메뉴 건너뛰기




Volumn 82, Issue , 2012, Pages 22-30

Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach

Author keywords

Chemical processes; Gaussian process regression; Instrumentation; Mathematical modeling; Nonlinear dynamics; Soft sensor prediction

Indexed keywords

BAYESIAN INFERENCE; CHEMICAL PROCESS; FINITE MIXTURE MODELS; GAUSSIAN PROCESS REGRESSION; GAUSSIAN PROCESS REGRESSION MODEL; GLOBAL MODELS; INSTRUMENTATION; MULTI-MODEL; NON-LINEARITY; NONGAUSSIANITY; NONLINEAR AND NON-GAUSSIAN; NONLINEAR KERNELS; ONLINE QUALITY; OPERATING MODES; POSTERIOR PROBABILITY; PREDICTION ACCURACY; QUALITY PREDICTION; SOFT SENSORS; SWITCHING DYNAMICS; SYSTEM UNCERTAINTIES; TENNESSEE EASTMAN; TEST CASE; TEST SAMPLES; VARIABLE PREDICTIONS;

EID: 84864805251     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2012.07.018     Document Type: Article
Times cited : (114)

References (34)
  • 1
    • 0034661658 scopus 로고    scopus 로고
    • Soft sensors development for on-line bioreactor state estimation
    • Assis A.J., Filho R.M. Soft sensors development for on-line bioreactor state estimation. Comput. Chem. Eng. 2000, 24:1099-1103.
    • (2000) Comput. Chem. Eng. , vol.24 , pp. 1099-1103
    • Assis, A.J.1    Filho, R.M.2
  • 2
    • 0033611717 scopus 로고    scopus 로고
    • Non-linear projection to latent structures revisited: the quadratic PLS algorithm
    • Baffi G., Martin E.B., Morris A.J. Non-linear projection to latent structures revisited: the quadratic PLS algorithm. Comput. Chem. Eng. 1999, 23:395-411.
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 395-411
    • Baffi, G.1    Martin, E.B.2    Morris, A.J.3
  • 4
    • 2442438931 scopus 로고    scopus 로고
    • Parameter identification for state estimation: application to bioprocess software sensors
    • Bogaerts P., Wouwer A.V. Parameter identification for state estimation: application to bioprocess software sensors. Chem. Eng. Sci. 2004, 59:2465-2476.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2465-2476
    • Bogaerts, P.1    Wouwer, A.V.2
  • 5
    • 80051900780 scopus 로고    scopus 로고
    • Design and validation of an innovative soft-sensor for pharmaceuticals freeze-drying monitoring
    • Bosca S., Fissore D. Design and validation of an innovative soft-sensor for pharmaceuticals freeze-drying monitoring. Chem. Eng. Sci. 2011, 66:5127-5136.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 5127-5136
    • Bosca, S.1    Fissore, D.2
  • 6
    • 0027561446 scopus 로고
    • Plant-wide industrial process control problem
    • Downs J.J., Vogel E.F. Plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 7
    • 11144267998 scopus 로고    scopus 로고
    • Neural network-based software sensor: training set design and application to a continuous pulp digester
    • Dufour P., Bhartiya S., Dhurjati P.S., Doyle F.J. Neural network-based software sensor: training set design and application to a continuous pulp digester. Control Eng. Pract. 2005, 13:135-143.
    • (2005) Control Eng. Pract. , vol.13 , pp. 135-143
    • Dufour, P.1    Bhartiya, S.2    Dhurjati, P.S.3    Doyle, F.J.4
  • 10
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J. 2009, 55:1754-1765.
    • (2009) AIChE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 11
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga J.C.B., Meleiro L.A.C., Kiang C., Filho R.M. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput. Chem. Eng. 2009, 33:43-49.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    Filho, R.M.4
  • 12
    • 67349089877 scopus 로고    scopus 로고
    • Data driven soft sensor in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data driven soft sensor in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 13
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J. 2009, 55:87-98.
    • (2009) AIChE J. , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 14
    • 57249097849 scopus 로고    scopus 로고
    • Dealing with irregular data in soft sensors: Bayesian method and comparative study
    • Khartibisepehr S., Huang B. Dealing with irregular data in soft sensors: Bayesian method and comparative study. Ind. Eng. Chem. Res. 2008, 47:8713-8723.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 8713-8723
    • Khartibisepehr, S.1    Huang, B.2
  • 16
    • 77952369152 scopus 로고    scopus 로고
    • Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach
    • Pan T.-H., Wong D.S., Jang S.-S. Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach. Ind. Eng. Chem. Res. 2010, 49:4738-4747.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 4738-4747
    • Pan, T.-H.1    Wong, D.S.2    Jang, S.-S.3
  • 17
    • 0036804970 scopus 로고    scopus 로고
    • Multivariate statistics for process control
    • Piovoso M.J., Hoo K.A. Multivariate statistics for process control. IEEE Control Syst. Mag. 2002, 22:8-9.
    • (2002) IEEE Control Syst. Mag. , vol.22 , pp. 8-9
    • Piovoso, M.J.1    Hoo, K.A.2
  • 18
    • 77954622444 scopus 로고    scopus 로고
    • Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor
    • Prata D.M., Schwaab M., Lima E.L., Pinto J.C. Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor. Chem. Eng. Sci. 2010, 65:4943-4954.
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 4943-4954
    • Prata, D.M.1    Schwaab, M.2    Lima, E.L.3    Pinto, J.C.4
  • 19
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin S.J. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22:503-514.
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 21
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman challenge process
    • Ricker N.L. Decentralized control of the Tennessee Eastman challenge process. J. Process Control 1996, 6:205-221.
    • (1996) J. Process Control , vol.6 , pp. 205-221
    • Ricker, N.L.1
  • 22
    • 33746991704 scopus 로고    scopus 로고
    • Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based softsensor for a LDPE plant
    • Sharmin R., Sundararaj U., Shah S., Griend L.V., Sun Y.-J. Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based softsensor for a LDPE plant. Chem. Eng. Sci. 2006, 61:6372-6384.
    • (2006) Chem. Eng. Sci. , vol.61 , pp. 6372-6384
    • Sharmin, R.1    Sundararaj, U.2    Shah, S.3    Griend, L.V.4    Sun, Y.-J.5
  • 23
    • 0141566609 scopus 로고    scopus 로고
    • Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis
    • Ündey C., Ertunç S., Çinar A. Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis. Ind. Eng. Chem. Res. 2003, 42:4645-4658.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 4645-4658
    • Ündey, C.1    Ertunç, S.2    Çinar, A.3
  • 24
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W., Shao H., Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 2004, 28:1489-1498.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 25
    • 84865642748 scopus 로고    scopus 로고
    • An overview of mixture models
    • Young D.S. An overview of mixture models. Stat. Surv. 2008, 0:1-24.
    • (2008) Stat. Surv. , vol.0 , pp. 1-24
    • Young, D.S.1
  • 26
    • 79958703777 scopus 로고    scopus 로고
    • Localized Fisher discriminant analysis based complex process monitoring
    • Yu J. Localized Fisher discriminant analysis based complex process monitoring. AIChE J. 2011, 57:1817-1828.
    • (2011) AIChE J. , vol.57 , pp. 1817-1828
    • Yu, J.1
  • 27
    • 79952591121 scopus 로고    scopus 로고
    • Nonlinear bioprocess monitoring based multiway kernel localized Fisher discriminant analysis
    • Yu J. Nonlinear bioprocess monitoring based multiway kernel localized Fisher discriminant analysis. Ind. Eng. Chem. Res. 2011, 50:3390-3402.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 3390-3402
    • Yu, J.1
  • 28
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
    • (2012) Comput. Chem. Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 29
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • Yu J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chem. Eng. Sci. 2012, 68:506-519.
    • (2012) Chem. Eng. Sci. , vol.68 , pp. 506-519
    • Yu, J.1
  • 30
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008, 54:1811-1829.
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 31
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • Yu J., Qin S.J. Multiway Gaussian mixture model based multiphase batch process monitoring. Ind. Eng. Chem. Res. 2009, 48:8585-8594.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 32
    • 70749091622 scopus 로고    scopus 로고
    • Variance component analysis based fault diagnosis of multi-layer overlay lithography processes
    • Yu J., Qin S.J. Variance component analysis based fault diagnosis of multi-layer overlay lithography processes. IIE Trans. 2009, 41:764-775.
    • (2009) IIE Trans. , vol.41 , pp. 764-775
    • Yu, J.1    Qin, S.J.2
  • 33
    • 40449133038 scopus 로고    scopus 로고
    • Nonlinear multivariate quality estimation and prediction based on kernel partial least squares
    • Zhang X., Yan W., Shao H. Nonlinear multivariate quality estimation and prediction based on kernel partial least squares. Ind. Eng. Chem. Res. 2008, 47:1120-1131.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 1120-1131
    • Zhang, X.1    Yan, W.2    Shao, H.3
  • 34
    • 78149468553 scopus 로고    scopus 로고
    • Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
    • Zhang Y., Ma C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS. Chem. Eng. Sci. 2011, 66:64-72.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 64-72
    • Zhang, Y.1    Ma, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.