메뉴 건너뛰기




Volumn 37, Issue , 2015, Pages 392-406

An on-line weighted ensemble of regressor models to handle concept drifts

Author keywords

Concept drift; Ensemble learning; Ensemble pruning strategies; Learning in changing environments; Regression

Indexed keywords

ERRORS;

EID: 84910607774     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2014.10.003     Document Type: Article
Times cited : (72)

References (50)
  • 1
    • 59349107270 scopus 로고    scopus 로고
    • A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
    • January 1
    • F. Ahmed, S. Nazir, and Y. Yeo A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant Korean J. Chem. Eng. 26 January (1) 2009 14 20
    • (2009) Korean J. Chem. Eng. , vol.26 , pp. 14-20
    • Ahmed, F.1    Nazir, S.2    Yeo, Y.3
  • 4
    • 84891166135 scopus 로고    scopus 로고
    • Reacting to different types of concept drift the accuracy updated ensemble algorithm
    • January 1
    • D. Brzezinski, and J. Stefanowski Reacting to different types of concept drift the accuracy updated ensemble algorithm IEEE Trans. Neural Netw. Learn. Syst. 25 January (1) 2014 81 94
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , pp. 81-94
    • Brzezinski, D.1    Stefanowski, J.2
  • 5
    • 84900461314 scopus 로고    scopus 로고
    • Neural network ensembles based on copula methods and distributed multiobjective central force optimization algorithm
    • June 0
    • M. Chao, S.Z. Xin, and L.S. Min Neural network ensembles based on copula methods and distributed multiobjective central force optimization algorithm Eng. Appl. Artif. Intell. 32 June (0) 2014 203 212
    • (2014) Eng. Appl. Artif. Intell. , vol.32 , pp. 203-212
    • Chao, M.1    Xin, S.Z.2    Min, L.S.3
  • 6
    • 34147105043 scopus 로고    scopus 로고
    • Application of a PSO-based neural network in analysis of outcomes of construction claims
    • August 5
    • K.-W. Chau Application of a PSO-based neural network in analysis of outcomes of construction claims Autom. Constr. 16 August (5) 2007 642 646
    • (2007) Autom. Constr. , vol.16 , pp. 642-646
    • Chau, K.-W.1
  • 7
    • 24944573867 scopus 로고    scopus 로고
    • Long-term prediction of discharges in Manwan Reservoir using artificial neural network models
    • Springer Berlin Heidelberg
    • Cheng, C., Chau, K.-W., Sun, Y., Lin, J., 2005. Long-term prediction of discharges in Manwan Reservoir using artificial neural network models. In: Advances in Neural Networks (ISNN 2005). Lecture Notes in Computer Science, vol. 3498. Springer Berlin Heidelberg, pp. 1040-1045.
    • (2005) Advances in Neural Networks (ISNN 2005). Lecture Notes in Computer Science , vol.3498 , pp. 1040-1045
    • Cheng, C.1    Chau, K.-W.2    Sun, Y.3    Lin, J.4
  • 9
    • 0027530250 scopus 로고
    • SIMPLS an alternative approach to partial least squares regression
    • March 3
    • S. de Jong SIMPLS an alternative approach to partial least squares regression Chemom. Intell. Lab. Syst. 18 March (3) 1993 251 263
    • (1993) Chemom. Intell. Lab. Syst. , vol.18 , pp. 251-263
    • De Jong, S.1
  • 10
    • 84904158524 scopus 로고    scopus 로고
    • Ensemble aggregation methods for relocating models of rare events
    • September 0
    • C. D'Este, G. Timms, A. Turnbull, and A. Rahman Ensemble aggregation methods for relocating models of rare events Eng. Appl. Artif. Intell. 34 September (0) 2014 58 65
    • (2014) Eng. Appl. Artif. Intell. , vol.34 , pp. 58-65
    • D'Este, C.1    Timms, G.2    Turnbull, A.3    Rahman, A.4
  • 13
    • 80053634784 scopus 로고    scopus 로고
    • Incremental learning of concept drift in nonstationary environments
    • October 10
    • R. Elwell, and R. Polikar Incremental learning of concept drift in nonstationary environments IEEE Trans. Neural Netw. 22 October (10) 2011 1517 1531
    • (2011) IEEE Trans. Neural Netw. , vol.22 , pp. 1517-1531
    • Elwell, R.1    Polikar, R.2
  • 16
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • August 1
    • Y. Freund, and R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci. 55 August (1) 1997 119 139
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 17
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • March 1
    • J.H. Friedman Multivariate adaptive regression splines Ann. Stat. 19 March (1) 1991 1 67
    • (1991) Ann. Stat. , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 19
    • 54249106794 scopus 로고    scopus 로고
    • A new image thresholding method based on gaussian mixture model
    • November 2
    • Z.-K. Huang, and K.-W. Chau A new image thresholding method based on gaussian mixture model Appl. Math. Comput. 205 November (2) 2008 899 907
    • (2008) Appl. Math. Comput. , vol.205 , pp. 899-907
    • Huang, Z.-K.1    Chau, K.-W.2
  • 22
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • August 5
    • P. Kadlec, and B. Gabrys Local learning-based adaptive soft sensor for catalyst activation prediction AIChE Journal 57 August (5) 2011 1288 1301
    • (2011) AIChE Journal , vol.57 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 23
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • January 1
    • P. Kadlec, R. Grbić, and B. Gabrys Review of adaptation mechanisms for data-driven soft sensors Comput. Chem. Eng. 35 January (1) 2011 1 24
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 24
    • 80053188234 scopus 로고    scopus 로고
    • Variable window adaptive kernel principal component analysis for nonlinear nonstationary process monitoring
    • October 3
    • I.B. Khediri, M. Limam, and C. Weihs Variable window adaptive kernel principal component analysis for nonlinear nonstationary process monitoring Comput. Ind. Eng. 61 October (3) 2011 437 446
    • (2011) Comput. Ind. Eng. , vol.61 , pp. 437-446
    • Khediri, I.B.1    Limam, M.2    Weihs, C.3
  • 27
    • 35148838877 scopus 로고
    • The weighted majority algorithm
    • February 2
    • N. Littlestone, and M.K. Warmuth The weighted majority algorithm Inf. Comput. 108 February (2) 1994 212 261
    • (1994) Inf. Comput. , vol.108 , pp. 212-261
    • Littlestone, N.1    Warmuth, M.K.2
  • 28
    • 67650083264 scopus 로고    scopus 로고
    • Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
    • May 12
    • Y. Liu, N. Hu, H. Wang, and P. Li Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size Ind. Eng. Chem. Res. 48 May (12) 2009 5731 5741
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 5731-5741
    • Liu, Y.1    Hu, N.2    Wang, H.3    Li, P.4
  • 29
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on online ensemble learning in the presence of concept drift
    • May 5
    • L.L. Minku, A.P. White, and X. Yao The impact of diversity on online ensemble learning in the presence of concept drift IEEE Trans. Knowl. Data Eng. 22 May (5) 2010 730 742
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , pp. 730-742
    • Minku, L.L.1    White, A.P.2    Yao, X.3
  • 30
    • 84857738059 scopus 로고    scopus 로고
    • DDD a new ensemble approach for dealing with concept drift
    • April 4
    • L.L. Minku, and X. Yao DDD a new ensemble approach for dealing with concept drift IEEE Trans. Knowl. Data Eng. 24 April (4) 2012 619 633
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , pp. 619-633
    • Minku, L.L.1    Yao, X.2
  • 32
    • 84862208873 scopus 로고    scopus 로고
    • Localized, adaptive recursive partial least squares regression for dynamic system modeling
    • May 23
    • W. Ni, S.K. Tan, W.J. Ng, and S.D. Brown Localized, adaptive recursive partial least squares regression for dynamic system modeling Ind. Eng. Chem. Res. 51 May (23) 2012 8025 8039
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 8025-8039
    • Ni, W.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4
  • 34
    • 26444530040 scopus 로고    scopus 로고
    • ACE: Adaptive classifiers-ensemble system for concept-drifting environments
    • Springer Berlin Heidelberg
    • Nishida, K., Yamauchi, K., Omori, T., 2005. ACE: Adaptive classifiers-ensemble system for concept-drifting environments. In: Multiple Classifier Systems. Lecture Notes in Computer Science, Vol. 3541. Springer Berlin Heidelberg, pp. 176-185.
    • (2005) Multiple Classifier Systems. Lecture Notes in Computer Science , vol.3541 , pp. 176-185
    • Nishida, K.1    Yamauchi, K.2    Omori, T.3
  • 36
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • January 4-5
    • S.J. Qin Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 22 January (4-5) 1998 503 514
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 37
    • 84869141699 scopus 로고    scopus 로고
    • IBLStreams a system for instance-based classification and regression on data streams
    • December 4
    • A. Shaker, and E. Hüllermeier IBLStreams a system for instance-based classification and regression on data streams Evol. Syst. 3 December (4) 2012 235 249
    • (2012) Evol. Syst. , vol.3 , pp. 235-249
    • Shaker, A.1    Hüllermeier, E.2
  • 38
    • 53549111586 scopus 로고    scopus 로고
    • An assessment of combining tourism demand forecasts over different time horizons
    • November 2
    • S. Shen, G. Li, and H. Song An assessment of combining tourism demand forecasts over different time horizons J. Travel Res. 47 November (2) 2008 197 207
    • (2008) J. Travel Res. , vol.47 , pp. 197-207
    • Shen, S.1    Li, G.2    Song, H.3
  • 39
    • 33745780111 scopus 로고    scopus 로고
    • Experiments with AdaBoost.RT, an improved boosting scheme for regression
    • July 7
    • D.L. Shrestha, and D.P. Solomatine Experiments with AdaBoost.RT, an improved boosting scheme for regression Neural Comput. 18 July (7) 2006 1678 1710
    • (2006) Neural Comput. , vol.18 , pp. 1678-1710
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 40
    • 84884161728 scopus 로고    scopus 로고
    • Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development
    • December 0
    • S. Soares, C.H. Antunes, and R. Araújo Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development Neurocomputing 121 December (0) 2013 498 511
    • (2013) Neurocomputing , vol.121 , pp. 498-511
    • Soares, S.1    Antunes, C.H.2    Araújo, R.3
  • 42
    • 84890030656 scopus 로고    scopus 로고
    • Mixture of partial least squares experts and application in prediction settings with multiple operating modes
    • January
    • F.A.A. Souza, and R. Araújo Mixture of partial least squares experts and application in prediction settings with multiple operating modes Chemom. Intell. Lab. Syst. 130 January 2014 192 202
    • (2014) Chemom. Intell. Lab. Syst. , vol.130 , pp. 192-202
    • Souza, F.A.A.1    Araújo, R.2
  • 43
    • 84868367414 scopus 로고    scopus 로고
    • Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice Lagoon
    • December 8
    • R. Taormina, K.-W. Chau, and R. Sethi Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice Lagoon Eng. Appl. Artif. Intell. 25 December (8) 2012 1670 1676
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , pp. 1670-1676
    • Taormina, R.1    Chau, K.-W.2    Sethi, R.3
  • 45
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • April 1
    • G. Widmer, and M. Kubat Learning in the presence of concept drift and hidden contexts Mach. Learn. 23 April (1) 1996 69 101
    • (1996) Mach. Learn. , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 47
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • August 8
    • C.L. Wu, K.-W. Chau, and Y.S. Li Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques Water Resources Res. 45 August (8) 2009 1 23
    • (2009) Water Resources Res. , vol.45 , pp. 1-23
    • Wu, C.L.1    Chau, K.-W.2    Li, Y.S.3
  • 48
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and bayesian model selection
    • July 8
    • W. Yan, H. Shao, and X. Wang Soft sensing modeling based on support vector machine and bayesian model selection Comput. Chem. Eng. 28 July (8) 2004 1489 1498
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 49
    • 67650173866 scopus 로고    scopus 로고
    • Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization
    • February 4
    • J. Zhang, and K.-W. Chau Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization J. Univ. Comput. Sci. 15 February (4) 2009 840 858
    • (2009) J. Univ. Comput. Sci. , vol.15 , pp. 840-858
    • Zhang, J.1    Chau, K.-W.2
  • 50
    • 79951756430 scopus 로고    scopus 로고
    • Technical Report, Faculty of Mathematics and Informatics, Vilnius University
    • Zliobaite, I., 2009. Learning under concept drift: an overview. Technical Report, Faculty of Mathematics and Informatics, Vilnius University.
    • (2009) Learning under Concept Drift: An Overview
    • Zliobaite, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.