-
1
-
-
0025532490
-
Canonical variate analysis for system identification, filtering and adaptive control
-
In; IEEE Press: Piscataway, NJ, Vol
-
Larimore, W. E. Canonical variate analysis for system identification, filtering and adaptive control. In Proceedings of the 29th IEEE Conference on Decision and Control; IEEE Press: Piscataway, NJ, 1990; Vol. 1, pp 596-694.
-
(1990)
Proceedings of the 29th IEEE Conference on Decision and Control
, vol.1
, pp. 596-694
-
-
Larimore, W.E.1
-
2
-
-
0347128014
-
Fault Detection Using Canonical Variate Analysis
-
Juricek, B. C.; Seborg, D. E.; Larimore, W. E. Fault detection using canonical variate analysis Ind. Eng. Chem. Res. 2004, 43, 458-474 (Pubitemid 38090814)
-
(2004)
Industrial and Engineering Chemistry Research
, vol.43
, Issue.2
, pp. 458-474
-
-
Juricek, B.C.1
Seborg, D.E.2
Larimore, W.E.3
-
3
-
-
0033652276
-
Modeling of dynamic systems using latent variable and subspace methods
-
Shi, R.; MacGregor, J. F. Modeling of dynamic systems using latent variable and subspace methods J. Chemom. 2000, 14, 423-439
-
(2000)
J. Chemom.
, vol.14
, pp. 423-439
-
-
Shi, R.1
MacGregor, J.F.2
-
4
-
-
0030856185
-
Pls, balanced, and canonical variate realization techniques for identifying VARMA models in state space
-
DOI 10.1016/S0169-7439(97)00035-X, PII S016974399700035X
-
Negiz, A.; Çinar, A. PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space Chemom. Intell. Lab. Syst. 1997, 38, 209-221 (Pubitemid 27512496)
-
(1997)
Chemometrics and Intelligent Laboratory Systems
, vol.38
, Issue.2
, pp. 209-221
-
-
Negiz, A.1
Cinar, A.2
-
5
-
-
78649468188
-
Review of adaptation mechanisms for data-driven soft sensors
-
Kadlec, P.; Grbić, R.; Gabrys, B. Review of adaptation mechanisms for data-driven soft sensors Comput. Chem. Eng. 2010, 35, 1-24
-
(2010)
Comput. Chem. Eng.
, vol.35
, pp. 1-24
-
-
Kadlec, P.1
Grbić, R.2
Gabrys, B.3
-
6
-
-
0036397757
-
Intelligent "control" applications in the process industries
-
DOI 10.1016/S1367-5788(02)80014-1, PII S136757880200010X
-
McAvoy, T. Intelligent "control" applications in the process industries Annu. Rev. Control 2002, 26, 75-86 (Pubitemid 35170481)
-
(2002)
Annual Reviews in Control
, vol.26
, pp. 75-86
-
-
Mc Avoy, T.1
-
7
-
-
0347379723
-
Soft analyzers for a sulfur recovery unit
-
DOI 10.1016/S0967-0661(03)00079-0
-
Fortuna, L.; Rizzo, A.; Sinatra, M.; Xibilia, M. G. Soft analyzers for a sulfur recovery unit Control Eng. Pract. 2003, 11, 1491-1500 (Pubitemid 37551617)
-
(2003)
Control Engineering Practice
, vol.11
, Issue.12
, pp. 1491-1500
-
-
Fortuna, L.1
Rizzo, A.2
Sinatra, M.3
Xibilia, M.G.4
-
8
-
-
0033284964
-
Comparison of Canonical Variate Analysis and Partial Least Squares for the identification of dynamic processes
-
Simoglou, A.; Martin, E. B.; Morris, A. J. A comparison of canonical variate analysis and partial least squares for the identification of dynamic processes. In Proceedings of the American Control Conference; IEEE Press: Piscataway, NJ, 1999; pp 832-837. (Pubitemid 32078845)
-
(1999)
Proceedings of the American Control Conference
, vol.2
, pp. 832-837
-
-
Simoglou, A.1
Martin, E.B.2
Morris, A.J.3
-
9
-
-
0001940299
-
Dynamic multivariate statistical process control using partial least squares and canonical variate analysis
-
Simoglou, A.; Martin, E. B.; Morris, A. J. Dynamic multivariate statistical process control using partial least squares and canonical variate analysis Comput. Chem. Eng. 1999, 23 (Suppl.) S277-S280
-
(1999)
Comput. Chem. Eng.
, vol.23
, Issue.SUPPL.
-
-
Simoglou, A.1
Martin, E.B.2
Morris, A.J.3
-
10
-
-
0026578546
-
Recursive algorithm for partial least squares regression
-
Helland, K.; Berntsen, H. E.; Borgen, O. S.; Martens, H. Recursive algorithm for partial least squares regression Chemom. Intell. Lab. Syst. 1992, 14, 129-137
-
(1992)
Chemom. Intell. Lab. Syst.
, vol.14
, pp. 129-137
-
-
Helland, K.1
Berntsen, H.E.2
Borgen, O.S.3
Martens, H.4
-
11
-
-
0031168001
-
Recursive exponentially weighted PLS and its applications to adaptive control and prediction
-
PII S0959152496000124
-
Dayal, B. S.; MacGregor, J. F. Recursive exponentially weighted PLS and its applications to adaptive control and prediction J. Process Control 1997, 7, 169-179 (Pubitemid 127372162)
-
(1997)
Journal of Process Control
, vol.7
, Issue.3
, pp. 169-179
-
-
Dayal, B.S.1
MacGregor, J.F.2
-
12
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
PII S0098135497002627
-
Qin, S. J. Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 1998, 22, 503-514 (Pubitemid 128714151)
-
(1998)
Computers and Chemical Engineering
, vol.22
, Issue.4-5
, pp. 503-514
-
-
Qin, S.J.1
-
13
-
-
33645417998
-
Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process
-
Mu, S.; Zeng, Y.; Liu, R.; Wu, P.; Su, H.; Chu, J. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process J. Process Control 2006, 16, 557-566
-
(2006)
J. Process Control
, vol.16
, pp. 557-566
-
-
Mu, S.1
Zeng, Y.2
Liu, R.3
Wu, P.4
Su, H.5
Chu, J.6
-
14
-
-
59349107270
-
A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
-
Ahmed, F.; Nazier, S.; Yeo, Y. K. A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant Korean J. Chem. Eng. 2009, 26, 14-20
-
(2009)
Korean J. Chem. Eng.
, vol.26
, pp. 14-20
-
-
Ahmed, F.1
Nazier, S.2
Yeo, Y.K.3
-
15
-
-
14944347949
-
A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling
-
DOI 10.1002/ceat.200407027
-
Li, C.; Ye, H.; Wang, G.; Zhang, J. A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling Chem. Eng. Technol. 2005, 28, 141-152 (Pubitemid 40367847)
-
(2005)
Chemical Engineering and Technology
, vol.28
, Issue.2
, pp. 141-152
-
-
Li, C.1
Ye, H.2
Wang, G.3
Zhang, J.4
-
16
-
-
79954599740
-
Local learning-based adaptive soft sensor for catalyst activation prediction
-
Kadlec, P.; Gabrys, B. Local learning-based adaptive soft sensor for catalyst activation prediction AIChE J. 2011, 57, 1288-1301
-
(2011)
AIChE J.
, vol.57
, pp. 1288-1301
-
-
Kadlec, P.1
Gabrys, B.2
-
17
-
-
0034551618
-
Neural networks for the identification and control of blast furnace hot metal quality
-
Radhakrishnan, V.; Mohamed, A. Neural networks for the identification and control of blast furnace hot metal quality J. Process Control 2000, 10, 509-524
-
(2000)
J. Process Control
, vol.10
, pp. 509-524
-
-
Radhakrishnan, V.1
Mohamed, A.2
-
18
-
-
0034205619
-
On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models
-
Johansen, T. A.; Shorten, R.; Murray-Smith, R. On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models IEEE Trans. Fuzzy Syst. 2000, 8, 297-313
-
(2000)
IEEE Trans. Fuzzy Syst.
, vol.8
, pp. 297-313
-
-
Johansen, T.A.1
Shorten, R.2
Murray-Smith, R.3
-
19
-
-
78651346497
-
Forecasting the evolution of nonlinear and nonstationary systems using recurrence-based local Gaussian process models
-
Bukkapatnam, S. T. S.; Cheng, C. Forecasting the evolution of nonlinear and nonstationary systems using recurrence-based local Gaussian process models Phys. Rev. E. 2010, 82, 056206-1-12
-
(2010)
Phys. Rev. E.
, vol.82
, pp. 0562061-05620612
-
-
Bukkapatnam, S.T.S.1
Cheng, C.2
-
20
-
-
44549084178
-
Explicit stochastic predictive control of combustion plants based on Gaussian process models
-
Grancharova, A.; Kocijan, J.; Johansen, T. A. Explicit stochastic predictive control of combustion plants based on Gaussian process models Automatica 2008, 44, 1621-1631
-
(2008)
Automatica
, vol.44
, pp. 1621-1631
-
-
Grancharova, A.1
Kocijan, J.2
Johansen, T.A.3
-
21
-
-
52949129443
-
Biomass estimation in batch biotechnological process by Bayesian Gaussian process regression
-
di Sciascio, F.; Amicarelli, A. N. Biomass estimation in batch biotechnological process by Bayesian Gaussian process regression Comput. Chem. Eng. 2008, 32, 3264-3273
-
(2008)
Comput. Chem. Eng.
, vol.32
, pp. 3264-3273
-
-
Di Sciascio, F.1
Amicarelli, A.N.2
-
22
-
-
8344270238
-
Gaussian process for nonstationary time series prediction
-
Brahim-Belhouari, S.; Bermak, A. Gaussian process for nonstationary time series prediction Comput. Stat. Data Anal. 2004, 47, 705-712
-
(2004)
Comput. Stat. Data Anal.
, vol.47
, pp. 705-712
-
-
Brahim-Belhouari, S.1
Bermak, A.2
-
23
-
-
34548046773
-
Application of Gaussian processes for black-box modelling of biosystems
-
DOI 10.1016/j.isatra.2007.04.001, PII S0019057807000730
-
Ažman, K.; Kocijan, J. Application of Gaussian processes for black-box modeling of biosystems ISA Trans. 2007, 46, 443-457 (Pubitemid 47284076)
-
(2007)
ISA Transactions
, vol.46
, Issue.4
, pp. 443-457
-
-
Azman, K.1
Kocijan, J.2
-
24
-
-
79151477311
-
Dynamical systems identification using Gaussian process models with incorporated local models
-
Ažman, K.; Kocijan, J. Dynamical systems identification using Gaussian process models with incorporated local models Eng. Appl. Artif. Intell. 2011, 24, 398-408
-
(2011)
Eng. Appl. Artif. Intell.
, vol.24
, pp. 398-408
-
-
Ažman, K.1
Kocijan, J.2
-
25
-
-
0002978835
-
Curve fitting and optimal design for prediction (with discussion)
-
O'Hagan, A. Curve fitting and optimal design for prediction (with discussion) J. R. Stat. Soc. B 1978, 40, 1-42
-
(1978)
J. R. Stat. Soc. B
, vol.40
, pp. 1-42
-
-
O'Hagan, A.1
-
27
-
-
34247508683
-
Gaussian process regression for multivariate spectroscopic calibration
-
Chen, T.; Morris, J.; Martin, E. Gaussian process regression for multivariate spectroscopic calibration Chemom. Intell. Lab. Syst. 2007, 87, 59-71
-
(2007)
Chemom. Intell. Lab. Syst.
, vol.87
, pp. 59-71
-
-
Chen, T.1
Morris, J.2
Martin, E.3
-
28
-
-
77955310226
-
Bayesian variable selection for Gaussian process regression: Application to chemometric calibration of spectrometers
-
Chen, T.; Wang, B. Bayesian variable selection for Gaussian process regression: Application to chemometric calibration of spectrometers Neurocomputing 2010, 73, 2718-2726
-
(2010)
Neurocomputing
, vol.73
, pp. 2718-2726
-
-
Chen, T.1
Wang, B.2
-
29
-
-
52949150838
-
Nonlinear system identification: From multiple-model networks to Gaussian processes
-
Gregorčič, G.; Lightbody, G. Nonlinear system identification: From multiple-model networks to Gaussian processes Eng. Appl. Artif. Intell. 2008, 21, 1035-1055
-
(2008)
Eng. Appl. Artif. Intell.
, vol.21
, pp. 1035-1055
-
-
Gregorčič, G.1
Lightbody, G.2
-
30
-
-
61849173491
-
Gaussian process dynamic programming
-
Deisenroth, M. P.; Rasmussen, C. E.; Peters, J. Gaussian process dynamic programming Neurocomputing 2009, 72, 1508-1524
-
(2009)
Neurocomputing
, vol.72
, pp. 1508-1524
-
-
Deisenroth, M.P.1
Rasmussen, C.E.2
Peters, J.3
-
31
-
-
67349233057
-
Gaussian process approach for modeling of nonlinear systems
-
Gregorčič, G.; Lightbody, G. Gaussian process approach for modeling of nonlinear systems Eng. Appl. Artif. Intell. 2009, 22, 522-533
-
(2009)
Eng. Appl. Artif. Intell.
, vol.22
, pp. 522-533
-
-
Gregorčič, G.1
Lightbody, G.2
-
32
-
-
80052566365
-
Recursive GPR for nonlinear dynamic process modeling
-
Ni, W.; Tan, S. K.; Ng, W. J. Recursive GPR for nonlinear dynamic process modeling Chem. Eng. J. 2011, 173, 636-643
-
(2011)
Chem. Eng. J.
, vol.173
, pp. 636-643
-
-
Ni, W.1
Tan, S.K.2
Ng, W.J.3
-
33
-
-
22944436794
-
Process monitoring approach using fast moving window PCA
-
Wang, X.; Kruger, U.; Irwin, G. W. Process monitoring approach using fast moving window PCA Ind. Eng. Chem. Res. 2005, 44, 5691-5702
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 5691-5702
-
-
Wang, X.1
Kruger, U.2
Irwin, G.W.3
-
34
-
-
33646536772
-
Adaptive multivariate statistical process for monitoring time-varying processes
-
Choi, S. W.; Martin, E. B.; Morris, A. J.; Lee, I. B. Adaptive multivariate statistical process for monitoring time-varying processes Ind. Eng. Chem. Res. 2006, 45, 3108-3118
-
(2006)
Ind. Eng. Chem. Res.
, vol.45
, pp. 3108-3118
-
-
Choi, S.W.1
Martin, E.B.2
Morris, A.J.3
Lee, I.B.4
-
35
-
-
0042553279
-
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
-
Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures Anal. Chem. 1964, 36, 1627-1639
-
(1964)
Anal. Chem.
, vol.36
, pp. 1627-1639
-
-
Savitzky, A.1
Golay, M.J.E.2
-
38
-
-
77956828132
-
Canonical correlation analysis of time series and the use of an information criterion
-
In; Mehra, R. K. Lainiotis, D. G. Academic Press: New York
-
Akaike, H. Canonical correlation analysis of time series and the use of an information criterion. In System Identification: Advances and Case Studies; Mehra, R. K.; Lainiotis, D. G., Eds.; Academic Press: New York, 1976; pp 27-96.
-
(1976)
System Identification: Advances and Case Studies
, pp. 27-96
-
-
Akaike, H.1
-
39
-
-
84862208873
-
A localized, adaptive recursive partial least squares regression for dynamic system modeling
-
manuscript submitted
-
Ni, W.; Tan, S. K.; Ng, W. J.; Brown, S. D. A localized, adaptive recursive partial least squares regression for dynamic system modeling. Ind. Eng. Chem. Res., manuscript submitted.
-
Ind. Eng. Chem. Res.
-
-
Ni, W.1
Tan, S.K.2
Ng, W.J.3
Brown, S.D.4
|