메뉴 건너뛰기




Volumn 93, Issue , 2013, Pages 96-109

A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty

Author keywords

Bayesian model averaging; Between phase transient dynamics; Multi kernel Gaussian process regression; Multiphase batch process; Nonlinear state estimation; Quality prediction

Indexed keywords

BATCH DATA PROCESSING; BAYESIAN NETWORKS; FORECASTING; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); REGRESSION ANALYSIS; STATE ESTIMATION;

EID: 84874515333     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2013.01.058     Document Type: Article
Times cited : (47)

References (50)
  • 3
    • 2442438931 scopus 로고    scopus 로고
    • Parameter identification for state estimation-application to bioprocess software sensors
    • Bogaerts P., Wouwer A.V. Parameter identification for state estimation-application to bioprocess software sensors. Chem. Eng. Sci. 2004, 59:2465-2476.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2465-2476
    • Bogaerts, P.1    Wouwer, A.V.2
  • 4
    • 84855467562 scopus 로고    scopus 로고
    • Morphology evolution of crystal populations. modeling and observation analysis
    • Borchert C., Sundmacher K. Morphology evolution of crystal populations. modeling and observation analysis. Chem. Eng. Sci. 2012, 70:87-98.
    • (2012) Chem. Eng. Sci. , vol.70 , pp. 87-98
    • Borchert, C.1    Sundmacher, K.2
  • 5
    • 80051900780 scopus 로고    scopus 로고
    • Design and validation of an innovative soft-sensor for pharmaceuticals freeze-drying monitoring
    • Bosca S., Fissore D. Design and validation of an innovative soft-sensor for pharmaceuticals freeze-drying monitoring. Chem. Eng. Sci. 2011, 66:5127-5136.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 5127-5136
    • Bosca, S.1    Fissore, D.2
  • 6
    • 80052809967 scopus 로고    scopus 로고
    • Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes
    • Chen K., Ji J., Wang H., Liu Y., Song Z. Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes. Chem. Eng. Res. Des. 2011, 89:2117-2124.
    • (2011) Chem. Eng. Res. Des. , vol.89 , pp. 2117-2124
    • Chen, K.1    Ji, J.2    Wang, H.3    Liu, Y.4    Song, Z.5
  • 7
    • 34247508683 scopus 로고    scopus 로고
    • Gaussian process regression for multivariate spectroscopic calibration
    • Chen T., Morris J., Martin E. Gaussian process regression for multivariate spectroscopic calibration. Chemometrics Intell. Lab. Syst. 2007, 87:59-71.
    • (2007) Chemometrics Intell. Lab. Syst. , vol.87 , pp. 59-71
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 9
    • 60649090799 scopus 로고    scopus 로고
    • Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
    • Facco P., Doplicher F., Bezzo F., Barolo M. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process. J. Proc. Cont. 2009, 19:520-529.
    • (2009) J. Proc. Cont. , vol.19 , pp. 520-529
    • Facco, P.1    Doplicher, F.2    Bezzo, F.3    Barolo, M.4
  • 10
    • 67949083521 scopus 로고    scopus 로고
    • Comparison of soft-sensor design methods for industrial plants using small data sets
    • Fortuna L., Graziani S., Xibilia M.G. Comparison of soft-sensor design methods for industrial plants using small data sets. IEEE Trans. Instrum. Meas. 2009, 58:2444-2451.
    • (2009) IEEE Trans. Instrum. Meas. , vol.58 , pp. 2444-2451
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3
  • 11
    • 84857190023 scopus 로고    scopus 로고
    • Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design
    • Fujiwara K., Kano M., Hasebe S. Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design. Control Eng. Practice 2012, 20:371-378.
    • (2012) Control Eng. Practice , vol.20 , pp. 371-378
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 12
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J. 2009, 55:1754-1765.
    • (2009) AIChE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 13
    • 84861963447 scopus 로고    scopus 로고
    • Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control
    • Galicia H.J., He Q.P., Wang J. Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control. Control Eng. Practice 2012, 20:747-760.
    • (2012) Control Eng. Practice , vol.20 , pp. 747-760
    • Galicia, H.J.1    He, Q.P.2    Wang, J.3
  • 14
    • 79959795433 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of an industrial SBR process, soft-sensor for production and rubber quality
    • Godoy J.L., Minari R.J., Vega J.R., Marchetti J.L. Multivariate statistical monitoring of an industrial SBR process, soft-sensor for production and rubber quality. Chemometrics Intell. Lab. Syst. 2011, 107:258-268.
    • (2011) Chemometrics Intell. Lab. Syst. , vol.107 , pp. 258-268
    • Godoy, J.L.1    Minari, R.J.2    Vega, J.R.3    Marchetti, J.L.4
  • 15
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga J.C.B., Meleiro L.A.C., Kiang C., Maciel Filho R. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput. Chem. Eng. 2009, 33:43-49.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    Maciel Filho, R.4
  • 17
    • 0024878952 scopus 로고
    • In: International Joint Conference on Neural Networks, San Diego, CA, USA
    • Hecht-Nielsen, R., 1989. Theory of the backpropagation neural network. In: International Joint Conference on Neural Networks, vol. 1. San Diego, CA, USA, pp. 593-605.
    • (1989) Theory of the backpropagation neural network , vol.1 , pp. 593-605
    • Hecht-Nielsen, R.1
  • 19
    • 0442280866 scopus 로고    scopus 로고
    • Optimal control of product quality for batch nylon-6,6 autoclaves
    • Joly M., Pinto J.M. Optimal control of product quality for batch nylon-6,6 autoclaves. Chem. Eng. J. 2004, 97:87-101.
    • (2004) Chem. Eng. J. , vol.97 , pp. 87-101
    • Joly, M.1    Pinto, J.M.2
  • 20
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 21
    • 44649122952 scopus 로고    scopus 로고
    • Applying the unscented Kalman filter for nonlinear state estimation
    • Kandepu R., Foss B., Imsland L. Applying the unscented Kalman filter for nonlinear state estimation. J. Proc. Cont. 2008, 18:753-768.
    • (2008) J. Proc. Cont. , vol.18 , pp. 753-768
    • Kandepu, R.1    Foss, B.2    Imsland, L.3
  • 22
    • 79955476246 scopus 로고    scopus 로고
    • Novel soft sensor method for detecting completion of transition in industrial polymer processes
    • Kaneko H., Arakawa M., Funatsu K. Novel soft sensor method for detecting completion of transition in industrial polymer processes. Comput. Chem. Eng. 2011, 35:1135-1142.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1135-1142
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 23
    • 0032045464 scopus 로고    scopus 로고
    • Synchronization of batch trajectories using dynamic time warping
    • Kassidas A., MacGregor J.F., Taylor P.A. Synchronization of batch trajectories using dynamic time warping. AIChE J. 1998, 44:864-875.
    • (1998) AIChE J. , vol.44 , pp. 864-875
    • Kassidas, A.1    MacGregor, J.F.2    Taylor, P.A.3
  • 24
    • 57249097849 scopus 로고    scopus 로고
    • Dealing with irregular data in soft sensors. Bayesian method and comparative study
    • Khartibisepehr S., Huang B. Dealing with irregular data in soft sensors. Bayesian method and comparative study. Ind. Eng. Chem. Res. 2008, 47:8713-8723.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 8713-8723
    • Khartibisepehr, S.1    Huang, B.2
  • 25
    • 0001464112 scopus 로고
    • State estimation for semi-batch polymerization reactors
    • Kozub D.J., MacGregor J.F. State estimation for semi-batch polymerization reactors. Chem. Eng. Sci. 1992, 47:1047-1062.
    • (1992) Chem. Eng. Sci. , vol.47 , pp. 1047-1062
    • Kozub, D.J.1    MacGregor, J.F.2
  • 26
    • 33845659986 scopus 로고    scopus 로고
    • Predictive control of a gas-liquid separation plant based on a Gaussian process model
    • Likar B., Kocijan J. Predictive control of a gas-liquid separation plant based on a Gaussian process model. Comput. Chem. Eng. 2007, 31:142-152.
    • (2007) Comput. Chem. Eng. , vol.31 , pp. 142-152
    • Likar, B.1    Kocijan, J.2
  • 27
    • 84855460598 scopus 로고    scopus 로고
    • Use of a Kalman filter to reconstruct particle size distributions from FBRM measurements
    • Mangold M. Use of a Kalman filter to reconstruct particle size distributions from FBRM measurements. Chem. Eng. Sci. 2012, 70:99-108.
    • (2012) Chem. Eng. Sci. , vol.70 , pp. 99-108
    • Mangold, M.1
  • 28
    • 0348225037 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of uncertain model predictions
    • Neuman S.P. Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch. Environ. Res. Risk. Assess. 2003, 17:291-305.
    • (2003) Stoch. Environ. Res. Risk. Assess. , vol.17 , pp. 291-305
    • Neuman, S.P.1
  • 29
    • 67549113661 scopus 로고    scopus 로고
    • A framework for multiple kernel support vector regression and its applications to sirna efficacy prediction
    • Qiu S., Lane T. A framework for multiple kernel support vector regression and its applications to sirna efficacy prediction. IEEE/ACM Trans. Comput. Biol. Bioinf. 2009, 6:190-199.
    • (2009) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.6 , pp. 190-199
    • Qiu, S.1    Lane, T.2
  • 30
    • 0031506560 scopus 로고    scopus 로고
    • Bayesian model averaging for linear regression models
    • Raftery A.E., Madigan D., Hoeting J.A. Bayesian model averaging for linear regression models. J. Am. Stat. Assoc. 1997, 92:179-191.
    • (1997) J. Am. Stat. Assoc. , vol.92 , pp. 179-191
    • Raftery, A.E.1    Madigan, D.2    Hoeting, J.A.3
  • 32
    • 0030471518 scopus 로고    scopus 로고
    • Software sensor based control of exothermic batch reactors
    • Régnier N., Defaye G., Caralp L., Vidal C. Software sensor based control of exothermic batch reactors. Chem. Eng. Sci. 1996, 51:5125-5136.
    • (1996) Chem. Eng. Sci. , vol.51 , pp. 5125-5136
    • Régnier, N.1    Defaye, G.2    Caralp, L.3    Vidal, C.4
  • 34
    • 33746991704 scopus 로고    scopus 로고
    • Inferential sensors for estimation of polymer quality parameters. industrial application of a PLS-based soft sensor for a LDPE plant
    • Sharmin R., Sundararaj U., Shah S., Griend L.V., Sun Y. Inferential sensors for estimation of polymer quality parameters. industrial application of a PLS-based soft sensor for a LDPE plant. Chem. Eng. Sci. 2006, 61:6372-6384.
    • (2006) Chem. Eng. Sci. , vol.61 , pp. 6372-6384
    • Sharmin, R.1    Sundararaj, U.2    Shah, S.3    Griend, L.V.4    Sun, Y.5
  • 35
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., Schölkopf B. A tutorial on support vector regression. Stat. Comput. 2004, 14:199-222.
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 36
    • 0030966157 scopus 로고    scopus 로고
    • Nonlinear state-observer design with application to reactors
    • Soroush M. Nonlinear state-observer design with application to reactors. Chem. Eng. Sci. 1997, 52:387-404.
    • (1997) Chem. Eng. Sci. , vol.52 , pp. 387-404
    • Soroush, M.1
  • 37
    • 0035440306 scopus 로고    scopus 로고
    • Shared kernel models for class conditional density estimation
    • Titsias M.K., Likas A.C. Shared kernel models for class conditional density estimation. IEEE Trans. Neural Net. 2001, 12:987-997.
    • (2001) IEEE Trans. Neural Net. , vol.12 , pp. 987-997
    • Titsias, M.K.1    Likas, A.C.2
  • 39
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W., Shao H., Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 2004, 28:1489-1498.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 40
    • 70449094646 scopus 로고    scopus 로고
    • A survey on multistage/multiphase statistical modeling methods for batch processes
    • Yao Y., Gao F. A survey on multistage/multiphase statistical modeling methods for batch processes. Annu. Rev. Control 2009, 33:172-183.
    • (2009) Annu. Rev. Control , vol.33 , pp. 172-183
    • Yao, Y.1    Gao, F.2
  • 41
    • 79958703777 scopus 로고    scopus 로고
    • Localized Fisher discriminant analysis based complex chemical process monitoring
    • Yu J. Localized Fisher discriminant analysis based complex chemical process monitoring. AIChE J. 2011, 57:1817-1828.
    • (2011) AIChE J. , vol.57 , pp. 1817-1828
    • Yu, J.1
  • 42
    • 79952591121 scopus 로고    scopus 로고
    • Nonlinear bioprocess monitoring using multiway kernel localized Fisher discriminant analysis
    • Yu J. Nonlinear bioprocess monitoring using multiway kernel localized Fisher discriminant analysis. Ind. Eng. Chem. Res. 2011, 50:3390-3402.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 3390-3402
    • Yu, J.1
  • 43
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
    • (2012) Comput. Chem. Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 44
    • 84864805251 scopus 로고    scopus 로고
    • Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
    • Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem. Eng. Sci. 2012, 82:22-30.
    • (2012) Chem. Eng. Sci. , vol.82 , pp. 22-30
    • Yu, J.1
  • 45
    • 84862799924 scopus 로고    scopus 로고
    • A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
    • Yu J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis. J. Proc. Cont. 2012, 22:778-788.
    • (2012) J. Proc. Cont. , vol.22 , pp. 778-788
    • Yu, J.1
  • 46
    • 84872871509 scopus 로고    scopus 로고
    • A support vector clustering-based probabilistic method for unsupervised fault detection and classification of complex chemical processes using unlabeled data
    • Yu J. A support vector clustering-based probabilistic method for unsupervised fault detection and classification of complex chemical processes using unlabeled data. AIChE J. 2013, 59:407-419.
    • (2013) AIChE J. , vol.59 , pp. 407-419
    • Yu, J.1
  • 47
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008, 54:1811-1829.
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 48
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • Yu J., Qin S.J. Multiway Gaussian mixture model based multiphase batch process monitoring. Ind. Eng. Chem. Res. 2009, 48:8585-8594.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 49
    • 70749091622 scopus 로고    scopus 로고
    • Variance component analysis based fault diagnosis of multi-layer overlay lithography processes
    • Yu J., Qin S.J. Variance component analysis based fault diagnosis of multi-layer overlay lithography processes. IIE Trans. 2009, 41:764-775.
    • (2009) IIE Trans. , vol.41 , pp. 764-775
    • Yu, J.1    Qin, S.J.2
  • 50
    • 40449133038 scopus 로고    scopus 로고
    • Nonlinear multivariate quality estimation and prediction based on kernel partial least squares
    • Zhang X., Yan W., Shao H. Nonlinear multivariate quality estimation and prediction based on kernel partial least squares. Ind. Eng. Chem. Res. 2008, 47:1120-1131.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 1120-1131
    • Zhang, X.1    Yan, W.2    Shao, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.