메뉴 건너뛰기




Volumn 23, Issue 6, 2013, Pages 793-804

Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes

Author keywords

Just in time learning; Least squares support vector regression; Multi grade process; Probabilistic analysis; Transition

Indexed keywords

JUST-IN-TIME LEARNING; LEAST SQUARES SUPPORT VECTOR REGRESSION; MULTI-GRADE PROCESS; PROBABILISTIC ANALYSIS; TRANSITION;

EID: 84879060636     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2013.03.008     Document Type: Article
Times cited : (147)

References (43)
  • 1
    • 0033874542 scopus 로고    scopus 로고
    • Quality control of polymer production processes
    • DOI 10.1016/S0959-1524(99)00042-6
    • M. Ohshima, and M. Tanigaki Quality control of polymer production processes Journal of Process Control 10 2 2000 135 148 (Pubitemid 30556711)
    • (2000) Journal of Process Control , vol.10 , Issue.2 , pp. 135-148
    • Ohshima, M.1    Tanigaki, M.2
  • 2
    • 33747883073 scopus 로고    scopus 로고
    • Measurement and control of polymerization reactors
    • DOI 10.1016/j.compchemeng.2006.05.021, PII S0098135406001402, Papers from Chemical Process Control VII CPC VII
    • J.R. Richards, and J.P. Congalidis Measurement and control of polymerization reactors Computers and Chemical Engineering 30 10-12 2006 1447 1463 (Pubitemid 44292262)
    • (2006) Computers and Chemical Engineering , vol.30 , Issue.10-12 , pp. 1447-1463
    • Richards, J.R.1    Congalidis, J.P.2
  • 3
    • 28244466399 scopus 로고    scopus 로고
    • Challenges in particulate polymerization reactor modeling and optimization: A population balance perspective
    • DOI 10.1016/j.jprocont.2005.06.004, PII S0959152405000624
    • C. Kiparissides Challenges in particulate polymerization reactor modeling and optimization: a population balance perspective Journal of Process Control 16 3 2006 205 224 (Pubitemid 41713559)
    • (2006) Journal of Process Control , vol.16 , Issue.3 , pp. 205-224
    • Kiparissides, C.1
  • 4
    • 11844259510 scopus 로고    scopus 로고
    • Clustering-based hybrid soft sensor for an industrial polypropylene process with grade changeover operation
    • M. Kim, Y.H. Lee, I.S. Han, and C.H. Han Clustering-based hybrid soft sensor for an industrial polypropylene process with grade changeover operation Industrial and Engineering Chemistry Research 44 2 2005 334 342 (Pubitemid 40096205)
    • (2005) Industrial and Engineering Chemistry Research , vol.44 , Issue.2 , pp. 334-342
    • Kim, M.1    Lee, Y.-H.2    Han, I.-S.3    Han, C.4
  • 5
    • 33746991704 scopus 로고    scopus 로고
    • Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant
    • DOI 10.1016/j.ces.2006.05.046, PII S0009250906003757
    • R. Sharmin, U. Sundararaj, S. Shah, L.V. Griend, and Y.J. Sun Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based soft sensor for a LDPE plant Chemical Engineering Science 61 19 2006 6372 6384 (Pubitemid 44205164)
    • (2006) Chemical Engineering Science , vol.61 , Issue.19 , pp. 6372-6384
    • Sharmin, R.1    Sundararaj, U.2    Shah, S.3    Vande Griend, L.4    Sun, Y.-J.5
  • 6
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • J.L. Liu On-line soft sensor for polyethylene process with multiple production grades Control Engineering Practice 15 7 2007 769 778
    • (2007) Control Engineering Practice , vol.15 , Issue.7 , pp. 769-778
    • Liu, J.L.1
  • 9
    • 59349107270 scopus 로고    scopus 로고
    • A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
    • F. Ahmed, S. Nazir, and Y.K. Yeo A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant Korean Journal of Chemical Engineering 26 1 2009 14 20
    • (2009) Korean Journal of Chemical Engineering , vol.26 , Issue.1 , pp. 14-20
    • Ahmed, F.1    Nazir, S.2    Yeo, Y.K.3
  • 10
    • 79955476246 scopus 로고    scopus 로고
    • Novel soft sensor method for detecting completion of transition in industrial polymer processes
    • H. Kaneko, M. Arakawa, and K. Funatsu Novel soft sensor method for detecting completion of transition in industrial polymer processes Computers and Chemical Engineering 35 6 2011 1135 1142
    • (2011) Computers and Chemical Engineering , vol.35 , Issue.6 , pp. 1135-1142
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 11
    • 80052838846 scopus 로고    scopus 로고
    • Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship
    • H. Kaneko, and K. Funatsu Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship Industrial and Engineering Chemistry Research 50 18 2011 10643 10651
    • (2011) Industrial and Engineering Chemistry Research , vol.50 , Issue.18 , pp. 10643-10651
    • Kaneko, H.1    Funatsu, K.2
  • 12
    • 33645798861 scopus 로고    scopus 로고
    • Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated neural networks
    • J. Zhang, Q. Jin, and Y.M. Xu Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated neural networks Chemical Engineering and Technology 29 4 2006 442 448
    • (2006) Chemical Engineering and Technology , vol.29 , Issue.4 , pp. 442-448
    • Zhang, J.1    Jin, Q.2    Xu, Y.M.3
  • 13
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • J.C.B. Gonzaga, L.A.C. Meleiro, C. Kiang, and R.M. Filho ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process Computers and Chemical Engineering 33 1 2009 43 49
    • (2009) Computers and Chemical Engineering , vol.33 , Issue.1 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    Filho, R.M.4
  • 14
    • 12344280395 scopus 로고    scopus 로고
    • Melt index modeling with support vector machines, partial least squares, and artificial neural networks
    • I.S. Han, C.H. Han, and C.B. Chung Melt index modeling with support vector machines, partial least squares, and artificial neural networks Journal of Applied Polymer Science 95 4 2005 967 974
    • (2005) Journal of Applied Polymer Science , vol.95 , Issue.4 , pp. 967-974
    • Han, I.S.1    Han, C.H.2    Chung, C.B.3
  • 15
    • 15944390632 scopus 로고    scopus 로고
    • Weighted support vector machine for quality estimation in the polymerization process
    • D.E. Lee, J.H. Song, H.O. Song, and E.S. Yoon Weighted support vector machine for quality estimation in the polymerization process Industrial and Engineering Chemistry Research 44 7 2005 2101 2105
    • (2005) Industrial and Engineering Chemistry Research , vol.44 , Issue.7 , pp. 2101-2105
    • Lee, D.E.1    Song, J.H.2    Song, H.O.3    Yoon, E.S.4
  • 16
    • 33745166286 scopus 로고    scopus 로고
    • Melt index prediction by weighted least squares support vector machines
    • DOI 10.1002/app.23311
    • J. Shi, and X.G. Liu Melt index prediction by weighted least squares support vector machines Journal of Applied Polymer Science 101 1 2006 285 289 (Pubitemid 43892707)
    • (2006) Journal of Applied Polymer Science , vol.101 , Issue.1 , pp. 285-289
    • Shi, J.1    Liu, X.2
  • 17
    • 79951983943 scopus 로고    scopus 로고
    • Application of support vector regression for developing soft sensors for nonlinear processes
    • S.B. Chitralekha, and S.L. Shah Application of support vector regression for developing soft sensors for nonlinear processes Canadian Journal of Chemical Engineering 88 5 2010 696 709
    • (2010) Canadian Journal of Chemical Engineering , vol.88 , Issue.5 , pp. 696-709
    • Chitralekha, S.B.1    Shah, S.L.2
  • 18
    • 79954505385 scopus 로고    scopus 로고
    • Quality prediction for polypropylene production process based on CLGPR model
    • Z.Q. Ge, T. Chen, and Z.H. Song Quality prediction for polypropylene production process based on CLGPR model Control Engineering Practice 19 5 2011 423 432
    • (2011) Control Engineering Practice , vol.19 , Issue.5 , pp. 423-432
    • Ge, Z.Q.1    Chen, T.2    Song, Z.H.3
  • 19
    • 84864805251 scopus 로고    scopus 로고
    • Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
    • J. Yu Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach Chemical Engineering Science 82 2012 22 30
    • (2012) Chemical Engineering Science , vol.82 , pp. 22-30
    • Yu, J.1
  • 20
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • PII S0098135497002627
    • S.J. Qin Recursive PLS algorithms for adaptive data modeling Computers and Chemical Engineering 22 4-5 1998 503 514 (Pubitemid 128714151)
    • (1998) Computers and Chemical Engineering , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 21
    • 67650083264 scopus 로고    scopus 로고
    • Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
    • Y. Liu, N.P. Hu, H.Q. Wang, and P. Li Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size Industrial and Engineering Chemistry Research 48 12 2009 5731 5741
    • (2009) Industrial and Engineering Chemistry Research , vol.48 , Issue.12 , pp. 5731-5741
    • Liu, Y.1    Hu, N.P.2    Wang, H.Q.3    Li, P.4
  • 23
    • 33749472827 scopus 로고    scopus 로고
    • Kernel classifier with adaptive structure and fixed memory for process diagnosis
    • DOI 10.1002/aic.10982
    • H.Q. Wang, P. Li, F.R. Gao, Z.H. Song, and S.X. Ding Kernel classifier with adaptive structure and fixed memory for process diagnosis AIChE Journal 52 10 2006 3515 3531 (Pubitemid 44519579)
    • (2006) AIChE Journal , vol.52 , Issue.10 , pp. 3515-3531
    • Wang, H.1    Li, P.2    Gao, F.3    Song, Z.4    Ding, S.X.5
  • 24
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • P. Kadlec, R. Grbic, and B. Gabrys Review of adaptation mechanisms for data-driven soft sensors Computers and Chemical Engineering 35 1 2011 1 24
    • (2011) Computers and Chemical Engineering , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbic, R.2    Gabrys, B.3
  • 25
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: Good practice and questionnaire survey
    • M. Kano, and M. Ogawa The state of the art in chemical process control in Japan: good practice and questionnaire survey Journal of Process Control 20 9 2010 969 982
    • (2010) Journal of Process Control , vol.20 , Issue.9 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 28
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • DOI 10.1016/j.ces.2004.04.020, PII S0009250904002453
    • C. Cheng, and M.S. Chiu A new data-based methodology for nonlinear process modeling Chemical Engineering Science 59 13 2004 2801 2810 (Pubitemid 38763544)
    • (2004) Chemical Engineering Science , vol.59 , Issue.13 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.-S.2
  • 29
    • 14844303316 scopus 로고    scopus 로고
    • Nonlinear process monitoring using JITL-PCA
    • DOI 10.1016/j.chemolab.2004.08.003
    • C. Cheng, and M.S. Chiu Nonlinear process monitoring using JITL-PCA Chemometrics and Intelligent Laboratory Systems 76 1 2005 1 13 (Pubitemid 40342905)
    • (2005) Chemometrics and Intelligent Laboratory Systems , vol.76 , Issue.1 , pp. 1-13
    • Cheng, C.1    Chiu, M.-S.2
  • 30
    • 33847110311 scopus 로고    scopus 로고
    • Lazy learning-based online identification and adaptive PID control: A case study for CSTR process
    • T.H. Pan, S.Y. Li, and W.J. Cai Lazy learning-based online identification and adaptive PID control: a case study for CSTR process Industrial and Engineering Chemistry Research 46 2 2007 472 480
    • (2007) Industrial and Engineering Chemistry Research , vol.46 , Issue.2 , pp. 472-480
    • Pan, T.H.1    Li, S.Y.2    Cai, W.J.3
  • 31
    • 67349237491 scopus 로고    scopus 로고
    • Adaptive generalized predictive control based on JITL technique
    • Y. Kansha, and M.S. Chiu Adaptive generalized predictive control based on JITL technique Journal of Process Control 19 7 2009 1067 1072
    • (2009) Journal of Process Control , vol.19 , Issue.7 , pp. 1067-1072
    • Kansha, Y.1    Chiu, M.S.2
  • 32
    • 84863357539 scopus 로고    scopus 로고
    • Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes
    • Y. Liu, Z.L. Gao, P. Li, and H.Q. Wang Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes Industrial and Engineering Chemistry Research 51 11 2012 4313 4327
    • (2012) Industrial and Engineering Chemistry Research , vol.51 , Issue.11 , pp. 4313-4327
    • Liu, Y.1    Gao, Z.L.2    Li, P.3    Wang, H.Q.4
  • 33
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • K. Fujiwara, M. Kano, S. Hasebe, and A. Takinami Soft-sensor development using correlation-based just-in-time modeling AIChE Journal 55 7 2009 1754 1765
    • (2009) AIChE Journal , vol.55 , Issue.7 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 34
    • 84866067015 scopus 로고    scopus 로고
    • Adaptive decentralized PID controllers design using JITL modeling methodology
    • X. Yang, L. Jia, and M.S. Chiu Adaptive decentralized PID controllers design using JITL modeling methodology Journal of Process Control 22 9 2012 1531 1542
    • (2012) Journal of Process Control , vol.22 , Issue.9 , pp. 1531-1542
    • Yang, X.1    Jia, L.2    Chiu, M.S.3
  • 36
    • 34247558132 scopus 로고    scopus 로고
    • Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters
    • G.C. Cawley, and N.L.C. Talbot Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters Journal of Machine Learning Research 8 4 2007 841 861 (Pubitemid 46677044)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 841-861
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 38
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with bayesian inference-based finite Gaussian mixture models
    • DOI 10.1002/aic.11515
    • J. Yu, and S.J. Qin Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE Journal 54 7 2008 1811 1829 (Pubitemid 352006869)
    • (2008) AIChE Journal , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 40
    • 60249095677 scopus 로고    scopus 로고
    • Probabilistic contribution analysis for statistical process monitoring: A missing variable approach
    • T. Chen, and Y. Sun Probabilistic contribution analysis for statistical process monitoring: a missing variable approach Control Engineering Practice 17 4 2009 469 477
    • (2009) Control Engineering Practice , vol.17 , Issue.4 , pp. 469-477
    • Chen, T.1    Sun, Y.2
  • 41
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • M.M. Rashid, and J. Yu A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring Chemometrics and Intelligent Laboratory Systems 115 2012 44 58
    • (2012) Chemometrics and Intelligent Laboratory Systems , vol.115 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 42
    • 0027007477 scopus 로고
    • Nonlinear internal model control strategy for neural network models
    • DOI 10.1016/0098-1354(92)80022-2
    • E.P. Nahas, M.A. Henson, and D.E. Seborg Nonlinear internal model control strategy for neural network models Computers and Chemical Engineering 16 12 1992 1039 1057 (Pubitemid 23634676)
    • (1992) Computers and Chemical Engineering , vol.16 , Issue.12 , pp. 1039-1057
    • Nahas, E.P.1    Henson, M.A.2    Seboro, D.E.3
  • 43
    • 73649091761 scopus 로고    scopus 로고
    • Selective recursive kernel learning for online identification of nonlinear systems with NARX form
    • Y. Liu, H.Q. Wang, J. Yu, and P. Li Selective recursive kernel learning for online identification of nonlinear systems with NARX form Journal of Process Control 20 2 2010 181 194
    • (2010) Journal of Process Control , vol.20 , Issue.2 , pp. 181-194
    • Liu, Y.1    Wang, H.Q.2    Yu, J.3    Li, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.