메뉴 건너뛰기




Volumn 60, Issue 2, 2014, Pages 600-612

Application of online support vector regression for soft sensors

Author keywords

Degradation; Online support vector machine; Process control; Soft sensor; Time variable

Indexed keywords

ADAPTIVE SOFT-SENSOR; ONLINE SUPPORT VECTOR MACHINES; PREDICTIVE ACCURACY; SOFT SENSOR MODELS; SOFT SENSORS; TIME VARIABLE; TIME-VARYING CHANGES; TRADITIONAL MODELS;

EID: 84892441284     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.14299     Document Type: Article
Times cited : (82)

References (31)
  • 1
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Comput Chem Eng. 2009;33:795-814.
    • (2009) Comput Chem Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 2
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H, Arakawa M, Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J. 2009;55:87-98.
    • (2009) AIChE J. , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 3
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec P, Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction, AIChE J. 2010;57:1288-1301.
    • (2010) AIChE J. , vol.57 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 4
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin SJ. Recursive PLS algorithms for adaptive data modeling. Comput Chem Eng. 1998;22:503-514.
    • (1998) Comput Chem Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 5
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C, Chiu MS. A new data-based methodology for nonlinear process modeling. Chem Eng Sci. 2004;59:2801-2810.
    • (2004) Chem Eng Sci. , vol.59 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 6
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K, Kano M, Hasebe S, Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J. 2009;55:1754-1765.
    • (2009) AIChE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 7
    • 0036639869 scopus 로고    scopus 로고
    • Scalable techniques from onparametric statistics for real time robot learning
    • Schaal S, Atkeson CG, Vijayakumar S. Scalable techniques from onparametric statistics for real time robot learning. Appl Intell. 2002;17:49-60.
    • (2002) Appl Intell. , vol.17 , pp. 49-60
    • Schaal, S.1    Atkeson, C.G.2    Vijayakumar, S.3
  • 8
    • 79959784751 scopus 로고    scopus 로고
    • Maintenance-free soft sensor models with time difference of process variables
    • Kaneko H, Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom Intell Lab Syst. 2011;107:312-317.
    • (2011) Chemom Intell Lab Syst. , vol.107 , pp. 312-317
    • Kaneko, H.1    Funatsu, K.2
  • 9
    • 80055094175 scopus 로고    scopus 로고
    • A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
    • Kaneko H, Funatsu K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom Intell Lab Syst. 2011;109:197-206.
    • (2011) Chemom Intell Lab Syst. , vol.109 , pp. 197-206
    • Kaneko, H.1    Funatsu, K.2
  • 10
    • 80052838846 scopus 로고    scopus 로고
    • Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship
    • Kaneko H, Funatsu K. Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship. Ind Eng Chem Res. 2011;50:10643-10651.
    • (2011) Ind Eng Chem Res. , vol.50 , pp. 10643-10651
    • Kaneko, H.1    Funatsu, K.2
  • 11
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P, Grbic R, Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput Chem Eng. 2011;35:1-24.
    • (2011) Comput Chem Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Grbic, R.2    Gabrys, B.3
  • 12
    • 84868224530 scopus 로고    scopus 로고
    • Multiway gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
    • Yu J. Multiway gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind Eng Chem Res. 2012;51:13227-13237.
    • (2012) Ind Eng Chem Res. , vol.51 , pp. 13227-13237
    • Yu, J.1
  • 13
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput Chem Eng. 2012;41:134-144.
    • (2012) Comput Chem Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 14
    • 84861955990 scopus 로고    scopus 로고
    • Development of a model selection method based on reliability of a soft sensor model
    • Okada T, Kaneko H, Funatsu K. Development of a model selection method based on reliability of a soft sensor model. Songklanakarin J Sci Technol. 2012;34:217-222.
    • (2012) Songklanakarin J Sci Technol. , vol.34 , pp. 217-222
    • Okada, T.1    Kaneko, H.2    Funatsu, K.3
  • 15
    • 84879309312 scopus 로고    scopus 로고
    • Classification of the degradation of soft sensor models and discussion on adaptive models
    • Kaneko H, Funatsu K. Classification of the degradation of soft sensor models and discussion on adaptive models. AIChE J. 2013;59:2339-2347.
    • (2013) AIChE J. , vol.59 , pp. 2339-2347
    • Kaneko, H.1    Funatsu, K.2
  • 16
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • Ma J, Theliler J, Perkins S. Accurate on-line support vector regression. Neural Comput. 2003;15:2683-2703.
    • (2003) Neural Comput. , vol.15 , pp. 2683-2703
    • Ma, J.1    Theliler, J.2    Perkins, S.3
  • 18
    • 84883140452 scopus 로고    scopus 로고
    • Adaptive soft sensor model using online support vector regression with the time variable and discussion on appropriate hyperparameters and window size
    • Kaneko H, Funatsu K, Adaptive soft sensor model using online support vector regression with the time variable and discussion on appropriate hyperparameters and window size. Comput Chem Eng. 2013;58:288-297.
    • (2013) Comput Chem Eng. , vol.58 , pp. 288-297
    • Kaneko, H.1    Funatsu, K.2
  • 19
    • 33846087392 scopus 로고    scopus 로고
    • Online trained support vector machines-based generalized predictive control of non-linear systems
    • Iplikci, S. Online trained support vector machines-based generalized predictive control of non-linear systems. Int J Adapt Control Signal Process. 2006;20:599-621.
    • (2006) Int J Adapt Control Signal Process. , vol.20 , pp. 599-621
    • Iplikci, S.1
  • 20
    • 58349104545 scopus 로고    scopus 로고
    • Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
    • Neto MC, Jeong YS, Jeong MK, Han LD. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst Appl. 2009;36:6164-6173.
    • (2009) Expert Syst Appl. , vol.36 , pp. 6164-6173
    • Neto, M.C.1    Jeong, Y.S.2    Jeong, M.K.3    Han, L.D.4
  • 21
    • 68549107645 scopus 로고    scopus 로고
    • Forecasting respiratory motion with accurate online support vector regression
    • Ernst F, Schweikard A. Forecasting respiratory motion with accurate online support vector regression. Int J CARS. 2009;4:439-447.
    • (2009) Int J CARS. , vol.4 , pp. 439-447
    • Ernst, F.1    Schweikard, A.2
  • 23
    • 84892435172 scopus 로고    scopus 로고
    • Online Support Vector Regression. Software available at (accessed December 14, 2013).
    • Parrella F. Online Support Vector Regression. Software available at http://onlinesvr.altervista.org/ (accessed December 14, 2013).
    • Parrella, F.1
  • 25
    • 81755166220 scopus 로고    scopus 로고
    • Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection
    • Kim S, Kano M, Nakagawa H, Hasebe S. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. Int J Pharm. 2011;421:269-274.
    • (2011) Int J Pharm. , vol.421 , pp. 269-274
    • Kim, S.1    Kano, M.2    Nakagawa, H.3    Hasebe, S.4
  • 26
    • 72149085992 scopus 로고    scopus 로고
    • An accumulative error based adaptive design of experiments for offline metamodeling
    • Li G, Aute V, Azarm S. An accumulative error based adaptive design of experiments for offline metamodeling. Struct Multidiscip O. 2010;40:137-155.
    • (2010) Struct Multidiscip O. , vol.40 , pp. 137-155
    • Li, G.1    Aute, V.2    Azarm, S.3
  • 27
    • 0026169941 scopus 로고
    • On-line inference of polymer properties in an industrial polyethylene reactor
    • McAuley KB, MacGregor JF. On-line inference of polymer properties in an industrial polyethylene reactor. AIChE J. 1991;37:825-835.
    • (1991) AIChE J. , vol.37 , pp. 825-835
    • McAuley, K.B.1    MacGregor, J.F.2
  • 28
    • 0033874542 scopus 로고    scopus 로고
    • Quality control of polymer production processes
    • Ohshima M, Tanigaki M. Quality control of polymer production processes. J Process Control. 2000;10:135-148.
    • (2000) J Process Control. , vol.10 , pp. 135-148
    • Ohshima, M.1    Tanigaki, M.2
  • 29
    • 35548955182 scopus 로고    scopus 로고
    • Prediction of the melt index in a high-density polyethylene process
    • Lee EH, Kim TY, Yeo, YK. Prediction of the melt index in a high-density polyethylene process. J Chem Eng Jpn. 2007;40:840-846.
    • (2007) J Chem Eng Jpn. , vol.40 , pp. 840-846
    • Lee, E.H.1    Kim, T.Y.2    Yeo, Y.K.3
  • 30
    • 11144244974 scopus 로고    scopus 로고
    • Prediction of pellet properties for an industrial bimodal high-density polyethylene process with Ziegler-Natta catalysts
    • Oh SJ, Lee J, Park S. Prediction of pellet properties for an industrial bimodal high-density polyethylene process with Ziegler-Natta catalysts. Ind Eng Chem Res. 2005;44:8-20.
    • (2005) Ind Eng Chem Res. , vol.44 , pp. 8-20
    • Oh, S.J.1    Lee, J.2    Park, S.3
  • 31
    • 79955476246 scopus 로고    scopus 로고
    • Novel soft sensor method for detecting completion of transition in industrial polymer processes
    • Kaneko H, Arakawa M, Funatsu K. Novel soft sensor method for detecting completion of transition in industrial polymer processes. Comput Chem Eng. 2011;35:1135-1142.
    • (2011) Comput Chem Eng. , vol.35 , pp. 1135-1142
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.