-
1
-
-
0027453616
-
Model-based gaussian and non-gaussian clustering
-
J. Banfield and A. Raftery, "Model-Based Gaussian and Non-Gaussian Clustering," Biometrics, vol. 49, pp. 803-821, 1993.
-
(1993)
Biometrics
, vol.49
, pp. 803-821
-
-
Banfield, J.1
Raftery, A.2
-
2
-
-
0009038636
-
Inference in model-based cluster analysis
-
H. Bensmail, G. Celeux, A. Raftery, and C. Robert, "Inference in Model-Based Cluster Analysis," Statistics and Computing, vol. 7, pp. 1-10, 1997.
-
(1997)
Statistics and Computing
, vol.7
, pp. 1-10
-
-
Bensmail, H.1
Celeux, G.2
Raftery, A.3
Robert, C.4
-
5
-
-
0034228914
-
Assessing a mixture model for clustering with the integrated classification likelihood
-
July
-
C. Biernacki, G. Celeux, and G. Govaert, "Assessing a Mixture Model for Clustering with the Integrated Classification Likelihood," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 7, pp. 719-725, July 2000.
-
(2000)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.22
, Issue.7
, pp. 719-725
-
-
Biernacki, C.1
Celeux, G.2
Govaert, G.3
-
6
-
-
0033105385
-
An improvement of the NEC criterion for assessing the number of clusters in a mixture model
-
C. Biernacki, G. Celeux, and G. Govaert, "An Improvement of the NEC Criterion for Assessing the Number of Clusters in a Mixture Model," Pattern Recognition Letters, vol. 20, pp. 267-272, 1999.
-
(1999)
Pattern Recognition Letters
, vol.20
, pp. 267-272
-
-
Biernacki, C.1
Celeux, G.2
Govaert, G.3
-
7
-
-
0000308948
-
Using the classification likelihood to choose the number of clusters
-
C. Biernacki and G. Govaert, "Using the Classification Likelihood to Choose the Number of Clusters," Computing Science and Statistics, vol. 29, pp. 451-457, 1997.
-
(1997)
Computing Science and Statistics
, vol.29
, pp. 451-457
-
-
Biernacki, C.1
Govaert, G.2
-
8
-
-
0002356276
-
Choosing the number of component clusters in the mixture model using a new informational complexity criterion of the inverse-fisher information matrix
-
O. Opitz, B. Lausen, and R. Klar, eds.; Springer Verlag
-
H. Bozdogan, "Choosing the Number of Component Clusters in the Mixture Model Using a New Informational Complexity Criterion of the Inverse-Fisher Information Matrix," Information and Classification, O. Opitz, B. Lausen, and R. Klar, eds., pp. 40-54, Springer Verlag, 1993.
-
(1993)
Information and Classification
, pp. 40-54
-
-
Bozdogan, H.1
-
9
-
-
0000675167
-
Structure learning in conditional probability models via entropic prior and parameter extinction
-
M. Brand, "Structure Learning in Conditional Probability Models Via Entropic Prior and Parameter Extinction," Neural Computation, vol. 11, pp. 1155-1182, 1999.
-
(1999)
Neural Computation
, vol.11
, pp. 1155-1182
-
-
Brand, M.1
-
10
-
-
0031395002
-
Linear flaw detection in woven textiles using model-based clustering
-
J. Campbell, C. Fraley, F. Murtagh, and A. Raftery, "Linear Flaw Detection in Woven Textiles Using Model-Based Clustering," Pattern Recognition Letters, vol. 18, pp. 1539-1548, 1997.
-
(1997)
Pattern Recognition Letters
, vol.18
, pp. 1539-1548
-
-
Campbell, J.1
Fraley, C.2
Murtagh, F.3
Raftery, A.4
-
11
-
-
0011193966
-
A component-wise EM algorithm for mixtures
-
Technical Report 3746, INRIA Rhône-Alpes, France
-
G. Celeux, S. Chrétien, F. Forbes, and A. Mkhadri, "A Component-Wise EM Algorithm for Mixtures," Technical Report 3746, INRIA Rhône-Alpes, France, 1999. Available at http://www.inria.fr/RRRT/RR-3746.html.
-
(1999)
-
-
Celeux, G.1
Chrétien, S.2
Forbes, F.3
Mkhadri, A.4
-
12
-
-
0030351528
-
An entropy criterion for assessing the number of clusters in a mixture model
-
G. Celeux and G. Soromenho, "An Entropy Criterion for Assessing the Number of Clusters in a Mixture Model," Classification J., vol. 13, pp. 195-212, 1996.
-
(1996)
Classification J.
, vol.13
, pp. 195-212
-
-
Celeux, G.1
Soromenho, G.2
-
13
-
-
0034246689
-
Kullback proximal algorithms for maximum likelihood estimation
-
S. Chrétien and A. Hero III, "Kullback Proximal Algorithms for Maximum Likelihood Estimation," IEEE Trans. Information Theory, vol. 46, pp. 1800-1810, 2000.
-
(2000)
IEEE Trans. Information Theory
, vol.46
, pp. 1800-1810
-
-
Chrétien, S.1
Hero A. III2
-
16
-
-
0000161076
-
Approximating priors by mixtures of natural conjugate priors
-
S. Dalal and W. Hall, "Approximating Priors by Mixtures of Natural Conjugate Priors," J. Royal Statistical Soc. (B), vol. 45, 1983.
-
(1983)
J. Royal Statistical Soc. (B)
, vol.45
-
-
Dalal, S.1
Hall, W.2
-
17
-
-
0032337237
-
Detecting features in spatial point patterns with clutter via model-based clustering
-
A. Dasgupta and A. Raftery, "Detecting Features in Spatial Point Patterns with Clutter Via Model-Based Clustering," J. Am. Statistical Assoc., vol. 93, pp. 294-302, 1998.
-
(1998)
J. Am. Statistical Assoc.
, vol.93
, pp. 294-302
-
-
Dasgupta, A.1
Raftery, A.2
-
18
-
-
0002629270
-
Maximum likelihood estimation from incomplete data via the EM algorithm
-
A. Depster, N. Laird, and D. Rubin, "Maximum Likelihood Estimation from Incomplete Data Via the EM Algorithm," J. Royal Statistical Soc. B, vol. 39, pp. 1-38, 1977.
-
(1977)
J. Royal Statistical Soc. B
, vol.39
, pp. 1-38
-
-
Depster, A.1
Laird, N.2
Rubin, D.3
-
21
-
-
84958745369
-
On fitting mixture models
-
E. Hancock and M. Pellilo, eds.; Springer Verlag
-
M. Figueiredo, J. Leitão, and A.K. Jain, "On Fitting Mixture Models," Energy Minimization Methods in Computer Vision and Pattern Recognition, E. Hancock and M. Pellilo, eds., pp. 54-69, Springer Verlag, 1999.
-
(1999)
Energy Minimization Methods in Computer Vision and Pattern Recognition
, pp. 54-69
-
-
Figueiredo, M.1
Leitão, J.2
Jain, A.K.3
-
22
-
-
0003862207
-
How many clusters? Which clustering method? Answers via model-based cluster analysis
-
Technical Report 329, Dept. Statistics, Univ. Washington, Seattle, WA
-
C. Fraley and A. Raftery, "How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis," Technical Report 329, Dept. Statistics, Univ. Washington, Seattle, WA, 1998.
-
(1998)
-
-
Fraley, C.1
Raftery, A.2
-
23
-
-
84898934543
-
Variational inference for bayesian mixtures of factor analyzers
-
S. Solla, T. Leen, and K.-R. Müller, eds.; MIT Press
-
Z. Ghahramani and M. Beal, "Variational Inference for Bayesian Mixtures of Factor Analyzers," Advances in Neural Information Processing Systems 12, S. Solla, T. Leen, and K.-R. Müller, eds., pp. 449-455, MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems 12
, pp. 449-455
-
-
Ghahramani, Z.1
Beal, M.2
-
24
-
-
0003744820
-
The EM algorithm for mixtures of factor analyzers
-
Technical Report CRG-TR-96-1, Univ. of Toronto, Canada
-
Z. Ghahramani and G. Hinton, "The EM Algorithm for Mixtures of Factor Analyzers," Technical Report CRG-TR-96-1, Univ. of Toronto, Canada, 1997.
-
(1997)
-
-
Ghahramani, Z.1
Hinton, G.2
-
25
-
-
0001131390
-
Discriminant analysis by gaussian mixtures
-
T. Hastie and R. Tibshirani, "Discriminant Analysis by Gaussian Mixtures," J. Royal Statistical Soc. (B), vol. 58, pp. 155-176, 1996.
-
(1996)
J. Royal Statistical Soc. (B)
, vol.58
, pp. 155-176
-
-
Hastie, T.1
Tibshirani, R.2
-
26
-
-
0030737323
-
Modeling the manifolds of images of handwritten digits
-
G. Hinton, P. Dayan, and M. Revow, "Modeling the Manifolds of Images of Handwritten Digits," IEEE Trans. Neural Networks, vol. 8, pp. 65-74, 1997.
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, pp. 65-74
-
-
Hinton, G.1
Dayan, P.2
Revow, M.3
-
27
-
-
0030734483
-
Pairwise data clustering by deterministic annealing
-
Jan.
-
T. Hofmann and J. Buhmann, "Pairwise Data Clustering by Deterministic Annealing," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 1, pp. 1-14, Jan. 1997.
-
(1997)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.19
, Issue.1
, pp. 1-14
-
-
Hofmann, T.1
Buhmann, J.2
-
29
-
-
0033640646
-
Statistical pattern recognition: A review
-
Jan.
-
A.L. Jain, R. Duin, and J. Mao, "Statistical Pattern Recognition: A Review," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 4-38, Jan. 2000.
-
(2000)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.22
, Issue.1
, pp. 4-38
-
-
Jain, A.L.1
Duin, R.2
Mao, J.3
-
30
-
-
0026398342
-
Unsupervised texture segmentation using gabor filters
-
A.K. Jain and F. Farrokhnia, "Unsupervised Texture Segmentation Using Gabor Filters," Pattern Recognition, vol. 24, pp. 1167-1186, 1991,
-
(1991)
Pattern Recognition
, vol.24
, pp. 1167-1186
-
-
Jain, A.K.1
Farrokhnia, F.2
-
31
-
-
0000430580
-
Deterministic annealing for density estimation by multivariate normal mixtures
-
M. Kloppenburg and P. Tavan, "Deterministic Annealing for Density Estimation by Multivariate Normal Mixtures," Physical Rev. E, vol. 55, pp. R2089-R2092, 1997.
-
(1997)
Physical Rev. E
, vol.55
-
-
Kloppenburg, M.1
Tavan, P.2
-
32
-
-
0035413539
-
Schwarz, Wallace, and Rissanen: Intertwining themes in theories of model order estimation
-
Aug.
-
A. Lanterman, "Schwarz, Wallace, and Rissanen: Intertwining Themes in Theories of Model Order Estimation," Int'l Statistical Rev., vol. 69, pp. 185-212, Aug. 2001.
-
(2001)
Int'l Statistical Rev.
, vol.69
, pp. 185-212
-
-
Lanterman, A.1
-
33
-
-
0023570352
-
On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
-
G. McLachlan, "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," J. Royal Statistical Soc. Series (C), vo. 36, pp. 318-324, 1987.
-
(1987)
J. Royal Statistical Soc. Series (C)
, vol.36
, pp. 318-324
-
-
McLachlan, G.1
-
38
-
-
0011187885
-
Resolution-based complexity control for gaussian mixture models
-
P. Meinicke and H. Ritter, "Resolution-Based Complexity Control for Gaussian Mixture Models," Neural Computation, vol. 13, no. 2, pp. 453-475, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.2
, pp. 453-475
-
-
Meinicke, P.1
Ritter, H.2
-
39
-
-
0000391986
-
Testing for mixtures: A bayesian entropic approach
-
J. Bernardo, J. Berger, A. Dawid, and F. Smith, Eds.
-
K. Mengersen and C. Robert, "Testing for Mixtures: A Bayesian Entropic Approach," Proc. Fifth Valencia Int'l Meeting Bayesian Statistsics 5, J. Bernardo, J. Berger, A. Dawid, and F. Smith, Eds., pp. 255-276, 1996.
-
(1996)
Proc. Fifth Valencia Int'l Meeting Bayesian Statistsics 5
, pp. 255-276
-
-
Mengersen, K.1
Robert, C.2
-
41
-
-
0002788893
-
A view of the EM algorithm that justifies incremental, sparse, and other variants
-
M.I. Jordan, ed.; Kluwer Academic Publishers
-
R. Neal and G. Hinton, "A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants," Learning in Graphical Models, M.I. Jordan, ed., pp. 355-368, Kluwer Academic Publishers, 1998.
-
(1998)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.1
Hinton, G.2
-
43
-
-
0037965523
-
Feature selection based on the approximation of class densities by finite mixtures of the special type
-
P. Pudil, J. Novovicova, and J. Kittler, "Feature Selection Based on the Approximation of Class Densities by Finite Mixtures of the Special Type," Pattern Recognition, vol. 28, no. 9, pp. 1389-1398, 1995.
-
(1995)
Pattern Recognition
, vol.28
, Issue.9
, pp. 1389-1398
-
-
Pudil, P.1
Novovicova, J.2
Kittler, J.3
-
44
-
-
84958628969
-
Self annealing: Unifying deterministic annealing and relaxation labeling
-
M. Pelillo and E. Hancock, eds.; Springer Verlag
-
A. Rangarajan, "Self Annealing: Unifying Deterministic Annealing and Relaxation Labeling," Energy Minimization Methods in Computer Vision and Pattern Recognition, M. Pelillo and E. Hancock, eds., pp. 229-244, Springer Verlag, 1997.
-
(1997)
Energy Minimization Methods in Computer Vision and Pattern Recognition
, pp. 229-244
-
-
Rangarajan, A.1
-
45
-
-
79955803023
-
The infinite gaussian mixture model
-
S. Solla, T. Leen, and K.-R. Müller, eds.; MIT Press
-
C. Rasmussen, "The Infinite Gaussian Mixture Model," Advances in Neural Information Processing Systems 12, S. Solla, T. Leen, and K.-R. Müller, eds., pp. 554-560, MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems 12
, pp. 554-560
-
-
Rasmussen, C.1
-
46
-
-
0026120032
-
Small sample size effects in statistical pattern recognition: Recommendations for practitioners
-
S. Raudys and A.K. Jain, "Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, pp. 252-264, 1991.
-
(1991)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.13
, pp. 252-264
-
-
Raudys, S.1
Jain, A.K.2
-
47
-
-
0019020917
-
On dimensionality, sample size, classification error, and complexity of classification algorithms in pattern recognition
-
S. Raudys and V. Pikelis, "On Dimensionality, Sample Size, Classification Error, and Complexity of Classification Algorithms in Pattern Recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 2, pp. 243-252, 1980.
-
(1980)
IEEE Trans. Pattern Analysis and Machice Intelligence
, vol.2
, pp. 243-252
-
-
Raudys, S.1
Pikelis, V.2
-
48
-
-
18244378520
-
On bayesian analysis of mixtures with unknown number of components
-
S. Richardson and P. Green, "On Bayesian Analysis of Mixtures with Unknown Number of Components," J. Royal Statistical Soc. B, vol. 59, pp. 731-792, 1997.
-
(1997)
J. Royal Statistical Soc. B
, vol.59
, pp. 731-792
-
-
Richardson, S.1
Green, P.2
-
50
-
-
0032205609
-
Bayesian approaches to gaussian mixture modelling
-
Nov.
-
S. Roberts, D. Husmeier, I. Rezek, and W. Penny, "Bayesian Approaches to Gaussian Mixture Modelling," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1133-1142, Nov. 1998.
-
(1998)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.20
, Issue.11
, pp. 1133-1142
-
-
Roberts, S.1
Husmeier, D.2
Rezek, I.3
Penny, W.4
-
51
-
-
21744460005
-
Practical bayesian density estimation using mixtures of normals
-
K. Roeder and L. Wasserman, "Practical Bayesian Density Estimation Using Mixtures of Normals," J. Am. Statistical Assoc., vol. 92, pp. 894-902, 1997.
-
(1997)
J. Am. Statistical Assoc.
, vol.92
, pp. 894-902
-
-
Roeder, K.1
Wasserman, L.2
-
52
-
-
0032202775
-
Deterministic annealing for clustering, compression, classification, regression, and related optimization problems
-
K. Rose, "Deterministic Annealing for Clustering, Compression, Classification, Regression, and Related Optimization Problems," Proc. IEEE, vol. 86, pp. 2210-2239, 1998.
-
(1998)
Proc. IEEE
, vol.86
, pp. 2210-2239
-
-
Rose, K.1
-
53
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz, "Estimating the Dimension of a Model, Annals of Statistics, vol. 6, pp. 461-464, 1978
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
54
-
-
0001942153
-
Model selection for probabilistic clustering using cross-validated likelihood
-
P. Smyth, "Model Selection for Probabilistic Clustering Using Cross-Validated Likelihood," Statistics and Computing, vol, 10, no. 1, pp. 63-72, 2000.
-
(2000)
Statistics and Computing
, vol.10
, Issue.1
, pp. 63-72
-
-
Smyth, P.1
-
55
-
-
0028497290
-
Maximum likelihood training of probabilistic neural networks
-
R. Streit and T. Luginbuhl, "Maximum Likelihood Training of Probabilistic Neural Networks," IEEE Trans. Neural Networks, vol. 5, no. 5, pp. 764-783, 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.5
, pp. 764-783
-
-
Streit, R.1
Luginbuhl, T.2
-
56
-
-
0033556788
-
Mixtures of probabilistic principal component analyzers
-
M. Tipping and C. Bishop, "Mixtures of Probabilistic Principal Component Analyzers," Neural Computation, vol. 11, no. 2, pp. 443-482, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.2
, pp. 443-482
-
-
Tipping, M.1
Bishop, C.2
-
58
-
-
0032029288
-
Deterministic annealing EM algorithm
-
N. Ueda and R. Nakano, "Deterministic Annealing EM Algorithm," Neural Networks, vol. 11, pp. 271-282, 1998.
-
(1998)
Neural Networks
, vol.11
, pp. 271-282
-
-
Ueda, N.1
Nakano, R.2
-
59
-
-
0034264299
-
SMEM algorithm for mixture models
-
N. Ueda, R. Nakano, Z. Gharhamani, and G. Hinton, "SMEM Algorithm for Mixture Models," Neural Computation, vol. 12, pp. 2109-2128, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 2109-2128
-
-
Ueda, N.1
Nakano, R.2
Gharhamani, Z.3
Hinton, G.4
-
60
-
-
0032684826
-
Minimum message length and kolmogorov complexity
-
C. Wallace and D. Dowe, "Minimum Message Length and Kolmogorov Complexity," The Computer J., vol. 42, no. 4, pp. 270-283, 1999.
-
(1999)
The Computer J.
, vol.42
, Issue.4
, pp. 270-283
-
-
Wallace, C.1
Dowe, D.2
-
61
-
-
0000208682
-
Estimation and inference via compact coding
-
C. Wallace and P. Freeman, "Estimation and Inference Via Compact Coding," J. Royal Statistical Soc. (B), vol. 49, no. 3, pp. 241-252, 1987.
-
(1987)
J. Royal Statistical Soc. (B)
, vol.49
, Issue.3
, pp. 241-252
-
-
Wallace, C.1
Freeman, P.2
-
62
-
-
84950442225
-
Information ratios for validating mixture analysis
-
M. Whindham and A. Cutler, "Information Ratios for Validating Mixture Analysis," J. Am. Statistical Assoc., vol. 87, pp. 1188-1192, 1992.
-
(1992)
J. Am. Statistical Assoc.
, vol.87
, pp. 1188-1192
-
-
Whindham, M.1
Cutler, A.2
-
63
-
-
2342533082
-
On convergence properties of the EM algorithm for gaussian mixtures
-
L. Xu and M. Jordan, "On Convergence Properties of the EM Algorithm for Gaussian Mixtures," Neural Computation, vol. 8, pp. 129-151, 1996.
-
(1996)
Neural Computation
, vol.8
, pp. 129-151
-
-
Xu, L.1
Jordan, M.2
-
64
-
-
0002684291
-
Maximal data information prior distributions
-
A. Aykac and C. Brumat, eds.; Amsterdam: North Holland
-
A. Zellner, "Maximal Data Information Prior Distributions," New Developments in the Applications of Bayesian Methods, A. Aykac and C. Brumat, eds., pp. 211-232, Amsterdam: North Holland, 1977.
-
(1977)
New Developments in the Applications of Bayesian Methods
, pp. 211-232
-
-
Zellner, A.1
|