메뉴 건너뛰기




Volumn 72, Issue 7-9, 2009, Pages 1605-1610

Bagging for Gaussian process regression

Author keywords

Bagging; Bayesian method; Bootstrap; Gaussian process; Model robustness; Soft sensor

Indexed keywords

BAGGING; BAYESIAN METHOD; BOOTSTRAP; GAUSSIAN PROCESS; MODEL ROBUSTNESS; SOFT SENSOR;

EID: 61849183105     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.09.002     Document Type: Article
Times cited : (148)

References (28)
  • 1
    • 0037186681 scopus 로고    scopus 로고
    • Improving nonparametric regression methods by bagging and boosting
    • Borra S., and Di Ciaccio A. Improving nonparametric regression methods by bagging and boosting. Comput. Stat. Data Anal. 38 (2002) 407-420
    • (2002) Comput. Stat. Data Anal. , vol.38 , pp. 407-420
    • Borra, S.1    Di Ciaccio, A.2
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 26 (1996) 123-140
    • (1996) Mach. Learn. , vol.26 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • Büchlmann P., and Yu B. Analyzing bagging. Ann. Stat. 30 (2002) 927-961
    • (2002) Ann. Stat. , vol.30 , pp. 927-961
    • Büchlmann, P.1    Yu, B.2
  • 4
    • 17744380204 scopus 로고    scopus 로고
    • Particle filters for state and parameter estimation in batch processes
    • Chen T., Morris J., and Martin E. Particle filters for state and parameter estimation in batch processes. J. Process Control 15 (2005) 665-673
    • (2005) J. Process Control , vol.15 , pp. 665-673
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 5
    • 34247508683 scopus 로고    scopus 로고
    • Gaussian process regression for multivariate spectroscopic calibration
    • Chen T., Morris J., and Martin E. Gaussian process regression for multivariate spectroscopic calibration. Chemometrics Intell. Lab. Syst. 87 (2007) 59-67
    • (2007) Chemometrics Intell. Lab. Syst. , vol.87 , pp. 59-67
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 6
    • 21844453228 scopus 로고    scopus 로고
    • Gaussian processes for ordinal regression
    • Chu W., and Ghahramani Z. Gaussian processes for ordinal regression. J. Mach. Learn. Res. 6 (2005) 1019-1041
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1019-1041
    • Chu, W.1    Ghahramani, Z.2
  • 7
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line Gaussian processes
    • Csató L., and Opper M. Sparse on-line Gaussian processes. Neural Comput. 14 (2002) 641-668
    • (2002) Neural Comput. , vol.14 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 8
    • 0001077032 scopus 로고
    • Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods
    • Efron B. Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68 (1981) 589-599
    • (1981) Biometrika , vol.68 , pp. 589-599
    • Efron, B.1
  • 9
    • 33847395932 scopus 로고    scopus 로고
    • Hierarchical process modeling: describing within-run and between-run variations
    • Entink R.H.K., Fox J.-P., Betlem B.H.L., and Roffel B. Hierarchical process modeling: describing within-run and between-run variations. J. Process Control 17 (2007) 349-361
    • (2007) J. Process Control , vol.17 , pp. 349-361
    • Entink, R.H.K.1    Fox, J.-P.2    Betlem, B.H.L.3    Roffel, B.4
  • 10
    • 0035391107 scopus 로고    scopus 로고
    • Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging
    • Gencay R., and Qi M. Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging. IEEE Trans. Neural Networks 12 (2001) 726-734
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 726-734
    • Gencay, R.1    Qi, M.2
  • 11
    • 11144332281 scopus 로고    scopus 로고
    • Multiple-step ahead prediction for non-linear dynamic systems-a Gaussian process treatment with propagation of the uncertainty
    • Becker S., Thrun S., and Obermayer K. (Eds), MIT Press, Cambridge, MA
    • Girard A., Rasmussen C.E., Quiñonero-Candela J., and Murray-Smith R. Multiple-step ahead prediction for non-linear dynamic systems-a Gaussian process treatment with propagation of the uncertainty. In: Becker S., Thrun S., and Obermayer K. (Eds). Advances in Neural Information Processing Systems vol. 15 (2003), MIT Press, Cambridge, MA 529-536
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 529-536
    • Girard, A.1    Rasmussen, C.E.2    Quiñonero-Candela, J.3    Murray-Smith, R.4
  • 12
    • 16344385077 scopus 로고    scopus 로고
    • Nonlinear modeling of FES-supported standing-up in paraplegia for selection of feedback sensors
    • Kamnik R., Shi J., Murray-Smith R., and Bajd T. Nonlinear modeling of FES-supported standing-up in paraplegia for selection of feedback sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 13 (2005) 40-52
    • (2005) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.13 , pp. 40-52
    • Kamnik, R.1    Shi, J.2    Murray-Smith, R.3    Bajd, T.4
  • 13
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
    • Kano M., and Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 32 (2008) 12-24
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 14
    • 0035648165 scopus 로고    scopus 로고
    • Bayesian calibration of computer models (with discussions)
    • Kennedy M., and O'Hagan A. Bayesian calibration of computer models (with discussions). J. R. Stat. Soc. B 63 (2001) 425-464
    • (2001) J. R. Stat. Soc. B , vol.63 , pp. 425-464
    • Kennedy, M.1    O'Hagan, A.2
  • 15
    • 0037184459 scopus 로고    scopus 로고
    • Online optimizing control of molecular weight properties in batch free-radical polymerization reactors
    • Kiparissides C., Seferlis P., Mourikas G., and Morris A.J. Online optimizing control of molecular weight properties in batch free-radical polymerization reactors. Ind. Eng. Chem. Res. 41 (2002) 6120-6131
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 6120-6131
    • Kiparissides, C.1    Seferlis, P.2    Mourikas, G.3    Morris, A.J.4
  • 16
  • 17
    • 61849154490 scopus 로고    scopus 로고
    • D.J.C. MacKay, Introduction to Gaussian processes, in: C.M. Bishop (Ed.), Neural Networks and Machine Learning, F: Computer and Systems Sciences, 168, NATO Advanced Study Institute, Springer, Berlin, Heidelberg, 1998, pp. 133-165.
    • D.J.C. MacKay, Introduction to Gaussian processes, in: C.M. Bishop (Ed.), Neural Networks and Machine Learning, F: Computer and Systems Sciences, vol. 168, NATO Advanced Study Institute, Springer, Berlin, Heidelberg, 1998, pp. 133-165.
  • 20
    • 0002978835 scopus 로고
    • Curve fitting and optimal design for prediction (with discussion)
    • O'Hagan A. Curve fitting and optimal design for prediction (with discussion). J. R. Stat. Soc. B 40 (1978) 1-42
    • (1978) J. R. Stat. Soc. B , vol.40 , pp. 1-42
    • O'Hagan, A.1
  • 22
    • 0034320395 scopus 로고    scopus 로고
    • A Bayesian committee machine
    • Tresp V. A Bayesian committee machine. Neural Comput. 12 (2000) 2719-2741
    • (2000) Neural Comput. , vol.12 , pp. 2719-2741
    • Tresp, V.1
  • 24
    • 0000062569 scopus 로고    scopus 로고
    • Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration
    • Vigneau E., Devaux M.F., Qannari E.M., and Robert P. Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration. J. Chemometrics 11 (1997) 239-249
    • (1997) J. Chemometrics , vol.11 , pp. 239-249
    • Vigneau, E.1    Devaux, M.F.2    Qannari, E.M.3    Robert, P.4
  • 25
    • 0002295913 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds), MIT Press, Cambridge, MA
    • Williams C.K.I., and Rasmussen C.E. Gaussian processes for regression. In: Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds). Advances in Neural Information Processing Systems vol. 8 (1996), MIT Press, Cambridge, MA
    • (1996) Advances in Neural Information Processing Systems , vol.8
    • Williams, C.K.I.1    Rasmussen, C.E.2
  • 26
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 27
    • 35348905110 scopus 로고    scopus 로고
    • Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression
    • Yuan J., Wang K., Yu T., and Fang M. Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression. Int. J. Mach. Tools Manuf. 48 (2008) 47-60
    • (2008) Int. J. Mach. Tools Manuf. , vol.48 , pp. 47-60
    • Yuan, J.1    Wang, K.2    Yu, T.3    Fang, M.4
  • 28
    • 0032804290 scopus 로고    scopus 로고
    • Inferential estimation of polymer quality using bootstrap aggregated neural networks
    • Zhang J. Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Networks 12 (1999) 927-938
    • (1999) Neural Networks , vol.12 , pp. 927-938
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.