-
1
-
-
0037186681
-
Improving nonparametric regression methods by bagging and boosting
-
Borra S., and Di Ciaccio A. Improving nonparametric regression methods by bagging and boosting. Comput. Stat. Data Anal. 38 (2002) 407-420
-
(2002)
Comput. Stat. Data Anal.
, vol.38
, pp. 407-420
-
-
Borra, S.1
Di Ciaccio, A.2
-
2
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 26 (1996) 123-140
-
(1996)
Mach. Learn.
, vol.26
, pp. 123-140
-
-
Breiman, L.1
-
3
-
-
0043289776
-
Analyzing bagging
-
Büchlmann P., and Yu B. Analyzing bagging. Ann. Stat. 30 (2002) 927-961
-
(2002)
Ann. Stat.
, vol.30
, pp. 927-961
-
-
Büchlmann, P.1
Yu, B.2
-
4
-
-
17744380204
-
Particle filters for state and parameter estimation in batch processes
-
Chen T., Morris J., and Martin E. Particle filters for state and parameter estimation in batch processes. J. Process Control 15 (2005) 665-673
-
(2005)
J. Process Control
, vol.15
, pp. 665-673
-
-
Chen, T.1
Morris, J.2
Martin, E.3
-
5
-
-
34247508683
-
Gaussian process regression for multivariate spectroscopic calibration
-
Chen T., Morris J., and Martin E. Gaussian process regression for multivariate spectroscopic calibration. Chemometrics Intell. Lab. Syst. 87 (2007) 59-67
-
(2007)
Chemometrics Intell. Lab. Syst.
, vol.87
, pp. 59-67
-
-
Chen, T.1
Morris, J.2
Martin, E.3
-
6
-
-
21844453228
-
Gaussian processes for ordinal regression
-
Chu W., and Ghahramani Z. Gaussian processes for ordinal regression. J. Mach. Learn. Res. 6 (2005) 1019-1041
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1019-1041
-
-
Chu, W.1
Ghahramani, Z.2
-
7
-
-
0038891993
-
Sparse on-line Gaussian processes
-
Csató L., and Opper M. Sparse on-line Gaussian processes. Neural Comput. 14 (2002) 641-668
-
(2002)
Neural Comput.
, vol.14
, pp. 641-668
-
-
Csató, L.1
Opper, M.2
-
8
-
-
0001077032
-
Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods
-
Efron B. Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68 (1981) 589-599
-
(1981)
Biometrika
, vol.68
, pp. 589-599
-
-
Efron, B.1
-
9
-
-
33847395932
-
Hierarchical process modeling: describing within-run and between-run variations
-
Entink R.H.K., Fox J.-P., Betlem B.H.L., and Roffel B. Hierarchical process modeling: describing within-run and between-run variations. J. Process Control 17 (2007) 349-361
-
(2007)
J. Process Control
, vol.17
, pp. 349-361
-
-
Entink, R.H.K.1
Fox, J.-P.2
Betlem, B.H.L.3
Roffel, B.4
-
10
-
-
0035391107
-
Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging
-
Gencay R., and Qi M. Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging. IEEE Trans. Neural Networks 12 (2001) 726-734
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, pp. 726-734
-
-
Gencay, R.1
Qi, M.2
-
11
-
-
11144332281
-
Multiple-step ahead prediction for non-linear dynamic systems-a Gaussian process treatment with propagation of the uncertainty
-
Becker S., Thrun S., and Obermayer K. (Eds), MIT Press, Cambridge, MA
-
Girard A., Rasmussen C.E., Quiñonero-Candela J., and Murray-Smith R. Multiple-step ahead prediction for non-linear dynamic systems-a Gaussian process treatment with propagation of the uncertainty. In: Becker S., Thrun S., and Obermayer K. (Eds). Advances in Neural Information Processing Systems vol. 15 (2003), MIT Press, Cambridge, MA 529-536
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 529-536
-
-
Girard, A.1
Rasmussen, C.E.2
Quiñonero-Candela, J.3
Murray-Smith, R.4
-
12
-
-
16344385077
-
Nonlinear modeling of FES-supported standing-up in paraplegia for selection of feedback sensors
-
Kamnik R., Shi J., Murray-Smith R., and Bajd T. Nonlinear modeling of FES-supported standing-up in paraplegia for selection of feedback sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 13 (2005) 40-52
-
(2005)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.13
, pp. 40-52
-
-
Kamnik, R.1
Shi, J.2
Murray-Smith, R.3
Bajd, T.4
-
13
-
-
35548968908
-
Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
-
Kano M., and Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 32 (2008) 12-24
-
(2008)
Comput. Chem. Eng.
, vol.32
, pp. 12-24
-
-
Kano, M.1
Nakagawa, Y.2
-
14
-
-
0035648165
-
Bayesian calibration of computer models (with discussions)
-
Kennedy M., and O'Hagan A. Bayesian calibration of computer models (with discussions). J. R. Stat. Soc. B 63 (2001) 425-464
-
(2001)
J. R. Stat. Soc. B
, vol.63
, pp. 425-464
-
-
Kennedy, M.1
O'Hagan, A.2
-
15
-
-
0037184459
-
Online optimizing control of molecular weight properties in batch free-radical polymerization reactors
-
Kiparissides C., Seferlis P., Mourikas G., and Morris A.J. Online optimizing control of molecular weight properties in batch free-radical polymerization reactors. Ind. Eng. Chem. Res. 41 (2002) 6120-6131
-
(2002)
Ind. Eng. Chem. Res.
, vol.41
, pp. 6120-6131
-
-
Kiparissides, C.1
Seferlis, P.2
Mourikas, G.3
Morris, A.J.4
-
16
-
-
34248589755
-
Bagging linear sparse Bayesian learning models for variable selection in cancer diagnosis
-
Lu C., Devos A., Suykens J., Arus C., and van Huffel S. Bagging linear sparse Bayesian learning models for variable selection in cancer diagnosis. IEEE Trans. Inf. Technol. Biomedicine 11 (2007) 338-347
-
(2007)
IEEE Trans. Inf. Technol. Biomedicine
, vol.11
, pp. 338-347
-
-
Lu, C.1
Devos, A.2
Suykens, J.3
Arus, C.4
van Huffel, S.5
-
17
-
-
61849154490
-
-
D.J.C. MacKay, Introduction to Gaussian processes, in: C.M. Bishop (Ed.), Neural Networks and Machine Learning, F: Computer and Systems Sciences, 168, NATO Advanced Study Institute, Springer, Berlin, Heidelberg, 1998, pp. 133-165.
-
D.J.C. MacKay, Introduction to Gaussian processes, in: C.M. Bishop (Ed.), Neural Networks and Machine Learning, F: Computer and Systems Sciences, vol. 168, NATO Advanced Study Institute, Springer, Berlin, Heidelberg, 1998, pp. 133-165.
-
-
-
-
20
-
-
0002978835
-
Curve fitting and optimal design for prediction (with discussion)
-
O'Hagan A. Curve fitting and optimal design for prediction (with discussion). J. R. Stat. Soc. B 40 (1978) 1-42
-
(1978)
J. R. Stat. Soc. B
, vol.40
, pp. 1-42
-
-
O'Hagan, A.1
-
22
-
-
0034320395
-
A Bayesian committee machine
-
Tresp V. A Bayesian committee machine. Neural Comput. 12 (2000) 2719-2741
-
(2000)
Neural Comput.
, vol.12
, pp. 2719-2741
-
-
Tresp, V.1
-
23
-
-
34249824559
-
Fermentation process tracking through enhanced spectral calibration modeling
-
Triadaphillou S., Martin E., Montague G., Norden A., Jeffkins P., and Stimpson S. Fermentation process tracking through enhanced spectral calibration modeling. Biotechnol. Bioeng. 97 (2007) 554-567
-
(2007)
Biotechnol. Bioeng.
, vol.97
, pp. 554-567
-
-
Triadaphillou, S.1
Martin, E.2
Montague, G.3
Norden, A.4
Jeffkins, P.5
Stimpson, S.6
-
24
-
-
0000062569
-
Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration
-
Vigneau E., Devaux M.F., Qannari E.M., and Robert P. Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration. J. Chemometrics 11 (1997) 239-249
-
(1997)
J. Chemometrics
, vol.11
, pp. 239-249
-
-
Vigneau, E.1
Devaux, M.F.2
Qannari, E.M.3
Robert, P.4
-
25
-
-
0002295913
-
Gaussian processes for regression
-
Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds), MIT Press, Cambridge, MA
-
Williams C.K.I., and Rasmussen C.E. Gaussian processes for regression. In: Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds). Advances in Neural Information Processing Systems vol. 8 (1996), MIT Press, Cambridge, MA
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
-
26
-
-
0026692226
-
Stacked generalization
-
Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
27
-
-
35348905110
-
Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression
-
Yuan J., Wang K., Yu T., and Fang M. Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression. Int. J. Mach. Tools Manuf. 48 (2008) 47-60
-
(2008)
Int. J. Mach. Tools Manuf.
, vol.48
, pp. 47-60
-
-
Yuan, J.1
Wang, K.2
Yu, T.3
Fang, M.4
-
28
-
-
0032804290
-
Inferential estimation of polymer quality using bootstrap aggregated neural networks
-
Zhang J. Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Networks 12 (1999) 927-938
-
(1999)
Neural Networks
, vol.12
, pp. 927-938
-
-
Zhang, J.1
|