메뉴 건너뛰기




Volumn 22, Issue 4-5, 1998, Pages 503-514

Recursive PLS algorithms for adaptive data modeling

Author keywords

Chemical process modeling; Cross validation; Dynamic modeling; Forgetting factors; Partial least squares; Recursive PLS

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; ALGORITHMS; LEAST SQUARES APPROXIMATIONS; MATHEMATICAL MODELS; NONLINEAR CONTROL SYSTEMS; ONLINE SYSTEMS; RECURSIVE FUNCTIONS; REGRESSION ANALYSIS;

EID: 0032044750     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0098-1354(97)00262-7     Document Type: Article
Times cited : (605)

References (25)
  • 1
    • 0031168001 scopus 로고    scopus 로고
    • Recursive exponentially weighted PLS and its applications to adaptive control and prediction
    • Dayal, B. S. and MacGregor, J. F. (1997) Recursive exponentially weighted PLS and its applications to adaptive control and prediction. J. Process Control 7(3), 169-179.
    • (1997) J. Process Control , vol.7 , Issue.3 , pp. 169-179
    • Dayal, B.S.1    MacGregor, J.F.2
  • 2
    • 0039687285 scopus 로고
    • NNPPSS: Neural network based on PCR and PLS components nonlinearized by smoothers and splines
    • Paper presented
    • Frank, I. E. (1994) NNPPSS: neural network based on PCR and PLS components nonlinearized by smoothers and splines. Paper presented at InCINC'94.
    • (1994) InCINC'94.
    • Frank, I.E.1
  • 3
    • 0023961004 scopus 로고
    • Partial least-squares quantitative analysis of infrared spectroscopic data. Part I: Algorithm implementation; Part II: application to detergent analysis
    • Fuller, M. P., Ritter, G. L. and Draper, C. S. (1988) Partial least-squares quantitative analysis of infrared spectroscopic data. Part I: algorithm implementation; Part II: application to detergent analysis. Appl. Spectrosc. 42, 217-236.
    • (1988) Appl. Spectrosc. , vol.42 , pp. 217-236
    • Fuller, M.P.1    Ritter, G.L.2    Draper, C.S.3
  • 4
    • 11144325691 scopus 로고
    • Partial leastsquares regression: A tutorial
    • Geladi, P. and Kowalski, B. R. (1986) Partial leastsquares regression: a tutorial. Anal. Chim. Acta 185, 1-17.
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 5
    • 0024034712 scopus 로고
    • Partial least squares methods for spectral analysis: 1. Relation to other quantitative calibration methods and the extraction of qualitative information. 2. Application to simulated and glass spectral data
    • Haaland, D. M. and Thomas, E. V. (1988) Partial least squares methods for spectral analysis: 1. Relation to other quantitative calibration methods and the extraction of qualitative information. 2. Application to simulated and glass spectral data. Anal. Chem, 60, 1193-1208.
    • (1988) Anal. Chem , vol.60 , pp. 1193-1208
    • Haaland, D.M.1    Thomas, E.V.2
  • 8
    • 85162676194 scopus 로고
    • PLS regression methods
    • Hǒskuldsson, A. (1988) PLS regression methods. J. Chemometrics 2, 211-228.
    • (1988) J. Chemometrics , vol.2 , pp. 211-228
    • Hǒskuldsson, A.1
  • 9
    • 0027675844 scopus 로고
    • Partial least squares modeling as successive singular value decompositions
    • Kaspar, M. and Ray, W. H. (1993) Partial least squares modeling as successive singular value decompositions. Computers Chem. Engng 17, 985-989.
    • (1993) Computers Chem. Engng , vol.17 , pp. 985-989
    • Kaspar, M.1    Ray, W.H.2
  • 10
    • 0042292781 scopus 로고
    • Partial least squares method for spectrofluorimetric analysis of mixtures of humic and ligninsulfonate
    • Lindberg, W., Persson, J. and Wold, S. (1983) Partial least squares method for spectrofluorimetric analysis of mixtures of humic and ligninsulfonate. Anal. Chem. 55, 643-648.
    • (1983) Anal. Chem. , vol.55 , pp. 643-648
    • Lindberg, W.1    Persson, J.2    Wold, S.3
  • 14
    • 0026962373 scopus 로고
    • On the detection of multiple sensor abnormalities in multivariate processes
    • Chicago, IL
    • Negiz, A. and Cinar, A. (1992) On the detection of multiple sensor abnormalities in multivariate processes In Proc. of ACC, Chicago, IL.
    • (1992) Proc. of ACC
    • Negiz, A.1    Cinar, A.2
  • 15
    • 0029252734 scopus 로고
    • Multi-way partial least squares in monitoring batch processes
    • Nomikos, P. and MacGregor, J. (1995) Multi-way partial least squares in monitoring batch processes. Technometrics 37, 41-51.
    • (1995) Technometrics , vol.37 , pp. 41-51
    • Nomikos, P.1    MacGregor, J.2
  • 16
    • 11744294538 scopus 로고
    • Identification of discrete convolution models for nonlinear processes
    • Paper 125b, Miami, 1-6 Nov
    • Pearson, R. K., Ogunnaike, B. A. and Doyle, F. J. (1992)Identification of discrete convolution models for nonlinear processes, AIChE Annual Meeting, Paper 125b, Miami, 1-6 Nov.
    • (1992) AIChE Annual Meeting
    • Pearson, R.K.1    Ogunnaike, B.A.2    Doyle, F.J.3
  • 17
    • 0006559134 scopus 로고
    • Sensor data analysis using artificial neural networks
    • eds. Y. Arkun and W. H. Ray Padre Island, TX
    • Piovoso, M. and Owens, A. J. (1991) Sensor data analysis using artificial neural networks. In Proc. Chemical Process Control (CPC-IV). eds. Y. Arkun and W. H. Ray Padre Island, TX, 101-118.
    • (1991) Proc. Chemical Process Control (CPC-IV). , pp. 101-118
    • Piovoso, M.1    Owens, A.J.2
  • 18
    • 0039462001 scopus 로고
    • A recursive PLS algorithm for system identification
    • November 7-12, St. Louis
    • Qin, S. J. (1993) A recursive PLS algorithm for system identification, AIChE Annual Meeting, November 7-12, St. Louis.
    • (1993) AIChE Annual Meeting
    • Qin, S.J.1
  • 19
    • 0026853320 scopus 로고
    • Nonlinear PLS modeling using neural networks
    • Qin, S. J. and McAvoy, T. J. (1992) Nonlinear PLS modeling using neural networks. Computers Chem. Engng 16(4), 379-391.
    • (1992) Computers Chem. Engng , vol.16 , Issue.4 , pp. 379-391
    • Qin, S.J.1    McAvoy, T.J.2
  • 20
    • 0030083996 scopus 로고    scopus 로고
    • Building nonlinear FIR models via a neural net PLS approach
    • Qin, S. J. and McAvoy, T. J. (1996) Building nonlinear FIR models via a neural net PLS approach. Computers Chem. Engng 20, 147-159.
    • (1996) Computers Chem. Engng , vol.20 , pp. 147-159
    • Qin, S.J.1    McAvoy, T.J.2
  • 21
    • 0023952731 scopus 로고
    • Use of biased least-squares estimators for parameters in descrete-time pulseresponse models
    • Ricker, N. L. (1988) Use of biased least-squares estimators for parameters in descrete-time pulseresponse models. Ind. Engng Chem. Res. 27(2), 343-350.
    • (1988) Ind. Engng Chem. Res. , vol.27 , Issue.2 , pp. 343-350
    • Ricker, N.L.1
  • 22
    • 33645421499 scopus 로고
    • The effect of biased regression on the identification of FIR and ARX models
    • Chicago, IL, November
    • Wise, B. M. and Ricker, N. L. (1990) The effect of biased regression on the identification of FIR and ARX models, AIChE Annual Meeting, Chicago, IL, November.
    • (1990) AIChE Annual Meeting
    • Wise, B.M.1    Ricker, N.L.2
  • 23
    • 0003000612 scopus 로고    scopus 로고
    • Nonlinear estimation by iterative least squares procedures
    • ed. F. David. Wiley, New York
    • Wold, H. (1996) Nonlinear estimation by iterative least squares procedures. In Research Papers in Statistics, ed. F. David. Wiley, New York.
    • (1996) Research Papers in Statistics
    • Wold, H.1
  • 24
    • 0001681052 scopus 로고
    • The collinearity problem in linear regression, the partial least squares (PLS) approach to generalized inverses
    • Wold, S., Ruke, A., Wold, H. and Dunn III, W. J. (1984) The collinearity problem in linear regression, the partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Computs. 5(3), 735-743.
    • (1984) SIAM J. Sci. Stat. Computs. , vol.5 , Issue.3 , pp. 735-743
    • Wold, S.1    Ruke, A.2    Wold, H.3    Dunn III, W.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.