메뉴 건너뛰기




Volumn 52, Issue 35, 2013, Pages 12346-12356

Long-term industrial applications of inferential control based on just-in-time soft-sensors: Economical impact and challenges

Author keywords

[No Author keywords available]

Indexed keywords

COMMERCIAL MODELS; ECONOMICAL IMPACT; ENVIRONMENTAL BURDENS; ESTIMATION PERFORMANCE; INDUSTRIAL PROCESSS; INFERENTIAL CONTROL; PARTIAL LEAST SQUARE (PLS); SELECTION OF INPUT VARIABLES;

EID: 84883736569     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie303488m     Document Type: Article
Times cited : (86)

References (56)
  • 1
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: Good practice and questionnaire survey
    • Kano, M.; Ogawa, M. The state of the art in chemical process control in Japan: Good practice and questionnaire survey J. Proc. Cont. 2010, 20, 969-982
    • (2010) J. Proc. Cont. , vol.20 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 2
    • 0000594041 scopus 로고    scopus 로고
    • Non-linear modelling with a coupled neural network - PLS regression system
    • Andersson, G.; Kaufmann, P.; Renberg, L. Non-linear modelling with a coupled neural network-PLS regression system J. Chemom. 1996, 10, 605-614
    • (1996) J. Chemom. , vol.10 , pp. 605-614
    • Andersson, G.1    Kaufmann, P.2    Renberg, L.3
  • 3
    • 0033544443 scopus 로고    scopus 로고
    • Non-linear projection to latent structures revisited (the neural network PLS algorithm)
    • Baffi, G.; Martin, E. B.; Morris, A. J. Non-linear projection to latent structures revisited (the neural network PLS algorithm) Comput. Chem. Eng. 1999, 23, 1293-1307
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 1293-1307
    • Baffi, G.1    Martin, E.B.2    Morris, A.J.3
  • 4
    • 0026853320 scopus 로고
    • Nonlinear PLS modeling using neural networks
    • Qin, S. J.; McAvovy, T. J. Nonlinear PLS modeling using neural networks Comput. Chem. Eng. 1992, 16, 379-391
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 379-391
    • Qin, S.J.1    McAvovy, T.J.2
  • 5
    • 33748920862 scopus 로고    scopus 로고
    • Use of artifcial neural networks in near-infrared reflectance spectroscopy calibrations for predicting the inclusion percentages of wheat and sunflower meal in compound feedingstuffs
    • Pérez-Marin, D.; Garrido-Varo, A.; Guerrero, J. E.; Gutiérrez-Estrada, J. C. Use of artifcial neural networks in near-infrared reflectance spectroscopy calibrations for predicting the inclusion percentages of wheat and sunflower meal in compound feedingstuffs Appl. Spectrosc. 2006, 60, 1062-1069
    • (2006) Appl. Spectrosc. , vol.60 , pp. 1062-1069
    • Pérez-Marin, D.1    Garrido-Varo, A.2    Guerrero, J.E.3    Gutiérrez- Estrada, J.C.4
  • 6
    • 84876738560 scopus 로고    scopus 로고
    • Online sensor for monitoring a microalgal bioreactor system using support vector regression vector regression
    • Nadadoor, V. R.; Siegler, H.; Shah, S. L.; McCaffrey, W. C.; Ben-Zvi, A. Online sensor for monitoring a microalgal bioreactor system using support vector regression vector regression Chemom. Intell. Lab. Syst. 2012, 44, 2101-2105
    • (2012) Chemom. Intell. Lab. Syst. , vol.44 , pp. 2101-2105
    • Nadadoor, V.R.1    Siegler, H.2    Shah, S.L.3    McCaffrey, W.C.4    Ben-Zvi, A.5
  • 7
    • 78649708839 scopus 로고    scopus 로고
    • Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose
    • Barman, I.; Kong, C. R.; Dingari, N. C.; Dasari, R. R.; Feld, M. S. Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose Chemom. Intell. Lab. Syst. 2012, 82, 9719-9726
    • (2012) Chemom. Intell. Lab. Syst. , vol.82 , pp. 9719-9726
    • Barman, I.1    Kong, C.R.2    Dingari, N.C.3    Dasari, R.R.4    Feld, M.S.5
  • 8
    • 15944390632 scopus 로고    scopus 로고
    • Weighted support vector machine for quality estimation in the polymerization process
    • Lee, D. E.; Song, J. H.; Song, S. O.; Yoon, E. S. Weighted support vector machine for quality estimation in the polymerization process Ind. Eng. Chem. Res. 2005, 44, 2101-2105
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 2101-2105
    • Lee, D.E.1    Song, J.H.2    Song, S.O.3    Yoon, E.S.4
  • 10
    • 0033583571 scopus 로고    scopus 로고
    • Contributions to the problem of approximation of non-linear data with linear PLS in an absorption spectroscopic context
    • Robertsson, G. Contributions to the problem of approximation of non-linear data with linear PLS in an absorption spectroscopic context Chemom. Intell. Lab. Syst. 1999, 47, 99-106
    • (1999) Chemom. Intell. Lab. Syst. , vol.47 , pp. 99-106
    • Robertsson, G.1
  • 11
    • 70350364494 scopus 로고    scopus 로고
    • A nonlinear partial least squares algorithm using quadratic fuzzy inference system
    • Abdel-Rahmana, A. I.; Lim, G. J. A nonlinear partial least squares algorithm using quadratic fuzzy inference system J. Chemom. 2009, 23, 530-537
    • (2009) J. Chemom. , vol.23 , pp. 530-537
    • Abdel-Rahmana, A.I.1    Lim, G.J.2
  • 12
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven soft sensors in the process industry Comput. Chem. Eng. 2009, 33, 795-814
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 13
    • 0035438645 scopus 로고    scopus 로고
    • Implementation of locally weighted regression to maintain calibrations on FT-NIR analyzers for industrial processes
    • Chang, S. Y.; Baughman, E. H.; McIntosh, B. C. Implementation of locally weighted regression to maintain calibrations on FT-NIR analyzers for industrial processes Appl. Spectrosc. 2001, 55, 1199-1206
    • (2001) Appl. Spectrosc. , vol.55 , pp. 1199-1206
    • Chang, S.Y.1    Baughman, E.H.2    McIntosh, B.C.3
  • 14
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec, P.; Grbić, R.; Gabrys, B. Review of adaptation mechanisms for data-driven soft sensors Comput. Chem. Eng. 2011, 35, 1-24
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 15
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots J. Am. Stat. Assoc. 1979, 74, 829-836
    • (1979) J. Am. Stat. Assoc. , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 16
    • 0028299952 scopus 로고
    • New approach for distance measurement in locally weighted regression
    • Wang, Z. Y.; Isaksson, T.; Kowalski, B. R. New approach for distance measurement in locally weighted regression Anal. Chem. 1994, 66, 249-260
    • (1994) Anal. Chem. , vol.66 , pp. 249-260
    • Wang, Z.Y.1    Isaksson, T.2    Kowalski, B.R.3
  • 17
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng, C.; Chiu, M. S. A new data-based methodology for nonlinear process modeling Chem. Eng. Sci. 2004, 59, 2801-2810
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 18
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara, K.; Kano, M.; Hasebe, S.; Takinami, A. Soft-sensor development using correlation-based just-in-time modeling AIChE J. 2009, 55, 1754-1765
    • (2009) AIChE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 19
    • 77951091017 scopus 로고    scopus 로고
    • Development of correlation-based clustering method and its application to software sensing
    • Fujiwara, K.; Kano, M.; Hasebe, S. Development of correlation-based clustering method and its application to software sensing Chemom. Intell. Lab. Syst. 2010, 101, 130-138
    • (2010) Chemom. Intell. Lab. Syst. , vol.101 , pp. 130-138
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 20
    • 79951722848 scopus 로고    scopus 로고
    • Optimum quality design system for steel products through locally weighted regression model
    • Shigemori, H.; Kano, M.; Hasebe, S. Optimum quality design system for steel products through locally weighted regression model J. Proc. Cont. 2011, 21, 293-301
    • (2011) J. Proc. Cont. , vol.21 , pp. 293-301
    • Shigemori, H.1    Kano, M.2    Hasebe, S.3
  • 21
    • 81755166220 scopus 로고    scopus 로고
    • Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection
    • Kim, S.; Kano, M.; Nakagawa, H.; Hasebe, S. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection Int. J. Pharm. 2011, 421, 269-274
    • (2011) Int. J. Pharm. , vol.421 , pp. 269-274
    • Kim, S.1    Kano, M.2    Nakagawa, H.3    Hasebe, S.4
  • 22
    • 84859911635 scopus 로고    scopus 로고
    • Evaluation of infrared-reflection absorption spectroscopy measurement and locally weighted partial least squares for rapid analysis of residual drug substances in cleaning processes
    • Nakagawa, H.; Tajima, T.; Kano, M.; Kim, S.; Hasebe, S.; Suzuki, T.; Nakagami, H. Evaluation of infrared-reflection absorption spectroscopy measurement and locally weighted partial least squares for rapid analysis of residual drug substances in cleaning processes Anal. Chem. 2012, 84, 3820-3826
    • (2012) Anal. Chem. , vol.84 , pp. 3820-3826
    • Nakagawa, H.1    Tajima, T.2    Kano, M.3    Kim, S.4    Hasebe, S.5    Suzuki, T.6    Nakagami, H.7
  • 23
    • 84872920533 scopus 로고    scopus 로고
    • Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications
    • 10.1252/jcej.12we167
    • Kano, M.; Fujiwara, K. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications J. Chem. Eng. Jpn. 2012, 10.1252/jcej.12we167
    • (2012) J. Chem. Eng. Jpn.
    • Kano, M.1    Fujiwara, K.2
  • 24
    • 0036639869 scopus 로고    scopus 로고
    • Scalable techniques from nonparametric statistics for real time robot learning
    • Schaal, S.; Atkeson, C. G.; Vijayakumar, S. Scalable techniques from nonparametric statistics for real time robot learning Appl. Intell. 2002, 17, 49-60
    • (2002) Appl. Intell. , vol.17 , pp. 49-60
    • Schaal, S.1    Atkeson, C.G.2    Vijayakumar, S.3
  • 25
    • 0020971577 scopus 로고
    • Identification of trends in annual maximum sea levels using robust locally weighted regression
    • Walden, A. T.; Prescott, P. Identification of trends in annual maximum sea levels using robust locally weighted regression Estuar. Coast. Shelf. S. 1983, 16, 17-26
    • (1983) Estuar. Coast. Shelf. S. , vol.16 , pp. 17-26
    • Walden, A.T.1    Prescott, P.2
  • 26
    • 84947318637 scopus 로고
    • Locally weighted regression: An approach to regression analysis by local fitting
    • Cleveland, W. S.; Devlin, S. J. Locally weighted regression: An approach to regression analysis by local fitting J. Am. Stat. Assoc. 1988, 83, 596-610
    • (1988) J. Am. Stat. Assoc. , vol.83 , pp. 596-610
    • Cleveland, W.S.1    Devlin, S.J.2
  • 27
    • 1542383676 scopus 로고
    • Locally weighted regression and scatter correction for near-infrared reflectance data
    • Naes, T.; Isaksson, T. Locally weighted regression and scatter correction for near-infrared reflectance data Anal. Chem. 1990, 62, 664-673
    • (1990) Anal. Chem. , vol.62 , pp. 664-673
    • Naes, T.1    Isaksson, T.2
  • 28
    • 0000969089 scopus 로고    scopus 로고
    • Optimization in locally weighted regression
    • Centner, V.; Massart, D. L. Optimization in locally weighted regression Anal. Chem. 1998, 70, 4206-4211
    • (1998) Anal. Chem. , vol.70 , pp. 4206-4211
    • Centner, V.1    Massart, D.L.2
  • 29
    • 4444281062 scopus 로고    scopus 로고
    • Locally weighted regression for desulphurisation intelligent decision system modeling
    • Leung, H. H.; Huang, Y. S.; Cao, C. X. Locally weighted regression for desulphurisation intelligent decision system modeling Simulat. Model. Pract. Theor. 2004, 12, 413-423
    • (2004) Simulat. Model. Pract. Theor. , vol.12 , pp. 413-423
    • Leung, H.H.1    Huang, Y.S.2    Cao, C.X.3
  • 30
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge, Z.; Song, Z. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach Control Eng. Pract. 2008, 16, 1427-1437
    • (2008) Control Eng. Pract. , vol.16 , pp. 1427-1437
    • Ge, Z.1    Song, Z.2
  • 31
    • 21144474350 scopus 로고
    • Linear Model Selection by Cross-validation
    • Shao, J. Linear Model Selection by Cross-validation J. Am. Stat. Assoc. 1993, 88, 486-494
    • (1993) J. Am. Stat. Assoc. , vol.88 , pp. 486-494
    • Shao, J.1
  • 32
    • 0037841526 scopus 로고    scopus 로고
    • Cross-validation as the Objective Function for Variable-selection Techniques
    • Baumann, K. Cross-validation as the Objective Function for Variable-selection Techniques Trends Anal. Chem. 2003, 22, 395-406
    • (2003) Trends Anal. Chem. , vol.22 , pp. 395-406
    • Baumann, K.1
  • 33
    • 0442309436 scopus 로고    scopus 로고
    • The variable selection problem
    • George, E. I. The variable selection problem J. Am. Stat. Assoc. 2000, 95, 1304-1308
    • (2000) J. Am. Stat. Assoc. , vol.95 , pp. 1304-1308
    • George, E.I.1
  • 34
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. A new look at the statistical model identification IEEE Trans. Automat. Contr. 1974, 19, 716-723
    • (1974) IEEE Trans. Automat. Contr. , vol.19 , pp. 716-723
    • Akaike, H.1
  • 36
    • 79251504310 scopus 로고    scopus 로고
    • Genetic algorithm-based wavelength selection method for spectral calibration
    • Arakawa, M.; Yamashita, Y.; Funatsu, K. Genetic algorithm-based wavelength selection method for spectral calibration J. Chemom. 2011, 25, 10-19
    • (2011) J. Chemom. , vol.25 , pp. 10-19
    • Arakawa, M.1    Yamashita, Y.2    Funatsu, K.3
  • 37
    • 0001238580 scopus 로고
    • Genetic algorithms as a tool for wavelength selection in multivariate calibration
    • Jouen-Rimbauda, D.; Massart, D. L. Genetic algorithms as a tool for wavelength selection in multivariate calibration Anal. Chem. 1995, 67, 4295-4301
    • (1995) Anal. Chem. , vol.67 , pp. 4295-4301
    • Jouen-Rimbauda, D.1    Massart, D.L.2
  • 40
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. Regression shrinkage and selection via the lasso J. R. Statist. Soc. Ser. B 1996, 58, 267-288
    • (1996) J. R. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 41
    • 84946280337 scopus 로고
    • On the structure of partial least squares regression
    • Helland, I. S. On the structure of partial least squares regression Commun. Statist. Simulat. 1988, 17, 581-607
    • (1988) Commun. Statist. Simulat. , vol.17 , pp. 581-607
    • Helland, I.S.1
  • 42
    • 21244436700 scopus 로고    scopus 로고
    • Performance of some variable selection methods when multicollinearity is present
    • Chong, I.-G.; Jun, C.-H. Performance of some variable selection methods when multicollinearity is present Chemom. Intell. Lab. Syst. 2005, 78, 103-112
    • (2005) Chemom. Intell. Lab. Syst. , vol.78 , pp. 103-112
    • Chong, I.-G.1    Jun, C.-H.2
  • 44
    • 84866268194 scopus 로고    scopus 로고
    • Input variable selection for PLS modeling using nearest correlation spectral clustering
    • Fujiwara, K.; Sawada, H.; Kano, M. Input variable selection for PLS modeling using nearest correlation spectral clustering Chemom. Intell. Lab. Syst. 2012, 118, 109-119
    • (2012) Chemom. Intell. Lab. Syst. , vol.118 , pp. 109-119
    • Fujiwara, K.1    Sawada, H.2    Kano, M.3
  • 45
    • 84865407521 scopus 로고    scopus 로고
    • A review of variable selection methods in partial least squares regression
    • Mehmood, T.; Liland, K. H.; Snipen, L.; Sæbø, S. A review of variable selection methods in partial least squares regression Chemom. Intell. Lab. Syst. 2012, 118, 62-69
    • (2012) Chemom. Intell. Lab. Syst. , vol.118 , pp. 62-69
    • Mehmood, T.1    Liland, K.H.2    Snipen, L.3    Sæbø, S.4
  • 46
    • 33846114377 scopus 로고    scopus 로고
    • The Adaptive Lasso and Its Oracle Properties
    • Hui, Z. The Adaptive Lasso and Its Oracle Properties J. Am. Stat. Assoc. 2006, 101, 1418-1429
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 1418-1429
    • Hui, Z.1
  • 47
    • 79954634261 scopus 로고    scopus 로고
    • Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data
    • Balabin, R. M.; Smirnov, S. V. Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data Anal. Chim. Acta 2011, 692, 63-72
    • (2011) Anal. Chim. Acta , vol.692 , pp. 63-72
    • Balabin, R.M.1    Smirnov, S.V.2
  • 49
    • 84876727380 scopus 로고    scopus 로고
    • Development of soft-sensor using locally weighted PLS with adaptive similarity measure
    • 10.1016/j.chemolab.2013.03.008
    • Kim, S.; Okajima, R.; Kano, M.; Hasebe, S. Development of soft-sensor using locally weighted PLS with adaptive similarity measure Chemom. Intell. Lab. Syst. 2013, 10.1016/j.chemolab.2013.03.008
    • (2013) Chemom. Intell. Lab. Syst.
    • Kim, S.1    Okajima, R.2    Kano, M.3    Hasebe, S.4
  • 50
    • 84860688735 scopus 로고    scopus 로고
    • Dynamic-Moving-Window Scheme for Virtual-Metrology Model Refreshing
    • Wu, W.-M.; Cheng, F.-T.; Kong, F.-W. Dynamic-Moving-Window Scheme for Virtual-Metrology Model Refreshing IEEE Trans. Semicond. Manuf. 2012, 25, 238-246
    • (2012) IEEE Trans. Semicond. Manuf. , vol.25 , pp. 238-246
    • Wu, W.-M.1    Cheng, F.-T.2    Kong, F.-W.3
  • 52
    • 84950646761 scopus 로고
    • The Influence Curve and Its Role in Robust Estimation
    • Hampel, F. R. The Influence Curve and Its Role in Robust Estimation J. Am. Stat. Assoc. 1974, 69, 383-393
    • (1974) J. Am. Stat. Assoc. , vol.69 , pp. 383-393
    • Hampel, F.R.1
  • 53
    • 0026108818 scopus 로고
    • Multivariate Statistical Monitoring of Process Operating Performance
    • Kresta, J. V.; MacGregor, J. F.; Marlin, T. E. Multivariate Statistical Monitoring of Process Operating Performance Can. J. Chem. Eng. 1991, 69, 35-47
    • (1991) Can. J. Chem. Eng. , vol.69 , pp. 35-47
    • Kresta, J.V.1    Macgregor, J.F.2    Marlin, T.E.3
  • 54
    • 2442576927 scopus 로고    scopus 로고
    • Product quality estimation and operating condition monitoring for industrial ethylene fractionator
    • Kamohara, H.; Takinami, A.; Takeda, M.; Kano, M.; Hasebe, S.; Hashimoto, I. Product quality estimation and operating condition monitoring for industrial ethylene fractionator J. Chem. Eng. Jpn. 2004, 37, 422-428
    • (2004) J. Chem. Eng. Jpn. , vol.37 , pp. 422-428
    • Kamohara, H.1    Takinami, A.2    Takeda, M.3    Kano, M.4    Hasebe, S.5    Hashimoto, I.6
  • 55
    • 84863088966 scopus 로고    scopus 로고
    • A statistical model for predicting the liquid steel temperature in ladle and tundish by bootstrap filter
    • Sonoda, S.; Murata, N.; Hino, H.; Kitada, H.; Kano, M. A statistical model for predicting the liquid steel temperature in ladle and tundish by bootstrap filter ISIJ Int. 2012, 52, 1096-1101
    • (2012) ISIJ Int. , vol.52 , pp. 1096-1101
    • Sonoda, S.1    Murata, N.2    Hino, H.3    Kitada, H.4    Kano, M.5
  • 56
    • 79955611348 scopus 로고    scopus 로고
    • Applicability Domains and Accuracy of Prediction of Soft Sensor Models
    • Kaneko, H.; Arakawa, M.; Funatsu, K. Applicability Domains and Accuracy of Prediction of Soft Sensor Models AIChE J. 2011, 57, 1506-1513
    • (2011) AIChE J. , vol.57 , pp. 1506-1513
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.