메뉴 건너뛰기




Volumn 71, Issue , 2014, Pages 77-93

Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes

Author keywords

Adaptive soft sensor; Batch process; Chlortetracycline fermentation process; Just in time learning; Kernel partial least squares; Partial mutual information

Indexed keywords

BATCH DATA PROCESSING; BAYESIAN NETWORKS; FERMENTATION; GAUSSIAN DISTRIBUTION; INFERENCE ENGINES; JUST IN TIME PRODUCTION; LEARNING SYSTEMS; PROCESS CONTROL; QUERY PROCESSING;

EID: 84905686213     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2014.07.014     Document Type: Article
Times cited : (104)

References (60)
  • 1
    • 33747873973 scopus 로고    scopus 로고
    • Bioprocess control: advances and challenges
    • Alford J.S. Bioprocess control: advances and challenges. Comput Chem Eng 2006, 30(10):1464-1475.
    • (2006) Comput Chem Eng , vol.30 , Issue.10 , pp. 1464-1475
    • Alford, J.S.1
  • 3
    • 84880017523 scopus 로고    scopus 로고
    • A non-Gaussian pattern matching based dynamic process monitoring approach and its application to cryogenic air separation process
    • Chen J., Yu J., Mori J., Rashid M.M., Hu G., Yu H., et al. A non-Gaussian pattern matching based dynamic process monitoring approach and its application to cryogenic air separation process. Comput Chem Eng 2013, 58:40-53.
    • (2013) Comput Chem Eng , vol.58 , pp. 40-53
    • Chen, J.1    Yu, J.2    Mori, J.3    Rashid, M.M.4    Hu, G.5    Yu, H.6
  • 5
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C., Chiu M.-S. A new data-based methodology for nonlinear process modeling. Chem Eng Sci 2004, 59(13):2801-2810.
    • (2004) Chem Eng Sci , vol.59 , Issue.13 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.-S.2
  • 6
    • 13844298045 scopus 로고    scopus 로고
    • Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information
    • Chow T.W., Huang D. Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information. IEEE Trans Neural Netw 2005, 16(1):213-224.
    • (2005) IEEE Trans Neural Netw , vol.16 , Issue.1 , pp. 213-224
    • Chow, T.W.1    Huang, D.2
  • 8
    • 84855946000 scopus 로고    scopus 로고
    • Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation
    • Cui L., Xie P., Sun J., Yu T., Yuan J. Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation. Comput Chem Eng 2012, 36:386-391.
    • (2012) Comput Chem Eng , vol.36 , pp. 386-391
    • Cui, L.1    Xie, P.2    Sun, J.3    Yu, T.4    Yuan, J.5
  • 10
    • 0027530250 scopus 로고
    • SIMPLS: an alternative approach to partial least squares regression
    • de Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemom Intell Lab Syst 1993, 18(3):251-263.
    • (1993) Chemom Intell Lab Syst , vol.18 , Issue.3 , pp. 251-263
    • de Jong, S.1
  • 11
    • 58049194220 scopus 로고    scopus 로고
    • A neuro-coevolutionary genetic fuzzy system to design soft sensors
    • Delgado M.R., Nagai E.Y., de Arruda L.V.R. A neuro-coevolutionary genetic fuzzy system to design soft sensors. Soft Comput 2009, 13(5):481-495.
    • (2009) Soft Comput , vol.13 , Issue.5 , pp. 481-495
    • Delgado, M.R.1    Nagai, E.Y.2    de Arruda, L.V.R.3
  • 13
    • 61749084755 scopus 로고    scopus 로고
    • Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach
    • Fernando T.M.K.G., Maier H.R., Dandy G.C. Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach. J Hydrol 2009, 367(3):165-176.
    • (2009) J Hydrol , vol.367 , Issue.3 , pp. 165-176
    • Fernando, T.M.K.G.1    Maier, H.R.2    Dandy, G.C.3
  • 15
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J 2009, 55(7):1754-1765.
    • (2009) AIChE J , vol.55 , Issue.7 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 16
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • François D., Rossi F., Wertz V., Verleysen M. Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 2007, 70(7):1276-1288.
    • (2007) Neurocomputing , vol.70 , Issue.7 , pp. 1276-1288
    • François, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 17
    • 36148985016 scopus 로고    scopus 로고
    • Partial mutual information for coupling analysis of multivariate time series
    • Frenzel S., Pompe B. Partial mutual information for coupling analysis of multivariate time series. Phys Rev Lett 2007, 99(20):204101.
    • (2007) Phys Rev Lett , vol.99 , Issue.20 , pp. 204101
    • Frenzel, S.1    Pompe, B.2
  • 18
    • 78650524009 scopus 로고    scopus 로고
    • A comparative study of just-in-time-learning based methods for online soft sensor modeling
    • Ge Z., Song Z. A comparative study of just-in-time-learning based methods for online soft sensor modeling. Chemom Intell Lab Syst 2010, 104(2):306-317.
    • (2010) Chemom Intell Lab Syst , vol.104 , Issue.2 , pp. 306-317
    • Ge, Z.1    Song, Z.2
  • 19
    • 0442309436 scopus 로고    scopus 로고
    • The variable selection problem
    • George E.I. The variable selection problem. J Am Stat Assoc 2000, 95(452):1304-1308.
    • (2000) J Am Stat Assoc , vol.95 , Issue.452 , pp. 1304-1308
    • George, E.I.1
  • 20
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga J., Meleiro L., Kiang C., Maciel Filho R. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput Chem Eng 2009, 33(1):43-49.
    • (2009) Comput Chem Eng , vol.33 , Issue.1 , pp. 43-49
    • Gonzaga, J.1    Meleiro, L.2    Kiang, C.3    Maciel Filho, R.4
  • 21
    • 84880339799 scopus 로고    scopus 로고
    • Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
    • Grbić R., Slišković D., Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput Chem Eng 2013, 58:84-97.
    • (2013) Comput Chem Eng , vol.58 , pp. 84-97
    • Grbić, R.1    Slišković, D.2    Kadlec, P.3
  • 22
    • 84879310945 scopus 로고    scopus 로고
    • Data-derived soft-sensors for biological wastewater treatment plants: an overview
    • Haimi H., Mulas M., Corona F., Vahala R. Data-derived soft-sensors for biological wastewater treatment plants: an overview. Environ Model Softw 2013, 47:88-107.
    • (2013) Environ Model Softw , vol.47 , pp. 88-107
    • Haimi, H.1    Mulas, M.2    Corona, F.3    Vahala, R.4
  • 23
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.-S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 1993, 23(3):665-685.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.1
  • 24
    • 61749095807 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems
    • Jassar S., Liao Z., Zhao L. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems. Build Environ 2009, 44(8):1609-1616.
    • (2009) Build Environ , vol.44 , Issue.8 , pp. 1609-1616
    • Jassar, S.1    Liao, Z.2    Zhao, L.3
  • 25
    • 84876464900 scopus 로고    scopus 로고
    • KPLS model based product quality control for batch processes
    • Jia R., Mao Z., Wang F. KPLS model based product quality control for batch processes. CIESC J 2013, 64(4):1332-1339.
    • (2013) CIESC J , vol.64 , Issue.4 , pp. 1332-1339
    • Jia, R.1    Mao, Z.2    Wang, F.3
  • 27
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput Chem Eng 2009, 33(4):795-814.
    • (2009) Comput Chem Eng , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 28
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J 2011, 57(5):1288-1301.
    • (2011) AIChE J , vol.57 , Issue.5 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 29
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P., Grbić R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput Chem Eng 2011, 35(1):1-24.
    • (2011) Comput Chem Eng , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 30
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
    • Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput Chem Eng 2008, 32(1):12-24.
    • (2008) Comput Chem Eng , vol.32 , Issue.1 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 31
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: good practice and questionnaire survey
    • Kano M., Ogawa M. The state of the art in chemical process control in Japan: good practice and questionnaire survey. J Process Control 2010, 20(9):969-982.
    • (2010) J Process Control , vol.20 , Issue.9 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 32
    • 84872920533 scopus 로고    scopus 로고
    • Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications
    • Kano M., Fujiwara K. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications. J Chem Eng Jpn 2013, 46(1):1-17.
    • (2013) J Chem Eng Jpn , vol.46 , Issue.1 , pp. 1-17
    • Kano, M.1    Fujiwara, K.2
  • 33
    • 84883736569 scopus 로고    scopus 로고
    • Long-term industrial applications of inferential control based on just-in-time soft-sensors: economical impact and challenges
    • Kim S., Kano M., Hasebe S., Takinami A., Seki T. Long-term industrial applications of inferential control based on just-in-time soft-sensors: economical impact and challenges. Ind Eng Chem Res 2013, 52(35):12346-12356.
    • (2013) Ind Eng Chem Res , vol.52 , Issue.35 , pp. 12346-12356
    • Kim, S.1    Kano, M.2    Hasebe, S.3    Takinami, A.4    Seki, T.5
  • 34
  • 35
    • 2442589699 scopus 로고    scopus 로고
    • On-line outlier detection and data cleaning
    • Liu H., Shah S., Jiang W. On-line outlier detection and data cleaning. Comput Chem Eng 2004, 28(9):1635-1647.
    • (2004) Comput Chem Eng , vol.28 , Issue.9 , pp. 1635-1647
    • Liu, H.1    Shah, S.2    Jiang, W.3
  • 36
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May R.J., Maier H.R., Dandy G.C., Fernando T. Non-linear variable selection for artificial neural networks using partial mutual information. Environ Mod Softw 2008, 23(10):1312-1326.
    • (2008) Environ Mod Softw , vol.23 , Issue.10 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.4
  • 37
    • 44749087176 scopus 로고    scopus 로고
    • Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems
    • May R.J., Dandy G.C., Maier H.R., Nixon J.B. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environ Model Softw 2008, 23(10):1289-1299.
    • (2008) Environ Model Softw , vol.23 , Issue.10 , pp. 1289-1299
    • May, R.J.1    Dandy, G.C.2    Maier, H.R.3    Nixon, J.B.4
  • 40
    • 17344381221 scopus 로고    scopus 로고
    • Synchronization as adjustment of information rates: detection from bivariate time series
    • Paluš M., Komárek V., Hrnčíř Z., Štěrbová K. Synchronization as adjustment of information rates: detection from bivariate time series. Phys Rev E 2001, 63(4):046211.
    • (2001) Phys Rev E , vol.63 , Issue.4 , pp. 046211
    • Paluš, M.1    Komárek, V.2    Hrnčíř, Z.3    Štěrbová, K.4
  • 41
    • 79951559025 scopus 로고    scopus 로고
    • A survey of data treatment techniques for soft sensor design
    • Article 2
    • Pani A.K., Mohanta H.K. A survey of data treatment techniques for soft sensor design. Chem Prod Process Model 2011, 6(1). Article 2.
    • (2011) Chem Prod Process Model , vol.6 , Issue.1
    • Pani, A.K.1    Mohanta, H.K.2
  • 42
    • 84871925041 scopus 로고    scopus 로고
    • Development and comparison of neural network based soft sensors for online estimation of cement clinker quality
    • Pani A.K., Vadlamudi V.K., Mohanta H.K. Development and comparison of neural network based soft sensors for online estimation of cement clinker quality. ISA Trans 2013, 52(1):19-29.
    • (2013) ISA Trans , vol.52 , Issue.1 , pp. 19-29
    • Pani, A.K.1    Vadlamudi, V.K.2    Mohanta, H.K.3
  • 43
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • Rashid M.M., Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemom Intell Lab Syst 2012, 115:44-58.
    • (2012) Chemom Intell Lab Syst , vol.115 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 44
    • 84865495534 scopus 로고    scopus 로고
    • Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach
    • Rashid M.M., Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach. Ind Eng Chem Res 2012, 51(33):10910-10920.
    • (2012) Ind Eng Chem Res , vol.51 , Issue.33 , pp. 10910-10920
    • Rashid, M.M.1    Yu, J.2
  • 46
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel hilbert space
    • Rosipal R., Trejo L.J. Kernel partial least squares regression in reproducing kernel hilbert space. J Mach Learn Res 2001, 2:97-123.
    • (2001) J Mach Learn Res , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 47
    • 0036639869 scopus 로고    scopus 로고
    • Scalable techniques from nonparametric statistics for real time robot learning
    • Schaal S., Atkeson C.G., Vijayakumar S. Scalable techniques from nonparametric statistics for real time robot learning. Appl Intell 2002, 17(1):49-60.
    • (2002) Appl Intell , vol.17 , Issue.1 , pp. 49-60
    • Schaal, S.1    Atkeson, C.G.2    Vijayakumar, S.3
  • 49
    • 0034694877 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 1-a strategy for system predictor identification
    • Sharma A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 1-a strategy for system predictor identification. J Hydrol 2000, 239(1):232-239.
    • (2000) J Hydrol , vol.239 , Issue.1 , pp. 232-239
    • Sharma, A.1
  • 50
    • 33746991704 scopus 로고    scopus 로고
    • Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based soft sensor for a LDPE plant
    • Sharmin R., Sundararaj U., Shah S., Griend L.V., Sun Y.-J. Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based soft sensor for a LDPE plant. Chem Eng Sci 2006, 61(19):6372-6384.
    • (2006) Chem Eng Sci , vol.61 , Issue.19 , pp. 6372-6384
    • Sharmin, R.1    Sundararaj, U.2    Shah, S.3    Griend, L.V.4    Sun, Y.-J.5
  • 51
    • 79951722848 scopus 로고    scopus 로고
    • Optimum quality design system for steel products through locally weighted regression model
    • Shigemori H., Kano M., Hasebe S. Optimum quality design system for steel products through locally weighted regression model. J Process Control 2011, 21(2):293-301.
    • (2011) J Process Control , vol.21 , Issue.2 , pp. 293-301
    • Shigemori, H.1    Kano, M.2    Hasebe, S.3
  • 52
    • 84857548668 scopus 로고    scopus 로고
    • Methods for plant data-based process modeling in soft-sensor development
    • Sliskovic D., Grbic R., Hocenski Z. Methods for plant data-based process modeling in soft-sensor development. Automatika 2011, 52(4):306-318.
    • (2011) Automatika , vol.52 , Issue.4 , pp. 306-318
    • Sliskovic, D.1    Grbic, R.2    Hocenski, Z.3
  • 53
    • 0000609488 scopus 로고    scopus 로고
    • Comparing alternative approaches for multivariate statistical analysis of batch process data
    • Westerhuis J.A., Kourti T., MacGregor J.F. Comparing alternative approaches for multivariate statistical analysis of batch process data. J Chemom 1999, 13(3-4):397-413.
    • (1999) J Chemom , vol.13 , Issue.3-4 , pp. 397-413
    • Westerhuis, J.A.1    Kourti, T.2    MacGregor, J.F.3
  • 54
    • 0003000612 scopus 로고
    • Nonlinear estimation by iterative least squares procedures
    • Wiley, New York
    • Wold H. Nonlinear estimation by iterative least squares procedures. Research papers in statistics 1966, 411-444. Wiley, New York.
    • (1966) Research papers in statistics , pp. 411-444
    • Wold, H.1
  • 55
    • 84868224530 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
    • Yu J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind Eng Chem Res 2012, 51(40):13227-13237.
    • (2012) Ind Eng Chem Res , vol.51 , Issue.40 , pp. 13227-13237
    • Yu, J.1
  • 56
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput Chem Eng 2012, 41:134-144.
    • (2012) Comput Chem Eng , vol.41 , pp. 134-144
    • Yu, J.1
  • 57
    • 84864805251 scopus 로고    scopus 로고
    • Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
    • Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem Eng Sci 2012, 82:22-30.
    • (2012) Chem Eng Sci , vol.82 , pp. 22-30
    • Yu, J.1
  • 58
    • 84874515333 scopus 로고    scopus 로고
    • A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty
    • Yu J., Chen K., Rashid M.M. A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty. Chem Eng Sci 2013, 93:96-109.
    • (2013) Chem Eng Sci , vol.93 , pp. 96-109
    • Yu, J.1    Chen, K.2    Rashid, M.M.3
  • 59
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J 2008, 54(7):1811-1829.
    • (2008) AIChE J , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 60
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • Yu J., Qin S.J. Multiway Gaussian mixture model based multiphase batch process monitoring. Ind Eng Chem Res 2009, 48(18):8585-8594.
    • (2009) Ind Eng Chem Res , vol.48 , Issue.18 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.