
Soft-sensor development using correlation-based just-in-time modeling
-
Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AICHE J. 2009, 55:1754-1765.
-
(2009)
AICHE J.
, vol.55
, pp. 1754-1765
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
-
11
-
-
79959784751
-
Maintenance-free soft sensor models with time difference of process variables
-
Kaneko H., Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom. Intell. Lab. Syst. 2011, 107:312-317.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.107
, pp. 312-317
-
-
Kaneko, H.1
Funatsu, K.2
-
12
-
-
80055094175
-
A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
-
Kaneko H., Funatsu K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom. Intell. Lab. Syst. 2011, 109:197-206.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.109
, pp. 197-206
-
-
Kaneko, H.1
Funatsu, K.2
-
13
-
-
79954599740
-
Local learning-based adaptive soft sensor for catalyst activation prediction
-
Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AICHE J. 2010, 57:1288-1301.
-
(2010)
AICHE J.
, vol.57
, pp. 1288-1301
-
-
Kadlec, P.1
Gabrys, B.2
-
14
-
-
84880339799
-
Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
-
Grbića R., Slišković D., Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput. Chem. Eng. 2013, 58:84-97.
-
(2013)
Comput. Chem. Eng.
, vol.58
, pp. 84-97
-
-
Grbića, R.1
Slišković, D.2
Kadlec, P.3
-
15
-
-
84868224530
-
Multiway gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
-
Yu J. Multiway gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind. Eng. Chem. Res. 2012, 51:13227-13237.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 13227-13237
-
-
Yu, J.1
-
16
-
-
84859392648
-
A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
-
Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
-
(2012)
Comput. Chem. Eng.
, vol.41
, pp. 134-144
-
-
Yu, J.1
-
17
-
-
0141765796
-
Accurate on-line support vector regression
-
Ma J., Theliler J., Perkins S. Accurate on-line support vector regression. Neural Comput. 2003, 15:2683-2703.
-
(2003)
Neural Comput.
, vol.15
, pp. 2683-2703
-
-
Ma, J.1
Theliler, J.2
Perkins, S.3
-
19
-
-
84892441284
-
Application of online support vector regression for soft sensors
-
Kaneko H., Funatsu K. Application of online support vector regression for soft sensors. AICHE J. 2014, 60:600-612.
-
(2014)
AICHE J.
, vol.60
, pp. 600-612
-
-
Kaneko, H.1
Funatsu, K.2
-
20
-
-
84883140452
-
Adaptive soft sensor model using online support vector regression with the time variable and discussion on appropriate hyperparameters and window size
-
Kaneko H., Funatsu K. Adaptive soft sensor model using online support vector regression with the time variable and discussion on appropriate hyperparameters and window size. Comput. Chem. Eng. 2013, 58:288-297.
-
(2013)
Comput. Chem. Eng.
, vol.58
, pp. 288-297
-
-
Kaneko, H.1
Funatsu, K.2
-
21
-
-
2342567014
-
Soft sensing modeling based on support vector machine and Bayesian model selection
-
Yan W., Shao H., Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 2004, 28:1489-1498.
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1489-1498
-
-
Yan, W.1
Shao, H.2
Wang, X.3
-
22
-
-
84888306466
-
Design of inferential sensors in the process industry: a review of Bayesian methods
-
Khatibisepehr S., Huang B.A., Khare S. Design of inferential sensors in the process industry: a review of Bayesian methods. J. Process Control 2013, 23:1575-1596.
-
(2013)
J. Process Control
, vol.23
, pp. 1575-1596
-
-
Khatibisepehr, S.1
Huang, B.A.2
Khare, S.3
-
23
-
-
84892445860
-
Mixture semisupervised principal component regression model and soft sensor application
-
Ge Z.Q., Huang B.A., Song Z.H. Mixture semisupervised principal component regression model and soft sensor application. AICHE J. 2014, 60:533-545.
-
(2014)
AICHE J.
, vol.60
, pp. 533-545
-
-
Ge, Z.Q.1
Huang, B.A.2
Song, Z.H.3
-
24
-
-
84884574602
-
Criterion for evaluating the predictive ability of nonlinear regression models without cross-validation
-
Kaneko H., Funatsu K. Criterion for evaluating the predictive ability of nonlinear regression models without cross-validation. J. Chem. Inf. Model. 2013, 53:2341-2348.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2341-2348
-
-
Kaneko, H.1
Funatsu, K.2
-
25
-
-
54249125512
-
Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection
-
Tetko I.V., Sushko I., Pandey A.K., Zhu H., Tropsha A., Papa E., Öberg T., Todeschini R., Fourches D., Varnek A. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J. Chem. Inf. Model. 2008, 48:1733-1746.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 1733-1746
-
-
Tetko, I.V.1
Sushko, I.2
Pandey, A.K.3
Zhu, H.4
Tropsha, A.5
Papa, E.6
Öberg, T.7
Todeschini, R.8
Fourches, D.9
Varnek, A.10
-
26
-
-
78650714907
-
Applicability domains for classification problems: benchmarking of distance to models for Ames mutagenicity set
-
Sushko I., Novotarskyi S., Korner R., Pandey A.K., Cherkasov A., Lo J.X., Gramatica P., Hansen K., Schroeter T., Muller K.R., Xi L.L., Liu H.X., Yao X.J., Oberg T., Hormozdiari F., Dao P.H., Sahinalp C., Todeschini R., Polishchuk P., Artemenko A., Kuz'min V., Martin T.M., Young D.M., Fourches D., Muratov E., Tropsha A., Baskin I., Horvath D., Marcou G., Muller C., Varnek A., Prokopenko V., Tetko I.V. Applicability domains for classification problems: benchmarking of distance to models for Ames mutagenicity set. J. Chem. Inf. Model. 2010, 50:2094-2111.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 2094-2111
-
-
Sushko, I.1
Novotarskyi, S.2
Korner, R.3
Pandey, A.K.4
Cherkasov, A.5
Lo, J.X.6
Gramatica, P.7
Hansen, K.8
Schroeter, T.9
Muller, K.R.10
Xi, L.L.11
Liu, H.X.12
Yao, X.J.13
Oberg, T.14
Hormozdiari, F.15
Dao, P.H.16
Sahinalp, C.17
Todeschini, R.18
Polishchuk, P.19
Artemenko, A.20
Kuz'min, V.21
Martin, T.M.22
Young, D.M.23
Fourches, D.24
Muratov, E.25
Tropsha, A.26
Baskin, I.27
Horvath, D.28
Marcou, G.29
Muller, C.30
Varnek, A.31
Prokopenko, V.32
Tetko, I.V.33
more..
-
27
-
-
68149160790
-
Predicting the predictability: a unified approach to the applicability domain problem of QSAR models
-
Horvath D., Marcou G., Varnek A. Predicting the predictability: a unified approach to the applicability domain problem of QSAR models. J. Chem. Inf. Model. 2009, 49:1762-1776.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 1762-1776
-
-
Horvath, D.1
Marcou, G.2
Varnek, A.3
-
28
-
-
79955611348
-
Applicability domains and accuracy of prediction of soft sensor models
-
Kaneko H., Arakawa M., Funatsu K. Applicability domains and accuracy of prediction of soft sensor models. AICHE J. 2011, 57:1506-1513.
-
(2011)
AICHE J.
, vol.57
, pp. 1506-1513
-
-
Kaneko, H.1
Arakawa, M.2
Funatsu, K.3
-
29
-
-
81755166220
-
Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection
-
Kim S., Kano M., Nakagawa H., Hasebe S. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. Int. J. Pharm. 2011, 421:269-274.
-
(2011)
Int. J. Pharm.
, vol.421
, pp. 269-274
-
-
Kim, S.1
Kano, M.2
Nakagawa, H.3
Hasebe, S.4
-
30
-
-
72149085992
-
An accumulative error based adaptive design of experiments for offline metamodeling
-
Li G., Aute V., Azarm S. An accumulative error based adaptive design of experiments for offline metamodeling. Struct. Multidiscip. Optim. 2010, 40:137-155.
-
(2010)
Struct. Multidiscip. Optim.
, vol.40
, pp. 137-155
-
-
Li, G.1
Aute, V.2
Azarm, S.3
-
31
-
-
84889677253
-
Database monitoring index for adaptive soft sensors and the application to industrial process
-
Kaneko H., Funatsu K. Database monitoring index for adaptive soft sensors and the application to industrial process. AICHE J. 2014, 60:160-169.
-
(2014)
AICHE J.
, vol.60
, pp. 160-169
-
-
Kaneko, H.1
Funatsu, K.2
|