메뉴 건너뛰기




Volumn 104, Issue 2, 2010, Pages 306-317

A comparative study of just-in-time-learning based methods for online soft sensor modeling

Author keywords

Just in time learning; Least squares support vector regression; Online modeling; Partial least squares; Soft sensor; Support vector regression

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; CONCEPTUAL FRAMEWORK; INTERMETHOD COMPARISON; JUST IN TIME LEARNING METHOD; MACHINE LEARNING; NONLINEAR SYSTEM; ONLINE ANALYSIS; PARTIAL LEAST SQUARES REGRESSION; PREDICTION; PRIORITY JOURNAL; QUALITY CONTROL; REGRESSION ANALYSIS; SENSOR; SOFT SENSOR; STATISTICAL MODEL; SUPPORT VECTOR MACHINE;

EID: 78650524009     PISSN: 01697439     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chemolab.2010.09.008     Document Type: Article
Times cited : (196)

References (28)
  • 2
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control and quality improvement: recent developments and applications in steel industry
    • Kano M., Nakagawa Y. Data-based process monitoring, process control and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 2008, 32:12-24.
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 3
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadle P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadle, P.1    Gabrys, B.2    Strandt, S.3
  • 4
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithm for adaptive data modeling
    • Qin S.J. Recursive PLS algorithm for adaptive data modeling. Comput. Chem. Eng. 1998, 22:503-514.
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 5
    • 0037440549 scopus 로고    scopus 로고
    • Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes
    • Adebiyi O.A., Corripio A.B. Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes. Comput. Chem. Eng. 2003, 27:143-155.
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 143-155
    • Adebiyi, O.A.1    Corripio, A.B.2
  • 6
    • 14944347949 scopus 로고    scopus 로고
    • A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling
    • Li C.F., Ye H., Wang G.Z., Zhang J. A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling. Chem. Eng. Technol. 2005, 28:141-152.
    • (2005) Chem. Eng. Technol. , vol.28 , pp. 141-152
    • Li, C.F.1    Ye, H.2    Wang, G.Z.3    Zhang, J.4
  • 7
    • 21244451848 scopus 로고    scopus 로고
    • Adaptive multivariate regression modeling based on model performance assessment
    • Lee Y.H., Kim M.J., Chu Y.H., Han C.H. Adaptive multivariate regression modeling based on model performance assessment. Chem. Intel. Lab. Syst. 2005, 78:63-75.
    • (2005) Chem. Intel. Lab. Syst. , vol.78 , pp. 63-75
    • Lee, Y.H.1    Kim, M.J.2    Chu, Y.H.3    Han, C.H.4
  • 8
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • Liu J.L. On-line soft sensor for polyethylene process with multiple production grades. Cont. Eng. Prac. 2007, 15:769-778.
    • (2007) Cont. Eng. Prac. , vol.15 , pp. 769-778
    • Liu, J.L.1
  • 9
    • 42149172522 scopus 로고    scopus 로고
    • K-OPLS package: kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space
    • Bylesjo M., Rantalainen M., Nicholson J.K., Holmes E., Trygg J. K-OPLS package: kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space. BMC Bioinform. 2008, 9:106.
    • (2008) BMC Bioinform. , vol.9 , pp. 106
    • Bylesjo, M.1    Rantalainen, M.2    Nicholson, J.K.3    Holmes, E.4    Trygg, J.5
  • 10
    • 42149134815 scopus 로고    scopus 로고
    • Quality prediction based on phase-specific average trajectory for batch processes
    • Zhao C.H., Wang F.L., Mao Z.Z., Lu N.Y., Jia M.X. Quality prediction based on phase-specific average trajectory for batch processes. AIChE J. 2008, 54:693-705.
    • (2008) AIChE J. , vol.54 , pp. 693-705
    • Zhao, C.H.1    Wang, F.L.2    Mao, Z.Z.3    Lu, N.Y.4    Jia, M.X.5
  • 11
    • 60649090799 scopus 로고    scopus 로고
    • Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
    • Facco P., Doplicher F., Bezzo F., Barolo M. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process. J. Proc. Cont. 2009, 19:520-529.
    • (2009) J. Proc. Cont. , vol.19 , pp. 520-529
    • Facco, P.1    Doplicher, F.2    Bezzo, F.3    Barolo, M.4
  • 12
    • 58149308461 scopus 로고    scopus 로고
    • Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction
    • Zhao C.H., Wang F.L., Gao F.R. Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction. Chem. Intel. Lab. Syst. 2009, 95:107-121.
    • (2009) Chem. Intel. Lab. Syst. , vol.95 , pp. 107-121
    • Zhao, C.H.1    Wang, F.L.2    Gao, F.R.3
  • 13
    • 67650076522 scopus 로고    scopus 로고
    • Improving the prediction model of protein in milk powder using GA-PLS combined with PC-ANN arithmetic
    • Sun Q., Wang J.H., Han D.H. Improving the prediction model of protein in milk powder using GA-PLS combined with PC-ANN arithmetic. Spect. Spec. Anal. 2009, 29:1818-1821.
    • (2009) Spect. Spec. Anal. , vol.29 , pp. 1818-1821
    • Sun, Q.1    Wang, J.H.2    Han, D.H.3
  • 14
    • 69349083126 scopus 로고    scopus 로고
    • Complex process monitoring using modified partial least squares method of independent component regression
    • Zhang Y.W., Zhang Y. Complex process monitoring using modified partial least squares method of independent component regression. Chem. Intel. Lab. Syst. 2009, 98:143-148.
    • (2009) Chem. Intel. Lab. Syst. , vol.98 , pp. 143-148
    • Zhang, Y.W.1    Zhang, Y.2
  • 16
    • 20344389745 scopus 로고    scopus 로고
    • Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process
    • Lee M.W., Joung J.Y., Lee D.S., Park J.M., Woo S.H. Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process. Ind. Eng. Chem. Res. 2005, 44:3973-3982.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 3973-3982
    • Lee, M.W.1    Joung, J.Y.2    Lee, D.S.3    Park, J.M.4    Woo, S.H.5
  • 17
    • 50849083804 scopus 로고    scopus 로고
    • Accounts of experience in the application of artificial neural networks in chemical engineering
    • Himmelblau D.M. Accounts of experience in the application of artificial neural networks in chemical engineering. Ind. Eng. Chem. Res. 2008, 47:5782-5796.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 5782-5796
    • Himmelblau, D.M.1
  • 18
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga J.C.B., Meleiro L.A.C., Kiang C., Filho R.M. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput. Chem. Eng. 2009, 33:43-49.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    Filho, R.M.4
  • 20
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W.W., Shao H.H., Wang X.F. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 2004, 28:1489-1498.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1489-1498
    • Yan, W.W.1    Shao, H.H.2    Wang, X.F.3
  • 21
    • 33947266512 scopus 로고    scopus 로고
    • Development of a soft sensor for a batch distillation column using support vector regression techniques
    • Jain P., Rahman I., Kulkarni B.D. Development of a soft sensor for a batch distillation column using support vector regression techniques. Chem. Eng. Res. Des. 2007, 85:283-287.
    • (2007) Chem. Eng. Res. Des. , vol.85 , pp. 283-287
    • Jain, P.1    Rahman, I.2    Kulkarni, B.D.3
  • 22
    • 67650083264 scopus 로고    scopus 로고
    • Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
    • Liu Y., Hu N.P., Wang H.Q., Li P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size. Ind. Eng. Chem. Res. 2009, 48:5731-5741.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 5731-5741
    • Liu, Y.1    Hu, N.P.2    Wang, H.Q.3    Li, P.4
  • 23
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C., Chiu M.S. A new data-based methodology for nonlinear process modeling. Chem. Eng. Sci. 2004, 59:2801-2810.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 24
    • 14844303316 scopus 로고    scopus 로고
    • Nonlinear process monitoring using JITL-PCA
    • Cheng C., Chiu M.S. Nonlinear process monitoring using JITL-PCA. Chem. Intel. Lab. Syst. 2005, 76:1-13.
    • (2005) Chem. Intel. Lab. Syst. , vol.76 , pp. 1-13
    • Cheng, C.1    Chiu, M.S.2
  • 25
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J. 2009, 55:1754-1765.
    • (2009) AIChE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 27
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 28
    • 11144284581 scopus 로고    scopus 로고
    • Soft sensors for product quality monitoring in debutanizer distillation columns
    • Fortuna L., Graziani S., Xibilia M.G. Soft sensors for product quality monitoring in debutanizer distillation columns. Cont. Eng. Prac. 2005, 13:499-508.
    • (2005) Cont. Eng. Prac. , vol.13 , pp. 499-508
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.