메뉴 건너뛰기




Volumn 51, Issue 18, 2012, Pages 6416-6428

Moving-window GPR for nonlinear dynamic system modeling with dual updating and dual preprocessing

Author keywords

[No Author keywords available]

Indexed keywords

EMBEDDED NOISE; GAUSSIAN PROCESS REGRESSION; INDUSTRIAL PROCESSS; MODEL PREDICTION; MODELING STRATEGY; MODELING STUDIES; MOVING-WINDOW; NON-LINEAR DYNAMIC SYSTEMS; NON-LINEARITY; PREDICTIVE CAPABILITIES; PREDICTIVE PERFORMANCE; PROCESS CHANGE; PROCESS DYNAMICS; PROCESS OUTPUT; PROCESS PARAMETERS; PROPYLENE POLYMERIZATION; SIMULTANEOUS REMOVAL; SOFT SENSORS; TIME-VARYING CHANGES; TIME-VARYING VARIANCE;

EID: 84861071787     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie201898a     Document Type: Article
Times cited : (59)

References (39)
  • 1
    • 0025532490 scopus 로고
    • Canonical variate analysis for system identification, filtering and adaptive control
    • In; IEEE Press: Piscataway, NJ, Vol
    • Larimore, W. E. Canonical variate analysis for system identification, filtering and adaptive control. In Proceedings of the 29th IEEE Conference on Decision and Control; IEEE Press: Piscataway, NJ, 1990; Vol. 1, pp 596-694.
    • (1990) Proceedings of the 29th IEEE Conference on Decision and Control , vol.1 , pp. 596-694
    • Larimore, W.E.1
  • 3
    • 0033652276 scopus 로고    scopus 로고
    • Modeling of dynamic systems using latent variable and subspace methods
    • Shi, R.; MacGregor, J. F. Modeling of dynamic systems using latent variable and subspace methods J. Chemom. 2000, 14, 423-439
    • (2000) J. Chemom. , vol.14 , pp. 423-439
    • Shi, R.1    MacGregor, J.F.2
  • 4
    • 0030856185 scopus 로고    scopus 로고
    • Pls, balanced, and canonical variate realization techniques for identifying VARMA models in state space
    • DOI 10.1016/S0169-7439(97)00035-X, PII S016974399700035X
    • Negiz, A.; Çinar, A. PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space Chemom. Intell. Lab. Syst. 1997, 38, 209-221 (Pubitemid 27512496)
    • (1997) Chemometrics and Intelligent Laboratory Systems , vol.38 , Issue.2 , pp. 209-221
    • Negiz, A.1    Cinar, A.2
  • 5
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec, P.; Grbić, R.; Gabrys, B. Review of adaptation mechanisms for data-driven soft sensors Comput. Chem. Eng. 2010, 35, 1-24
    • (2010) Comput. Chem. Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 6
    • 0036397757 scopus 로고    scopus 로고
    • Intelligent "control" applications in the process industries
    • DOI 10.1016/S1367-5788(02)80014-1, PII S136757880200010X
    • McAvoy, T. Intelligent "control" applications in the process industries Annu. Rev. Control 2002, 26, 75-86 (Pubitemid 35170481)
    • (2002) Annual Reviews in Control , vol.26 , pp. 75-86
    • Mc Avoy, T.1
  • 7
  • 8
    • 0033284964 scopus 로고    scopus 로고
    • Comparison of Canonical Variate Analysis and Partial Least Squares for the identification of dynamic processes
    • Simoglou, A.; Martin, E. B.; Morris, A. J. A comparison of canonical variate analysis and partial least squares for the identification of dynamic processes. In Proceedings of the American Control Conference; IEEE Press: Piscataway, NJ, 1999; pp 832-837. (Pubitemid 32078845)
    • (1999) Proceedings of the American Control Conference , vol.2 , pp. 832-837
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 9
    • 0001940299 scopus 로고    scopus 로고
    • Dynamic multivariate statistical process control using partial least squares and canonical variate analysis
    • Simoglou, A.; Martin, E. B.; Morris, A. J. Dynamic multivariate statistical process control using partial least squares and canonical variate analysis Comput. Chem. Eng. 1999, 23 (Suppl.) S277-S280
    • (1999) Comput. Chem. Eng. , vol.23 , Issue.SUPPL.
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 11
    • 0031168001 scopus 로고    scopus 로고
    • Recursive exponentially weighted PLS and its applications to adaptive control and prediction
    • PII S0959152496000124
    • Dayal, B. S.; MacGregor, J. F. Recursive exponentially weighted PLS and its applications to adaptive control and prediction J. Process Control 1997, 7, 169-179 (Pubitemid 127372162)
    • (1997) Journal of Process Control , vol.7 , Issue.3 , pp. 169-179
    • Dayal, B.S.1    MacGregor, J.F.2
  • 12
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • PII S0098135497002627
    • Qin, S. J. Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 1998, 22, 503-514 (Pubitemid 128714151)
    • (1998) Computers and Chemical Engineering , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 13
    • 33645417998 scopus 로고    scopus 로고
    • Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process
    • Mu, S.; Zeng, Y.; Liu, R.; Wu, P.; Su, H.; Chu, J. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process J. Process Control 2006, 16, 557-566
    • (2006) J. Process Control , vol.16 , pp. 557-566
    • Mu, S.1    Zeng, Y.2    Liu, R.3    Wu, P.4    Su, H.5    Chu, J.6
  • 14
    • 59349107270 scopus 로고    scopus 로고
    • A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
    • Ahmed, F.; Nazier, S.; Yeo, Y. K. A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant Korean J. Chem. Eng. 2009, 26, 14-20
    • (2009) Korean J. Chem. Eng. , vol.26 , pp. 14-20
    • Ahmed, F.1    Nazier, S.2    Yeo, Y.K.3
  • 15
    • 14944347949 scopus 로고    scopus 로고
    • A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling
    • DOI 10.1002/ceat.200407027
    • Li, C.; Ye, H.; Wang, G.; Zhang, J. A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling Chem. Eng. Technol. 2005, 28, 141-152 (Pubitemid 40367847)
    • (2005) Chemical Engineering and Technology , vol.28 , Issue.2 , pp. 141-152
    • Li, C.1    Ye, H.2    Wang, G.3    Zhang, J.4
  • 16
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec, P.; Gabrys, B. Local learning-based adaptive soft sensor for catalyst activation prediction AIChE J. 2011, 57, 1288-1301
    • (2011) AIChE J. , vol.57 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 17
    • 0034551618 scopus 로고    scopus 로고
    • Neural networks for the identification and control of blast furnace hot metal quality
    • Radhakrishnan, V.; Mohamed, A. Neural networks for the identification and control of blast furnace hot metal quality J. Process Control 2000, 10, 509-524
    • (2000) J. Process Control , vol.10 , pp. 509-524
    • Radhakrishnan, V.1    Mohamed, A.2
  • 18
    • 0034205619 scopus 로고    scopus 로고
    • On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models
    • Johansen, T. A.; Shorten, R.; Murray-Smith, R. On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models IEEE Trans. Fuzzy Syst. 2000, 8, 297-313
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , pp. 297-313
    • Johansen, T.A.1    Shorten, R.2    Murray-Smith, R.3
  • 19
    • 78651346497 scopus 로고    scopus 로고
    • Forecasting the evolution of nonlinear and nonstationary systems using recurrence-based local Gaussian process models
    • Bukkapatnam, S. T. S.; Cheng, C. Forecasting the evolution of nonlinear and nonstationary systems using recurrence-based local Gaussian process models Phys. Rev. E. 2010, 82, 056206-1-12
    • (2010) Phys. Rev. E. , vol.82 , pp. 0562061-05620612
    • Bukkapatnam, S.T.S.1    Cheng, C.2
  • 20
    • 44549084178 scopus 로고    scopus 로고
    • Explicit stochastic predictive control of combustion plants based on Gaussian process models
    • Grancharova, A.; Kocijan, J.; Johansen, T. A. Explicit stochastic predictive control of combustion plants based on Gaussian process models Automatica 2008, 44, 1621-1631
    • (2008) Automatica , vol.44 , pp. 1621-1631
    • Grancharova, A.1    Kocijan, J.2    Johansen, T.A.3
  • 21
    • 52949129443 scopus 로고    scopus 로고
    • Biomass estimation in batch biotechnological process by Bayesian Gaussian process regression
    • di Sciascio, F.; Amicarelli, A. N. Biomass estimation in batch biotechnological process by Bayesian Gaussian process regression Comput. Chem. Eng. 2008, 32, 3264-3273
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 3264-3273
    • Di Sciascio, F.1    Amicarelli, A.N.2
  • 22
    • 8344270238 scopus 로고    scopus 로고
    • Gaussian process for nonstationary time series prediction
    • Brahim-Belhouari, S.; Bermak, A. Gaussian process for nonstationary time series prediction Comput. Stat. Data Anal. 2004, 47, 705-712
    • (2004) Comput. Stat. Data Anal. , vol.47 , pp. 705-712
    • Brahim-Belhouari, S.1    Bermak, A.2
  • 23
    • 34548046773 scopus 로고    scopus 로고
    • Application of Gaussian processes for black-box modelling of biosystems
    • DOI 10.1016/j.isatra.2007.04.001, PII S0019057807000730
    • Ažman, K.; Kocijan, J. Application of Gaussian processes for black-box modeling of biosystems ISA Trans. 2007, 46, 443-457 (Pubitemid 47284076)
    • (2007) ISA Transactions , vol.46 , Issue.4 , pp. 443-457
    • Azman, K.1    Kocijan, J.2
  • 24
    • 79151477311 scopus 로고    scopus 로고
    • Dynamical systems identification using Gaussian process models with incorporated local models
    • Ažman, K.; Kocijan, J. Dynamical systems identification using Gaussian process models with incorporated local models Eng. Appl. Artif. Intell. 2011, 24, 398-408
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , pp. 398-408
    • Ažman, K.1    Kocijan, J.2
  • 25
    • 0002978835 scopus 로고
    • Curve fitting and optimal design for prediction (with discussion)
    • O'Hagan, A. Curve fitting and optimal design for prediction (with discussion) J. R. Stat. Soc. B 1978, 40, 1-42
    • (1978) J. R. Stat. Soc. B , vol.40 , pp. 1-42
    • O'Hagan, A.1
  • 27
    • 34247508683 scopus 로고    scopus 로고
    • Gaussian process regression for multivariate spectroscopic calibration
    • Chen, T.; Morris, J.; Martin, E. Gaussian process regression for multivariate spectroscopic calibration Chemom. Intell. Lab. Syst. 2007, 87, 59-71
    • (2007) Chemom. Intell. Lab. Syst. , vol.87 , pp. 59-71
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 28
    • 77955310226 scopus 로고    scopus 로고
    • Bayesian variable selection for Gaussian process regression: Application to chemometric calibration of spectrometers
    • Chen, T.; Wang, B. Bayesian variable selection for Gaussian process regression: Application to chemometric calibration of spectrometers Neurocomputing 2010, 73, 2718-2726
    • (2010) Neurocomputing , vol.73 , pp. 2718-2726
    • Chen, T.1    Wang, B.2
  • 29
    • 52949150838 scopus 로고    scopus 로고
    • Nonlinear system identification: From multiple-model networks to Gaussian processes
    • Gregorčič, G.; Lightbody, G. Nonlinear system identification: From multiple-model networks to Gaussian processes Eng. Appl. Artif. Intell. 2008, 21, 1035-1055
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , pp. 1035-1055
    • Gregorčič, G.1    Lightbody, G.2
  • 31
    • 67349233057 scopus 로고    scopus 로고
    • Gaussian process approach for modeling of nonlinear systems
    • Gregorčič, G.; Lightbody, G. Gaussian process approach for modeling of nonlinear systems Eng. Appl. Artif. Intell. 2009, 22, 522-533
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , pp. 522-533
    • Gregorčič, G.1    Lightbody, G.2
  • 32
    • 80052566365 scopus 로고    scopus 로고
    • Recursive GPR for nonlinear dynamic process modeling
    • Ni, W.; Tan, S. K.; Ng, W. J. Recursive GPR for nonlinear dynamic process modeling Chem. Eng. J. 2011, 173, 636-643
    • (2011) Chem. Eng. J. , vol.173 , pp. 636-643
    • Ni, W.1    Tan, S.K.2    Ng, W.J.3
  • 33
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang, X.; Kruger, U.; Irwin, G. W. Process monitoring approach using fast moving window PCA Ind. Eng. Chem. Res. 2005, 44, 5691-5702
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 34
    • 33646536772 scopus 로고    scopus 로고
    • Adaptive multivariate statistical process for monitoring time-varying processes
    • Choi, S. W.; Martin, E. B.; Morris, A. J.; Lee, I. B. Adaptive multivariate statistical process for monitoring time-varying processes Ind. Eng. Chem. Res. 2006, 45, 3108-3118
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 3108-3118
    • Choi, S.W.1    Martin, E.B.2    Morris, A.J.3    Lee, I.B.4
  • 35
    • 0042553279 scopus 로고
    • Smoothing and Differentiation of Data by Simplified Least Squares Procedures
    • Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures Anal. Chem. 1964, 36, 1627-1639
    • (1964) Anal. Chem. , vol.36 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.E.2
  • 38
    • 77956828132 scopus 로고
    • Canonical correlation analysis of time series and the use of an information criterion
    • In; Mehra, R. K. Lainiotis, D. G. Academic Press: New York
    • Akaike, H. Canonical correlation analysis of time series and the use of an information criterion. In System Identification: Advances and Case Studies; Mehra, R. K.; Lainiotis, D. G., Eds.; Academic Press: New York, 1976; pp 27-96.
    • (1976) System Identification: Advances and Case Studies , pp. 27-96
    • Akaike, H.1
  • 39
    • 84862208873 scopus 로고    scopus 로고
    • A localized, adaptive recursive partial least squares regression for dynamic system modeling
    • manuscript submitted
    • Ni, W.; Tan, S. K.; Ng, W. J.; Brown, S. D. A localized, adaptive recursive partial least squares regression for dynamic system modeling. Ind. Eng. Chem. Res., manuscript submitted.
    • Ind. Eng. Chem. Res.
    • Ni, W.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.