메뉴 건너뛰기




Volumn 54, Issue 7, 2008, Pages 1811-1829

Multimode process monitoring with bayesian inference-based finite Gaussian mixture models

Author keywords

Bayesian inference; Fault detection; Finite Gaussian mixture model; Global probabilistic index; Mahalanobis distance; Multimode process monitoring; Tennessee Eastman chemical process

Indexed keywords

AMERICAN INSTITUTE OF CHEMICAL ENGINEERS (AICHE); BAYESIAN INFERENCES; COMPLEX INDUSTRIAL PROCESSES; CONTINUOUS STIRRED TANK (CST); EARLY DETECTION; FINITE GAUSSIAN MIXTURE (FGM); FINITE GAUSSIAN MIXTURE (FGM) MODEL; GAUSSIAN; GAUSSIAN COMPONENTS; MONITORING APPROACH; MONITORING TECHNIQUES; MULTI MODES; MULTIPLE COMPONENTS; MULTIVARIATE PROCESSES; OPERATING CONDITIONS; OPERATING DATA; OPERATING MODES; PARTIAL LEAST SQUARES (PLS 1); PCA METHOD; POSTERIOR PROBABILITIES; PRINCIPAL COMPONENT ANALYSIS (PCA); PROCESS DATA; PROCESS KNOWLEDGE; STATISTICAL DISTRIBUTIONS; TENNESSEE EASTMAN CHALLENGE; UNIMODAL;

EID: 47549099484     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.11515     Document Type: Article
Times cited : (506)

References (63)
  • 1
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate SPC methods for process and product monitoring
    • Kourti T, MacGregor JF. Multivariate SPC methods for process and product monitoring. J Qual Technol. 1996;28:409-428.
    • (1996) J Qual Technol , vol.28 , pp. 409-428
    • Kourti, T.1    MacGregor, J.F.2
  • 3
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin SJ. Statistical process monitoring: basics and beyond. J Chemom. 2003;17:480-502.
    • (2003) J Chemom , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 4
    • 35948929058 scopus 로고    scopus 로고
    • Simultaneous fault diagnosis in chemical plants using a multilabel approach
    • Yélamos I, Graells M, Puigjaner L, Escudero G. Simultaneous fault diagnosis in chemical plants using a multilabel approach. AIChE J. 2007;53:2871-2884.
    • (2007) AIChE J , vol.53 , pp. 2871-2884
    • Yélamos, I.1    Graells, M.2    Puigjaner, L.3    Escudero, G.4
  • 5
    • 0037332708 scopus 로고    scopus 로고
    • A practical approach for large-scale controller performance assessment, diagnosis, and improvement
    • Paulonis MA, Cox JW. A practical approach for large-scale controller performance assessment, diagnosis, and improvement. J Process Control. 2003;13:155-168.
    • (2003) J Process Control , vol.13 , pp. 155-168
    • Paulonis, M.A.1    Cox, J.W.2
  • 6
    • 33846781222 scopus 로고    scopus 로고
    • Recent developments in multivariable controller performance monitoring
    • Qin SJ, Yu J. Recent developments in multivariable controller performance monitoring. J Process Control. 2007;17:221-227.
    • (2007) J Process Control , vol.17 , pp. 221-227
    • Qin, S.J.1    Yu, J.2
  • 7
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a pattern matching method for the Tennessee Eastman challenge process
    • Singhal A, Seborg DE. Evaluation of a pattern matching method for the Tennessee Eastman challenge process. J Process Control. 2006;16:601-613.
    • (2006) J Process Control , vol.16 , pp. 601-613
    • Singhal, A.1    Seborg, D.E.2
  • 8
    • 40849111817 scopus 로고    scopus 로고
    • Statistical MIMO controller performance monitoring. II. Performance diagnosis
    • Yu J, Qin SJ. Statistical MIMO controller performance monitoring. II. Performance diagnosis. J Process Control. 2008;18:297-319.
    • (2008) J Process Control , vol.18 , pp. 297-319
    • Yu, J.1    Qin, S.J.2
  • 9
    • 0021468997 scopus 로고
    • Process fault detection based on modeling and estimation methods - a survey
    • Isermann R. Process fault detection based on modeling and estimation methods - a survey. Automatica. 1984;20:387-404.
    • (1984) Automatica , vol.20 , pp. 387-404
    • Isermann, R.1
  • 10
    • 0024016387 scopus 로고
    • Detecting changes in signals and systems - a survey
    • Basseville M. Detecting changes in signals and systems - a survey. Automatica. 1988;24:309-326.
    • (1988) Automatica , vol.24 , pp. 309-326
    • Basseville, M.1
  • 11
    • 0024122587 scopus 로고
    • Survey of model-based failure detection and isolation in complex plants
    • Gertler JJ. Survey of model-based failure detection and isolation in complex plants. IEEE Control Syst Mag. 1988;8:3-11.
    • (1988) IEEE Control Syst Mag , vol.8 , pp. 3-11
    • Gertler, J.J.1
  • 12
    • 0025421966 scopus 로고
    • Fault diagnosis in dynamic systems using analytical and knowledge based redundancy - a survey and some new results
    • Frank PM. Fault diagnosis in dynamic systems using analytical and knowledge based redundancy - a survey and some new results. Automatica. 1990;26:459-474.
    • (1990) Automatica , vol.26 , pp. 459-474
    • Frank, P.M.1
  • 13
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models. I. Using steady state fault signatures
    • Yoon S, MacGregor JF. Fault diagnosis with multivariate statistical models. I. Using steady state fault signatures. J Process Control. 2001;11:387-400.
    • (2001) J Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 14
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor JF, Kourti T. Statistical process control of multivariate processes. Control Eng Pract. 1995;3:403-414.
    • (1995) Control Eng Pract , vol.3 , pp. 403-414
    • MacGregor, J.F.1    Kourti, T.2
  • 16
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • Dunia R, Qin SJ, Edgar TF, McAvoy TJ. Identification of faulty sensors using principal component analysis. AIChE J. 1996;42:2797-2812.
    • (1996) AIChE J , vol.42 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.F.3    McAvoy, T.J.4
  • 17
    • 0030127409 scopus 로고    scopus 로고
    • Statistical process monitoring and disturbance diagnosis in multivariable continuous processes
    • Raich A, Cinar A. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes. AIChE J. 1996; 42:995-1009.
    • (1996) AIChE J , vol.42 , pp. 995-1009
    • Raich, A.1    Cinar, A.2
  • 18
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bakshi BR. Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 1998;44:1596-1610.
    • (1998) AIChE J , vol.44 , pp. 1596-1610
    • Bakshi, B.R.1
  • 19
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin SJ. Recursive PLS algorithms for adaptive data modeling. Comput Chem Eng. 1998;22:503-514.
    • (1998) Comput Chem Eng , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 21
    • 0029342346 scopus 로고
    • Detection of gross errors in data reconciliation by principal component analysis
    • Tong H, Crowe CM. Detection of gross errors in data reconciliation by principal component analysis. AIChE J. 1995;41:1712-1722.
    • (1995) AIChE J , vol.41 , pp. 1712-1722
    • Tong, H.1    Crowe, C.M.2
  • 22
    • 0031208457 scopus 로고    scopus 로고
    • Statistical monitoring of multivariable dynamic processes with state space models
    • Negiz A, Cinar A. Statistical monitoring of multivariable dynamic processes with state space models. AIChE J. 1997;43:2002-2020.
    • (1997) AIChE J , vol.43 , pp. 2002-2020
    • Negiz, A.1    Cinar, A.2
  • 23
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
    • Chiang LH, Russell EL, Braatz RD. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom Intell Lab Syst. 2000;50:243-252.
    • (2000) Chemom Intell Lab Syst , vol.50 , pp. 243-252
    • Chiang, L.H.1    Russell, E.L.2    Braatz, R.D.3
  • 24
    • 0037098685 scopus 로고    scopus 로고
    • Statistical performance monitoring of dynamic multivariate processes using state space modeling
    • Simoglou A, Martin EB, Morris AJ. Statistical performance monitoring of dynamic multivariate processes using state space modeling. Comput Chem Eng. 2002;26:909-920.
    • (2002) Comput Chem Eng , vol.26 , pp. 909-920
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 25
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee JM, Yoo CK, Lee IB. Statistical process monitoring with independent component analysis. J Process Control. 2004;14:467-485.
    • (2004) J Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 26
    • 14644427213 scopus 로고    scopus 로고
    • A new fault diagnosis method using fault directions in Fisher discriminant analysis
    • He QP, Qin SJ, Wang J. A new fault diagnosis method using fault directions in Fisher discriminant analysis. AIChE J. 2005;51:555571.
    • (2005) AIChE J , vol.51 , pp. 555571
    • He, Q.P.1    Qin, S.J.2    Wang, J.3
  • 27
    • 33646191653 scopus 로고    scopus 로고
    • Variable reconstruction and sensor fault identification using canonical variate analysis
    • Lee C, Choi SW, Lee IB. Variable reconstruction and sensor fault identification using canonical variate analysis. J Process Control. 2006;16:747-761.
    • (2006) J Process Control , vol.16 , pp. 747-761
    • Lee, C.1    Choi, S.W.2    Lee, I.B.3
  • 28
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee JM, Qin SJ, Lee IB. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006,52:3501-3514.
    • (2006) AIChE J , vol.52 , pp. 3501-3514
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 29
    • 0026849990 scopus 로고
    • Autoassociative neural networks
    • Kramer MA. Autoassociative neural networks. Comput Chem Eng. 1992;16:313-328.
    • (1992) Comput Chem Eng , vol.16 , pp. 313-328
    • Kramer, M.A.1
  • 30
    • 0029230734 scopus 로고
    • Dynamic process monitoring and fault diagnosis with qualitative models
    • Vinson JM, Ungar LH. Dynamic process monitoring and fault diagnosis with qualitative models. IEEE Trans Syst Man Cybern. 1995;25:181-189.
    • (1995) IEEE Trans Syst Man Cybern , vol.25 , pp. 181-189
    • Vinson, J.M.1    Ungar, L.H.2
  • 31
    • 0034661162 scopus 로고    scopus 로고
    • A fast training neural network and its updation for incipient fault detection and diagnosis
    • Rengaswamy R, Venkatasurbramanian V. A fast training neural network and its updation for incipient fault detection and diagnosis. Comput Chem Eng. 2000;24:431-437.
    • (2000) Comput Chem Eng , vol.24 , pp. 431-437
    • Rengaswamy, R.1    Venkatasurbramanian, V.2
  • 32
    • 0038148305 scopus 로고    scopus 로고
    • Probabilistic model for sensor fault detection and identification
    • Mehranbod N, Soroush M, Piovoso M, Ogunnaike BA. Probabilistic model for sensor fault detection and identification. AIChE J. 2003;49:1787-1802.
    • (2003) AIChE J , vol.49 , pp. 1787-1802
    • Mehranbod, N.1    Soroush, M.2    Piovoso, M.3    Ogunnaike, B.A.4
  • 33
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on Fisher discriminant analysis and support vector machines
    • Chiang L, Kotanchek M, Kordon A. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput Chem Eng. 2004;28:1389-1401.
    • (2004) Comput Chem Eng , vol.28 , pp. 1389-1401
    • Chiang, L.1    Kotanchek, M.2    Kordon, A.3
  • 34
    • 1842509240 scopus 로고    scopus 로고
    • Fault detection and operation mode identification based on pattern classification with variable selection
    • Chu Y, Qin SJ, Han C. Fault detection and operation mode identification based on pattern classification with variable selection. Ind Eng Chem Res. 2004;43:1701-1710.
    • (2004) Ind Eng Chem Res , vol.43 , pp. 1701-1710
    • Chu, Y.1    Qin, S.J.2    Han, C.3
  • 35
  • 36
    • 42949143535 scopus 로고    scopus 로고
    • Fault detection and identification with a new feature selection based on mutual information
    • Verron S, Tiplica T, Kobi A. Fault detection and identification with a new feature selection based on mutual information. J Process Control. 2008;18:479-490.
    • (2008) J Process Control , vol.18 , pp. 479-490
    • Verron, S.1    Tiplica, T.2    Kobi, A.3
  • 37
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • Hwang DH, Han C. Real-time monitoring for a process with multiple operating modes. Control Eng Pract. 1999;7:891-902.
    • (1999) Control Eng Pract , vol.7 , pp. 891-902
    • Hwang, D.H.1    Han, C.2
  • 39
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principal component analysis models
    • Zhao SJ, Zhang J, Xu YM. Monitoring of processes with multiple operating modes through multiple principal component analysis models. Ind Eng Chem Res. 2004;43:7025-7035.
    • (2004) Ind Eng Chem Res , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 40
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of processes with multiple operating modes through multiple PLS models
    • Zhao SJ, Zhang J, Xu YM. Performance monitoring of processes with multiple operating modes through multiple PLS models. J Process Control. 2006;16:763-772.
    • (2006) J Process Control , vol.16 , pp. 763-772
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 41
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • Chen J, Liu J. Mixture principal component analysis models for process monitoring. Ind Eng Chem Res. 1999;38:1478-1488.
    • (1999) Ind Eng Chem Res , vol.38 , pp. 1478-1488
    • Chen, J.1    Liu, J.2
  • 43
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi SW, Park JH, Lee IB. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput Chem Eng. 2004;28:1377-1387.
    • (2004) Comput Chem Eng , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.B.3
  • 44
    • 33947154689 scopus 로고    scopus 로고
    • Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor
    • Yoo CK, Villez K, Lee IB, Rosén C, Vanrolleghem PA. Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor. Biotechnol Bioeng. 2007;96:687-701.
    • (2007) Biotechnol Bioeng , vol.96 , pp. 687-701
    • Yoo, C.K.1    Villez, K.2    Lee, I.B.3    Rosén, C.4    Vanrolleghem, P.A.5
  • 46
    • 0030327833 scopus 로고    scopus 로고
    • Computing and graphing highest density regions
    • Hyndman RJ. Computing and graphing highest density regions. Am Stat. 1996;50:120-126.
    • (1996) Am Stat , vol.50 , pp. 120-126
    • Hyndman, R.J.1
  • 48
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P, MacGregor JF. Multivariate SPC charts for monitoring batch processes. Technometrics. 1995;37:41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 51
    • 33646093001 scopus 로고    scopus 로고
    • Feature representation and discrimination based on Gaussian mixture model probability densities - Practices and algorithms
    • Paalanen P, Kamarainen JK, Ilonen J, Kälviäinen H. Feature representation and discrimination based on Gaussian mixture model probability densities - Practices and algorithms. Pattern Recogn. 2006;39:1346-1358.
    • (2006) Pattern Recogn , vol.39 , pp. 1346-1358
    • Paalanen, P.1    Kamarainen, J.K.2    Ilonen, J.3    Kälviäinen, H.4
  • 52
    • 0029752880 scopus 로고    scopus 로고
    • A self-organizing network for hyperellipsoidal clustering (HEC)
    • Mao J, Jain AK. A self-organizing network for hyperellipsoidal clustering (HEC). IEEE Trans Neural Networks. 1996;7:16-29.
    • (1996) IEEE Trans Neural Networks , vol.7 , pp. 16-29
    • Mao, J.1    Jain, A.K.2
  • 54
    • 0000235653 scopus 로고
    • Some theorems on quadratic forms applied in the study of analysis of variance problems. I. Effect of inequality of variance in the one-way classification
    • Box GEP. Some theorems on quadratic forms applied in the study of analysis of variance problems. I. Effect of inequality of variance in the one-way classification. Ann Math Stat. 1954;25:290-302.
    • (1954) Ann Math Stat , vol.25 , pp. 290-302
    • Box, G.E.P.1
  • 55
    • 40749117689 scopus 로고    scopus 로고
    • A continuous stirred tank heater simulation model with applications
    • Thornhill NF, Patwardhan SC, Shah SL. A continuous stirred tank heater simulation model with applications. J Process Control. 2008;18:347-360.
    • (2008) J Process Control , vol.18 , pp. 347-360
    • Thornhill, N.F.1    Patwardhan, S.C.2    Shah, S.L.3
  • 57
    • 0027561446 scopus 로고
    • Plant-wide industrial process control problem
    • Downs JJ, Vogel EF. Plant-wide industrial process control problem. Comput Chem Eng. 1993;17:245-255.
    • (1993) Comput Chem Eng , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 58
    • 0028431355 scopus 로고
    • Base control for the Tennessee Eastman problem
    • McAvoy TJ, Ye N. Base control for the Tennessee Eastman problem. Comput Chem Eng. 1994;18:383-413.
    • (1994) Comput Chem Eng , vol.18 , pp. 383-413
    • McAvoy, T.J.1    Ye, N.2
  • 59
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • Lyman PR, Georgakis C. Plant-wide control of the Tennessee Eastman problem. Comput Chem Eng. 1995;19:321-331.
    • (1995) Comput Chem Eng , vol.19 , pp. 321-331
    • Lyman, P.R.1    Georgakis, C.2
  • 60
    • 0029378861 scopus 로고
    • Nonlinear model predictive control of the Tennessee Eastman challenge process
    • Ricker NL, Lee JH. Nonlinear model predictive control of the Tennessee Eastman challenge process. Comput Chem Eng. 1995;19:961-981.
    • (1995) Comput Chem Eng , vol.19 , pp. 961-981
    • Ricker, N.L.1    Lee, J.H.2
  • 61
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman challenge process
    • Ricker NL. Decentralized control of the Tennessee Eastman challenge process. J Process Control. 1996;6:205-221.
    • (1996) J Process Control , vol.6 , pp. 205-221
    • Ricker, N.L.1
  • 62
    • 0035980388 scopus 로고    scopus 로고
    • Self-optimizing control of a large scale plant: The Tennessee Eastman process
    • Larsson T, Hestetun K, Hovland E, Skogestad S. Self-optimizing control of a large scale plant: the Tennessee Eastman process. Ind Eng Chem Res. 2001;40:4889-4901.
    • (2001) Ind Eng Chem Res , vol.40 , pp. 4889-4901
    • Larsson, T.1    Hestetun, K.2    Hovland, E.3    Skogestad, S.4
  • 63
    • 47549089776 scopus 로고    scopus 로고
    • Available at:, Accessed on November 22nd, 2007
    • Ricker NL. Tennessee Eastman challenge archive 1999. Available at: http://depts.washington.edu/control/LARRY/TE/download.html. Accessed on November 22nd, 2007.
    • (1999) Eastman challenge archive
    • Tennessee, R.N.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.