메뉴 건너뛰기




Volumn 53, Issue 6, 2014, Pages 1822-1837

Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process

Author keywords

Fed batch fermentation process; Hybrid intelligent control; Process control; Soft sensor; Substrate feeding

Indexed keywords

FEEDING; FERMENTATION; INTELLIGENT CONTROL;

EID: 84919445476     PISSN: 00190578     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isatra.2014.08.015     Document Type: Article
Times cited : (29)

References (73)
  • 2
    • 33747873973 scopus 로고    scopus 로고
    • Bioprocess control: Advances and challenges
    • J.S. Alford Bioprocess control: advances and challenges Comput Chem Eng 30 10 2006 1464 1475
    • (2006) Comput Chem Eng , vol.30 , Issue.10 , pp. 1464-1475
    • Alford, J.S.1
  • 5
    • 0023456013 scopus 로고
    • The control of fed-batch fermentation processes - A survey
    • A. Johnson The control of fed-batch fermentation processes - a survey Automatica 23 6 1987 691 705
    • (1987) Automatica , vol.23 , Issue.6 , pp. 691-705
    • Johnson, A.1
  • 7
    • 0032818074 scopus 로고    scopus 로고
    • Control of fermenters - A review
    • K.Y. Rani, and V.R. Rao Control of fermenters - a review Bioprocess Eng 21 1 1999 77 88
    • (1999) Bioprocess Eng , vol.21 , Issue.1 , pp. 77-88
    • Rani, K.Y.1    Rao, V.R.2
  • 8
    • 0029346778 scopus 로고
    • Optimal adaptive control of fed-batch fermentation processes
    • J. Van Impe, and G. Bastin Optimal adaptive control of fed-batch fermentation processes Control Eng Pract 3 7 1995 939 954
    • (1995) Control Eng Pract , vol.3 , Issue.7 , pp. 939-954
    • Van Impe, J.1    Bastin, G.2
  • 9
    • 77955925494 scopus 로고    scopus 로고
    • The fed-batch production of a thermophilic 2-deoxyribose-5-phosphate aldolase (DERA) in Escherichia coli by exponential feeding strategy control
    • X. Pei, Q. Wang, X. Qiu, L. Ying, J. Tao, and T. Xie The fed-batch production of a thermophilic 2-deoxyribose-5-phosphate aldolase (DERA) in Escherichia coli by exponential feeding strategy control Appl Biochem Biotechnol 162 5 2010 1423 1434
    • (2010) Appl Biochem Biotechnol , vol.162 , Issue.5 , pp. 1423-1434
    • Pei, X.1    Wang, Q.2    Qiu, X.3    Ying, L.4    Tao, J.5    Xie, T.6
  • 10
    • 0025127630 scopus 로고
    • Phenomenological background and some preliminary trials of automated substrate supply in pH-stat modal fed-batch culture using a set-point of high limit
    • T. Suzuki, T. Yamane, and S. Shimizu Phenomenological background and some preliminary trials of automated substrate supply in pH-stat modal fed-batch culture using a set-point of high limit J Ferment Bioeng 69 1990 292 297
    • (1990) J Ferment Bioeng , vol.69 , pp. 292-297
    • Suzuki, T.1    Yamane, T.2    Shimizu, S.3
  • 11
    • 0000658485 scopus 로고
    • High cell density culture of E coli in a fed-batch system with dissolved oxygen as substrate feed indicator
    • J.M. Cutayar, and D. Poillon High cell density culture of E. coli in a fed-batch system with dissolved oxygen as substrate feed indicator Biotechnol Lett 11 1989 155 160
    • (1989) Biotechnol Lett , vol.11 , pp. 155-160
    • Cutayar, J.M.1    Poillon, D.2
  • 12
    • 2442704008 scopus 로고    scopus 로고
    • High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat
    • B.S. Kim, S.C. Lee, S.Y. Lee, Y.K. Chang, and H.N. Chang High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat Bioprocess Biosyst Eng 26 3 2004 147 150
    • (2004) Bioprocess Biosyst Eng , vol.26 , Issue.3 , pp. 147-150
    • Kim, B.S.1    Lee, S.C.2    Lee, S.Y.3    Chang, Y.K.4    Chang, H.N.5
  • 13
    • 52049094633 scopus 로고    scopus 로고
    • A simple substrate feeding strategy using a pH control trigger in fed-batch fermentation
    • T.E. Ting, G.J. Thoma, R.R. Beitle Jr, R.K. Davis, R. Perkins, and K. Karim A simple substrate feeding strategy using a pH control trigger in fed-batch fermentation Appl Biochem Biotechnol 149 1 2008 89 98
    • (2008) Appl Biochem Biotechnol , vol.149 , Issue.1 , pp. 89-98
    • Ting, T.E.1    Thoma, G.J.2    Beitle, R.R.3    Davis, R.K.4    Perkins, R.5    Karim, K.6
  • 14
    • 0034924502 scopus 로고    scopus 로고
    • Development of a novel method for feeding a mixture of l-lactic acid and acetic acid in fed-batch culture of Ralstonia eutropha for poly-d-3-hydroxybutyrate production
    • T. Tsuge, K. Tanaka, and A. Ishizaki Development of a novel method for feeding a mixture of l-lactic acid and acetic acid in fed-batch culture of Ralstonia eutropha for poly-d-3-hydroxybutyrate production J Bioscience Bioeng 91 6 2001 545 550
    • (2001) J Bioscience Bioeng , vol.91 , Issue.6 , pp. 545-550
    • Tsuge, T.1    Tanaka, K.2    Ishizaki, A.3
  • 15
    • 84875751717 scopus 로고    scopus 로고
    • Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of l-tryptophan by Escherichia coli
    • L.-K. Cheng, J. Wang, Q.-Y. Xu, C.-G. Zhao, Z.-Q. Shen, and X.-X. Xie Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of l-tryptophan by Escherichia coli World J Microbiol Biotechnol 29 5 2013 883 890
    • (2013) World J Microbiol Biotechnol , vol.29 , Issue.5 , pp. 883-890
    • Cheng, L.-K.1    Wang, J.2    Xu, Q.-Y.3    Zhao, C.-G.4    Shen, Z.-Q.5    Xie, X.-X.6
  • 16
    • 78649661297 scopus 로고    scopus 로고
    • Improvement of l-lactic acid production under glucose feedback controlled culture by Lactobacillus rhamnosus
    • Z. Li, J. Lu, L. Zhao, K. Xiao, and T. Tan Improvement of l-lactic acid production under glucose feedback controlled culture by Lactobacillus rhamnosus Appl Biochem Biotechnol 162 6 2010 1762 1767
    • (2010) Appl Biochem Biotechnol , vol.162 , Issue.6 , pp. 1762-1767
    • Li, Z.1    Lu, J.2    Zhao, L.3    Xiao, K.4    Tan, T.5
  • 17
    • 78149470895 scopus 로고    scopus 로고
    • Application of a pH feedback-controlled substrate feeding method in lactic acid production
    • Y. Zhang, W. Cong, and S. Shi Application of a pH feedback-controlled substrate feeding method in lactic acid production Appl Biochem Biotechnol 162 8 2010 2149 2156
    • (2010) Appl Biochem Biotechnol , vol.162 , Issue.8 , pp. 2149-2156
    • Zhang, Y.1    Cong, W.2    Shi, S.3
  • 18
    • 33645127855 scopus 로고    scopus 로고
    • Modelling, on-line state estimation and fuzzy control of production scale fed-batch bakers yeast fermentation
    • C. Karakuzu, M. Türker, and S. Öztürk Modelling, on-line state estimation and fuzzy control of production scale fed-batch bakers yeast fermentation Control Eng Pract 14 8 2006 959 974
    • (2006) Control Eng Pract , vol.14 , Issue.8 , pp. 959-974
    • Karakuzu, C.1    Türker, M.2    Öztürk, S.3
  • 19
    • 53949093475 scopus 로고    scopus 로고
    • Modelling and nonlinear predictive control of a yeast fermentation biochemical reactor using neural networks
    • M. Ławryńczuk Modelling and nonlinear predictive control of a yeast fermentation biochemical reactor using neural networks Chem Eng J 145 2 2008 290 307
    • (2008) Chem Eng J , vol.145 , Issue.2 , pp. 290-307
    • Ławryńczuk, M.1
  • 20
    • 62949112565 scopus 로고    scopus 로고
    • Efficient nonlinear predictive control of a biochemical reactor using neural models
    • M. Ławryńczuk Efficient nonlinear predictive control of a biochemical reactor using neural models Bioprocess Biosyst Eng 32 3 2009 301 312
    • (2009) Bioprocess Biosyst Eng , vol.32 , Issue.3 , pp. 301-312
    • Ławryńczuk, M.1
  • 21
    • 69149111436 scopus 로고    scopus 로고
    • Efficient nonlinear predictive control based on structured neural models
    • M. Ławryńczuk Efficient nonlinear predictive control based on structured neural models Int J Appl Math Comput Sci 19 2 2009 233 246
    • (2009) Int J Appl Math Comput Sci , vol.19 , Issue.2 , pp. 233-246
    • Ławryńczuk, M.1
  • 23
    • 0034790066 scopus 로고    scopus 로고
    • Multipulse feed strategy for glycerol fed-batch fermentation
    • D. Xie, D. Liu, H. Zhu, and T. Liu Multipulse feed strategy for glycerol fed-batch fermentation Appl Biochem Biotechnol 95 2 2001 103 112
    • (2001) Appl Biochem Biotechnol , vol.95 , Issue.2 , pp. 103-112
    • Xie, D.1    Liu, D.2    Zhu, H.3    Liu, T.4
  • 24
    • 0041802770 scopus 로고    scopus 로고
    • A survey of industrial model predictive control technology
    • S.J. Qin, and T.A. Badgwell A survey of industrial model predictive control technology Control Eng Pract 11 7 2003 733 764
    • (2003) Control Eng Pract , vol.11 , Issue.7 , pp. 733-764
    • Qin, S.J.1    Badgwell, T.A.2
  • 25
    • 84892439707 scopus 로고    scopus 로고
    • Economic model predictive control with time-varying objective function for nonlinear process systems
    • M. Ellis, and P.D. Christofides Economic model predictive control with time-varying objective function for nonlinear process systems AIChE J 60 2 2014 507 519
    • (2014) AIChE J , vol.60 , Issue.2 , pp. 507-519
    • Ellis, M.1    Christofides, P.D.2
  • 26
    • 84901239722 scopus 로고    scopus 로고
    • Assessment of control techniques for the dynamic optimization of (semi-) batch reactors
    • E. Pahija, F. Manenti, I.M. Mujtaba, and F. Rossi Assessment of control techniques for the dynamic optimization of (semi-) batch reactors Comput Chem Eng 66 2014 269 275
    • (2014) Comput Chem Eng , vol.66 , pp. 269-275
    • Pahija, E.1    Manenti, F.2    Mujtaba, I.M.3    Rossi, F.4
  • 27
    • 80052631623 scopus 로고    scopus 로고
    • Considerations on nonlinear model predictive control techniques
    • F. Manenti Considerations on nonlinear model predictive control techniques Comput Chem Eng 35 11 2011 2491 2509
    • (2011) Comput Chem Eng , vol.35 , Issue.11 , pp. 2491-2509
    • Manenti, F.1
  • 30
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Z. Ge, Z. Song, and F. Gao Review of recent research on data-based process monitoring Ind Eng Chem Res 52 10 2013 3543 3562
    • (2013) Ind Eng Chem Res , vol.52 , Issue.10 , pp. 3543-3562
    • Ge, Z.1    Song, Z.2    Gao, F.3
  • 31
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • P. Kadlec, B. Gabrys, and S. Strandt Data-driven soft sensors in the process industry Comput Chem Eng 33 4 2009 795 814
    • (2009) Comput Chem Eng , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 32
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry
    • M. Kano, and Y. Nakagawa Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry Comput Chem Eng 32 1 2008 12 24
    • (2008) Comput Chem Eng , vol.32 , Issue.1 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 33
    • 84857548668 scopus 로고    scopus 로고
    • Methods for plant data-based process modeling in soft-sensor development
    • D. Sliskovic, R. Grbic, and Z. Hocenski Methods for plant data-based process modeling in soft-sensor development Automatika 52 4 2011 306 318
    • (2011) Automatika , vol.52 , Issue.4 , pp. 306-318
    • Sliskovic, D.1    Grbic, R.2    Hocenski, Z.3
  • 34
    • 84872920533 scopus 로고    scopus 로고
    • Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications
    • M. Kano, and K. Fujiwara Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications J Chem Eng Japan 46 1 2013 1 17
    • (2013) J Chem Eng Japan , vol.46 , Issue.1 , pp. 1-17
    • Kano, M.1    Fujiwara, K.2
  • 35
    • 84871925041 scopus 로고    scopus 로고
    • Development and comparison of neural network based soft sensors for online estimation of cement clinker quality
    • A.K. Pani, V.K. Vadlamudi, and H.K. Mohanta Development and comparison of neural network based soft sensors for online estimation of cement clinker quality ISA Trans 52 1 2013 19 29
    • (2013) ISA Trans , vol.52 , Issue.1 , pp. 19-29
    • Pani, A.K.1    Vadlamudi, V.K.2    Mohanta, H.K.3
  • 36
    • 84876877682 scopus 로고    scopus 로고
    • Development of soft sensor for neural network based control of distillation column
    • A. Rani, V. Singh, and J. Gupta Development of soft sensor for neural network based control of distillation column ISA Trans 52 3 2013 438 449
    • (2013) ISA Trans , vol.52 , Issue.3 , pp. 438-449
    • Rani, A.1    Singh, V.2    Gupta, J.3
  • 37
    • 84883736569 scopus 로고    scopus 로고
    • Long-term industrial applications of inferential control based on just-in-time soft-sensors: Economical impact and challenges
    • S. Kim, M. Kano, S. Hasebe, A. Takinami, and T. Seki Long-term industrial applications of inferential control based on just-in-time soft-sensors: economical impact and challenges Ind Eng Chem Res 52 35 2013 12346 12356
    • (2013) Ind Eng Chem Res , vol.52 , Issue.35 , pp. 12346-12356
    • Kim, S.1    Kano, M.2    Hasebe, S.3    Takinami, A.4    Seki, T.5
  • 38
    • 84863344795 scopus 로고    scopus 로고
    • Integration and application of intelligent measurement and control system for fermentation process
    • J. Wang, Y. Xue, L. Zhao, and Z. Li Integration and application of intelligent measurement and control system for fermentation process Trans Chin Soc Agric Eng 28 5 2012 178 183
    • (2012) Trans Chin Soc Agric Eng , vol.28 , Issue.5 , pp. 178-183
    • Wang, J.1    Xue, Y.2    Zhao, L.3    Li, Z.4
  • 39
    • 84984100048 scopus 로고
    • The use of secondary measurements to improve control
    • R. Weber, and C. Brosilow The use of secondary measurements to improve control AIChE J 18 3 1972 614 623
    • (1972) AIChE J , vol.18 , Issue.3 , pp. 614-623
    • Weber, R.1    Brosilow, C.2
  • 40
    • 44849129977 scopus 로고    scopus 로고
    • Hybrid intelligent optimal control method for operation of complex industrial processes
    • T. Chai, J. Ding, H. Wang, and C. Su Hybrid intelligent optimal control method for operation of complex industrial processes Acta Autom Sin 34 5 2008 505 515
    • (2008) Acta Autom Sin , vol.34 , Issue.5 , pp. 505-515
    • Chai, T.1    Ding, J.2    Wang, H.3    Su, C.4
  • 41
    • 70349440905 scopus 로고    scopus 로고
    • A hybrid intelligent optimal control method for complex flotation process
    • T. Chai, Z.X. Geng, H. Yue, H. Wang, and C.Y. Su A hybrid intelligent optimal control method for complex flotation process Int J Syst Sci 40 9 2009 945 960
    • (2009) Int J Syst Sci , vol.40 , Issue.9 , pp. 945-960
    • Chai, T.1    Geng, Z.X.2    Yue, H.3    Wang, H.4    Su, C.Y.5
  • 42
    • 79952068141 scopus 로고    scopus 로고
    • Hybrid intelligent control for optimal operation of shaft furnace roasting process
    • T. Chai, J. Ding, and F. Wu Hybrid intelligent control for optimal operation of shaft furnace roasting process Control Eng Pract 19 3 2011 264 275
    • (2011) Control Eng Pract , vol.19 , Issue.3 , pp. 264-275
    • Chai, T.1    Ding, J.2    Wu, F.3
  • 43
    • 84855424584 scopus 로고    scopus 로고
    • Intelligent optimal-setting control for cement raw meal pre-calcining process
    • J.H. Qiao, X.J. Zhou, and T.Y. Chai Intelligent optimal-setting control for cement raw meal pre-calcining process Control Theory Appl 28 11 2011 1534 1540
    • (2011) Control Theory Appl , vol.28 , Issue.11 , pp. 1534-1540
    • Qiao, J.H.1    Zhou, X.J.2    Chai, T.Y.3
  • 44
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • JS. Jang ANFIS: adaptive-network-based fuzzy inference system IEEE Trans Syst Man Cybern 23 3 1993 665 685
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.1
  • 45
    • 0000609488 scopus 로고    scopus 로고
    • Comparing alternative approaches for multivariate statistical analysis of batch process data
    • J.A. Westerhuis, T. Kourti, and J.F. MacGregor Comparing alternative approaches for multivariate statistical analysis of batch process data J Chemom 13 3-4 1999 397 413
    • (1999) J Chemom , vol.13 , Issue.34 , pp. 397-413
    • Westerhuis, J.A.1    Kourti, T.2    Macgregor, J.F.3
  • 46
    • 84879310945 scopus 로고    scopus 로고
    • Data-derived soft-sensors for biological wastewater treatment plants: An overview
    • H. Haimi, M. Mulas, F. Corona, and R. Vahala Data-derived soft-sensors for biological wastewater treatment plants: an overview Environ Model Softw 47 2013 88 107
    • (2013) Environ Model Softw , vol.47 , pp. 88-107
    • Haimi, H.1    Mulas, M.2    Corona, F.3    Vahala, R.4
  • 48
    • 79951559025 scopus 로고    scopus 로고
    • A survey of data treatment techniques for soft sensor design
    • (Article 2), 1-21
    • A.K. Pani, and H.K. Mohanta A survey of data treatment techniques for soft sensor design Chem Prod Process Model 6 1 2011 (Article 2), 1-21
    • (2011) Chem Prod Process Model , vol.6 , Issue.1
    • Pani, A.K.1    Mohanta, H.K.2
  • 49
    • 2442589699 scopus 로고    scopus 로고
    • On-line outlier detection and data cleaning
    • H. Liu, S. Shah, and W. Jiang On-line outlier detection and data cleaning Comput Chem Eng 28 9 2004 1635 1647
    • (2004) Comput Chem Eng , vol.28 , Issue.9 , pp. 1635-1647
    • Liu, H.1    Shah, S.2    Jiang, W.3
  • 50
    • 0035965476 scopus 로고    scopus 로고
    • PLS-regression: A basic tool of chemometrics
    • S. Wold, M. Sjöström, and L. Eriksson PLS-regression: a basic tool of chemometrics Chemom Intel Lab Syst 58 2 2001 109 130
    • (2001) Chemom Intel Lab Syst , vol.58 , Issue.2 , pp. 109-130
    • Wold, S.1    Sjöström, M.2    Eriksson, L.3
  • 51
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • D. François, F. Rossi, V. Wertz, and M. Verleysen Resampling methods for parameter-free and robust feature selection with mutual information Neurocomputing 70 7 2007 1276 1288
    • (2007) Neurocomputing , vol.70 , Issue.7 , pp. 1276-1288
    • François, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 53
    • 84875586422 scopus 로고    scopus 로고
    • Modeling of soft sensor for chemical process
    • P. Cao, and X. Luo Modeling of soft sensor for chemical process CIESC J 64 3 2013 788 800
    • (2013) CIESC J , vol.64 , Issue.3 , pp. 788-800
    • Cao, P.1    Luo, X.2
  • 54
    • 80055094175 scopus 로고    scopus 로고
    • A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
    • H. Kaneko, and K. Funatsu A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy Chemom Intel Lab Syst 109 2 2011 197 206
    • (2011) Chemom Intel Lab Syst , vol.109 , Issue.2 , pp. 197-206
    • Kaneko, H.1    Funatsu, K.2
  • 55
    • 0037110983 scopus 로고    scopus 로고
    • A modular simulation package for fed-batch fermentation: Penicillin production
    • G. Birol, C. Ündey, and A. Cinar A modular simulation package for fed-batch fermentation: penicillin production Comput Chem Eng 26 11 2002 1553 1565
    • (2002) Comput Chem Eng , vol.26 , Issue.11 , pp. 1553-1565
    • Birol, G.1    Ündey, C.2    Cinar, A.3
  • 56
    • 77949278857 scopus 로고    scopus 로고
    • Cultivation of Rhodobacter sphaeroides in the stirred bioreactor with different feeding strategies for CoQ10 production
    • H.W. Yen, C.Y. Feng, and J.L. Kang Cultivation of Rhodobacter sphaeroides in the stirred bioreactor with different feeding strategies for CoQ10 production Appl Biochem Biotechnol 160 5 2010 1441 1449
    • (2010) Appl Biochem Biotechnol , vol.160 , Issue.5 , pp. 1441-1449
    • Yen, H.W.1    Feng, C.Y.2    Kang, J.L.3
  • 57
    • 0029199640 scopus 로고    scopus 로고
    • On data-based modelling techniques for fermentation processes
    • M.R. Warnes, J. Glassey, G.A. Montague, and B. Kara On data-based modelling techniques for fermentation processes Process Biochem 31 2 1996 147 155
    • (1996) Process Biochem , vol.31 , Issue.2 , pp. 147-155
    • Warnes, M.R.1    Glassey, J.2    Montague, G.A.3    Kara, B.4
  • 58
    • 80052097384 scopus 로고    scopus 로고
    • Product identification in industrial batch fermentation using a variable forgetting factor
    • H. Gjerkes, J. Malensek, A. Sitar, and I. Golobic Product identification in industrial batch fermentation using a variable forgetting factor Control Eng Pract 19 10 2011 1208 1215
    • (2011) Control Eng Pract , vol.19 , Issue.10 , pp. 1208-1215
    • Gjerkes, H.1    Malensek, J.2    Sitar, A.3    Golobic, I.4
  • 59
    • 0036131934 scopus 로고    scopus 로고
    • Comparative study of black-box and hybrid estimation methods in fed-batch fermentation
    • S. James, R. Legge, and H. Budman Comparative study of black-box and hybrid estimation methods in fed-batch fermentation J Process Control 12 1 2002 113 121
    • (2002) J Process Control , vol.12 , Issue.1 , pp. 113-121
    • James, S.1    Legge, R.2    Budman, H.3
  • 60
    • 33845679917 scopus 로고    scopus 로고
    • Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein
    • S.Ö. Laursen, D. Webb, and W.F. Ramirez Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein Comput Chem Eng 31 3 2007 163 170
    • (2007) Comput Chem Eng , vol.31 , Issue.3 , pp. 163-170
    • Laursen S.Ö.1    Webb, D.2    Ramirez, W.F.3
  • 61
    • 0026806616 scopus 로고
    • A hybrid neural network-first principles approach to process modeling
    • D.C. Psichogios, and L.H. Ungar A hybrid neural network-first principles approach to process modeling AIChE J 38 10 1992 1499 1511
    • (1992) AIChE J , vol.38 , Issue.10 , pp. 1499-1511
    • Psichogios, D.C.1    Ungar, L.H.2
  • 62
    • 77951296145 scopus 로고    scopus 로고
    • Hybrid modeling of penicillin fermentation process based on least square support vector machine
    • X. Wang, J. Chen, C. Liu, and F. Pan Hybrid modeling of penicillin fermentation process based on least square support vector machine Chem Eng Res Des 88 4 2010 415 420
    • (2010) Chem Eng Res des , vol.88 , Issue.4 , pp. 415-420
    • Wang, X.1    Chen, J.2    Liu, C.3    Pan, F.4
  • 63
    • 0031273990 scopus 로고    scopus 로고
    • Case-based reasoning systems: From automation to decision-aiding and stimulation
    • S. Dutta, B. Wierenga, and A. Dalebout Case-based reasoning systems: from automation to decision-aiding and stimulation IEEE Trans Knowl Data Eng 9 6 1997 911 922
    • (1997) IEEE Trans Knowl Data Eng , vol.9 , Issue.6 , pp. 911-922
    • Dutta, S.1    Wierenga, B.2    Dalebout, A.3
  • 64
    • 67650548178 scopus 로고    scopus 로고
    • Data-driven operational-pattern optimization for copper flash smelting process
    • W.H. Gui, C.H. Yang, Y.G. Li, J.J. He, and L.Z. Yin Data-driven operational-pattern optimization for copper flash smelting process Acta Autom Sin 35 6 2009 717 724
    • (2009) Acta Autom Sin , vol.35 , Issue.6 , pp. 717-724
    • Gui, W.H.1    Yang, C.H.2    Li, Y.G.3    He, J.J.4    Yin, L.Z.5
  • 65
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • P. Kadlec, R. Grbić, and B. Gabrys Review of adaptation mechanisms for data-driven soft sensors Comput Chem Eng 35 1 2011 1 24
    • (2011) Comput Chem Eng , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 66
    • 84887725182 scopus 로고    scopus 로고
    • Ensemble independent component regression models and soft sensing application
    • Z. Ge, and Z. Song Ensemble independent component regression models and soft sensing application Chemom Intel Lab Syst 130 2014 115 122
    • (2014) Chemom Intel Lab Syst , vol.130 , pp. 115-122
    • Ge, Z.1    Song, Z.2
  • 67
    • 84905686213 scopus 로고    scopus 로고
    • Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes
    • H. Jin, X. Chen, J Yang, and L. Wu Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes Comput Chem Eng 71 2014 77 93
    • (2014) Comput Chem Eng , vol.71 , pp. 77-93
    • Jin, H.1    Chen, X.2    Yang, J.3    Wu, L.4
  • 68
    • 84903588321 scopus 로고    scopus 로고
    • Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants
    • H. Kaneko, and K. Funatsu Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants Chemom Intel Lab Syst 135 2014 57 66
    • (2014) Chemom Intel Lab Syst , vol.135 , pp. 57-66
    • Kaneko, H.1    Funatsu, K.2
  • 69
    • 79959784751 scopus 로고    scopus 로고
    • Maintenance-free soft sensor models with time difference of process variables
    • H. Kaneko, and K. Funatsu Maintenance-free soft sensor models with time difference of process variables Chemom Intel Lab Syst 107 2 2011 312 317
    • (2011) Chemom Intel Lab Syst , vol.107 , Issue.2 , pp. 312-317
    • Kaneko, H.1    Funatsu, K.2
  • 70
    • 84896913551 scopus 로고    scopus 로고
    • A localized adaptive soft sensor for dynamic system modeling
    • W. Ni, S.D. Brown, and R. Man A localized adaptive soft sensor for dynamic system modeling Chem Eng Sci 111 2014 350 363
    • (2014) Chem Eng Sci , vol.111 , pp. 350-363
    • Ni, W.1    Brown, S.D.2    Man, R.3
  • 71
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • L.X. Wang, and J.M. Mendel Generating fuzzy rules by learning from examples IEEE Trans Syst Man Cybern 22 6 1992 1414 1427
    • (1992) IEEE Trans Syst Man Cybern , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 72
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • S.L. Chiu Fuzzy model identification based on cluster estimation J Intel Fuzzy Syst 2 3 1994 267 278
    • (1994) J Intel Fuzzy Syst , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.L.1
  • 73
    • 80051514033 scopus 로고    scopus 로고
    • Extraction and adaptation of fuzzy rules for friction modeling and control compensation
    • Y. Wang, D. Wang, and T. Chai Extraction and adaptation of fuzzy rules for friction modeling and control compensation IEEE Trans Fuzzy Syst 19 4 2011 682 693
    • (2011) IEEE Trans Fuzzy Syst , vol.19 , Issue.4 , pp. 682-693
    • Wang, Y.1    Wang, D.2    Chai, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.