메뉴 건너뛰기




Volumn 24, Issue 3, 2002, Pages 381-396

Unsupervised learning of finite mixture models

Author keywords

Bayesian methods; Clustering; Expectation maximization algorithm; Finite mixtures; Minimum message length criterion; Model selection; Unsupervised learning

Indexed keywords

BAYESIAN METHOD; CLUSTERING; EXPECTATION-MAXIMIZATION ALGORITHM; FINITE MIXTURE MODEL; UNSUPERVISED LEARNING;

EID: 0036522404     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/34.990138     Document Type: Article
Times cited : (1931)

References (64)
  • 1
    • 0027453616 scopus 로고
    • Model-based gaussian and non-gaussian clustering
    • J. Banfield and A. Raftery, "Model-Based Gaussian and Non-Gaussian Clustering," Biometrics, vol. 49, pp. 803-821, 1993.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.2
  • 5
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated classification likelihood
    • July
    • C. Biernacki, G. Celeux, and G. Govaert, "Assessing a Mixture Model for Clustering with the Integrated Classification Likelihood," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 7, pp. 719-725, July 2000.
    • (2000) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.22 , Issue.7 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 6
    • 0033105385 scopus 로고    scopus 로고
    • An improvement of the NEC criterion for assessing the number of clusters in a mixture model
    • C. Biernacki, G. Celeux, and G. Govaert, "An Improvement of the NEC Criterion for Assessing the Number of Clusters in a Mixture Model," Pattern Recognition Letters, vol. 20, pp. 267-272, 1999.
    • (1999) Pattern Recognition Letters , vol.20 , pp. 267-272
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 7
    • 0000308948 scopus 로고    scopus 로고
    • Using the classification likelihood to choose the number of clusters
    • C. Biernacki and G. Govaert, "Using the Classification Likelihood to Choose the Number of Clusters," Computing Science and Statistics, vol. 29, pp. 451-457, 1997.
    • (1997) Computing Science and Statistics , vol.29 , pp. 451-457
    • Biernacki, C.1    Govaert, G.2
  • 8
    • 0002356276 scopus 로고
    • Choosing the number of component clusters in the mixture model using a new informational complexity criterion of the inverse-fisher information matrix
    • O. Opitz, B. Lausen, and R. Klar, eds.; Springer Verlag
    • H. Bozdogan, "Choosing the Number of Component Clusters in the Mixture Model Using a New Informational Complexity Criterion of the Inverse-Fisher Information Matrix," Information and Classification, O. Opitz, B. Lausen, and R. Klar, eds., pp. 40-54, Springer Verlag, 1993.
    • (1993) Information and Classification , pp. 40-54
    • Bozdogan, H.1
  • 9
    • 0000675167 scopus 로고    scopus 로고
    • Structure learning in conditional probability models via entropic prior and parameter extinction
    • M. Brand, "Structure Learning in Conditional Probability Models Via Entropic Prior and Parameter Extinction," Neural Computation, vol. 11, pp. 1155-1182, 1999.
    • (1999) Neural Computation , vol.11 , pp. 1155-1182
    • Brand, M.1
  • 10
    • 0031395002 scopus 로고    scopus 로고
    • Linear flaw detection in woven textiles using model-based clustering
    • J. Campbell, C. Fraley, F. Murtagh, and A. Raftery, "Linear Flaw Detection in Woven Textiles Using Model-Based Clustering," Pattern Recognition Letters, vol. 18, pp. 1539-1548, 1997.
    • (1997) Pattern Recognition Letters , vol.18 , pp. 1539-1548
    • Campbell, J.1    Fraley, C.2    Murtagh, F.3    Raftery, A.4
  • 11
    • 0011193966 scopus 로고    scopus 로고
    • A component-wise EM algorithm for mixtures
    • Technical Report 3746, INRIA Rhône-Alpes, France
    • G. Celeux, S. Chrétien, F. Forbes, and A. Mkhadri, "A Component-Wise EM Algorithm for Mixtures," Technical Report 3746, INRIA Rhône-Alpes, France, 1999. Available at http://www.inria.fr/RRRT/RR-3746.html.
    • (1999)
    • Celeux, G.1    Chrétien, S.2    Forbes, F.3    Mkhadri, A.4
  • 12
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • G. Celeux and G. Soromenho, "An Entropy Criterion for Assessing the Number of Clusters in a Mixture Model," Classification J., vol. 13, pp. 195-212, 1996.
    • (1996) Classification J. , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 13
    • 0034246689 scopus 로고    scopus 로고
    • Kullback proximal algorithms for maximum likelihood estimation
    • S. Chrétien and A. Hero III, "Kullback Proximal Algorithms for Maximum Likelihood Estimation," IEEE Trans. Information Theory, vol. 46, pp. 1800-1810, 2000.
    • (2000) IEEE Trans. Information Theory , vol.46 , pp. 1800-1810
    • Chrétien, S.1    Hero A. III2
  • 16
    • 0000161076 scopus 로고
    • Approximating priors by mixtures of natural conjugate priors
    • S. Dalal and W. Hall, "Approximating Priors by Mixtures of Natural Conjugate Priors," J. Royal Statistical Soc. (B), vol. 45, 1983.
    • (1983) J. Royal Statistical Soc. (B) , vol.45
    • Dalal, S.1    Hall, W.2
  • 17
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point patterns with clutter via model-based clustering
    • A. Dasgupta and A. Raftery, "Detecting Features in Spatial Point Patterns with Clutter Via Model-Based Clustering," J. Am. Statistical Assoc., vol. 93, pp. 294-302, 1998.
    • (1998) J. Am. Statistical Assoc. , vol.93 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.2
  • 18
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete data via the EM algorithm
    • A. Depster, N. Laird, and D. Rubin, "Maximum Likelihood Estimation from Incomplete Data Via the EM Algorithm," J. Royal Statistical Soc. B, vol. 39, pp. 1-38, 1977.
    • (1977) J. Royal Statistical Soc. B , vol.39 , pp. 1-38
    • Depster, A.1    Laird, N.2    Rubin, D.3
  • 22
    • 0003862207 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Technical Report 329, Dept. Statistics, Univ. Washington, Seattle, WA
    • C. Fraley and A. Raftery, "How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis," Technical Report 329, Dept. Statistics, Univ. Washington, Seattle, WA, 1998.
    • (1998)
    • Fraley, C.1    Raftery, A.2
  • 23
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for bayesian mixtures of factor analyzers
    • S. Solla, T. Leen, and K.-R. Müller, eds.; MIT Press
    • Z. Ghahramani and M. Beal, "Variational Inference for Bayesian Mixtures of Factor Analyzers," Advances in Neural Information Processing Systems 12, S. Solla, T. Leen, and K.-R. Müller, eds., pp. 449-455, MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems 12 , pp. 449-455
    • Ghahramani, Z.1    Beal, M.2
  • 24
    • 0003744820 scopus 로고    scopus 로고
    • The EM algorithm for mixtures of factor analyzers
    • Technical Report CRG-TR-96-1, Univ. of Toronto, Canada
    • Z. Ghahramani and G. Hinton, "The EM Algorithm for Mixtures of Factor Analyzers," Technical Report CRG-TR-96-1, Univ. of Toronto, Canada, 1997.
    • (1997)
    • Ghahramani, Z.1    Hinton, G.2
  • 25
    • 0001131390 scopus 로고    scopus 로고
    • Discriminant analysis by gaussian mixtures
    • T. Hastie and R. Tibshirani, "Discriminant Analysis by Gaussian Mixtures," J. Royal Statistical Soc. (B), vol. 58, pp. 155-176, 1996.
    • (1996) J. Royal Statistical Soc. (B) , vol.58 , pp. 155-176
    • Hastie, T.1    Tibshirani, R.2
  • 26
    • 0030737323 scopus 로고    scopus 로고
    • Modeling the manifolds of images of handwritten digits
    • G. Hinton, P. Dayan, and M. Revow, "Modeling the Manifolds of Images of Handwritten Digits," IEEE Trans. Neural Networks, vol. 8, pp. 65-74, 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 65-74
    • Hinton, G.1    Dayan, P.2    Revow, M.3
  • 30
    • 0026398342 scopus 로고
    • Unsupervised texture segmentation using gabor filters
    • A.K. Jain and F. Farrokhnia, "Unsupervised Texture Segmentation Using Gabor Filters," Pattern Recognition, vol. 24, pp. 1167-1186, 1991,
    • (1991) Pattern Recognition , vol.24 , pp. 1167-1186
    • Jain, A.K.1    Farrokhnia, F.2
  • 31
    • 0000430580 scopus 로고    scopus 로고
    • Deterministic annealing for density estimation by multivariate normal mixtures
    • M. Kloppenburg and P. Tavan, "Deterministic Annealing for Density Estimation by Multivariate Normal Mixtures," Physical Rev. E, vol. 55, pp. R2089-R2092, 1997.
    • (1997) Physical Rev. E , vol.55
    • Kloppenburg, M.1    Tavan, P.2
  • 32
    • 0035413539 scopus 로고    scopus 로고
    • Schwarz, Wallace, and Rissanen: Intertwining themes in theories of model order estimation
    • Aug.
    • A. Lanterman, "Schwarz, Wallace, and Rissanen: Intertwining Themes in Theories of Model Order Estimation," Int'l Statistical Rev., vol. 69, pp. 185-212, Aug. 2001.
    • (2001) Int'l Statistical Rev. , vol.69 , pp. 185-212
    • Lanterman, A.1
  • 33
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • G. McLachlan, "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," J. Royal Statistical Soc. Series (C), vo. 36, pp. 318-324, 1987.
    • (1987) J. Royal Statistical Soc. Series (C) , vol.36 , pp. 318-324
    • McLachlan, G.1
  • 38
    • 0011187885 scopus 로고    scopus 로고
    • Resolution-based complexity control for gaussian mixture models
    • P. Meinicke and H. Ritter, "Resolution-Based Complexity Control for Gaussian Mixture Models," Neural Computation, vol. 13, no. 2, pp. 453-475, 2001.
    • (2001) Neural Computation , vol.13 , Issue.2 , pp. 453-475
    • Meinicke, P.1    Ritter, H.2
  • 39
    • 0000391986 scopus 로고    scopus 로고
    • Testing for mixtures: A bayesian entropic approach
    • J. Bernardo, J. Berger, A. Dawid, and F. Smith, Eds.
    • K. Mengersen and C. Robert, "Testing for Mixtures: A Bayesian Entropic Approach," Proc. Fifth Valencia Int'l Meeting Bayesian Statistsics 5, J. Bernardo, J. Berger, A. Dawid, and F. Smith, Eds., pp. 255-276, 1996.
    • (1996) Proc. Fifth Valencia Int'l Meeting Bayesian Statistsics 5 , pp. 255-276
    • Mengersen, K.1    Robert, C.2
  • 41
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M.I. Jordan, ed.; Kluwer Academic Publishers
    • R. Neal and G. Hinton, "A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants," Learning in Graphical Models, M.I. Jordan, ed., pp. 355-368, Kluwer Academic Publishers, 1998.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 43
    • 0037965523 scopus 로고
    • Feature selection based on the approximation of class densities by finite mixtures of the special type
    • P. Pudil, J. Novovicova, and J. Kittler, "Feature Selection Based on the Approximation of Class Densities by Finite Mixtures of the Special Type," Pattern Recognition, vol. 28, no. 9, pp. 1389-1398, 1995.
    • (1995) Pattern Recognition , vol.28 , Issue.9 , pp. 1389-1398
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 44
    • 84958628969 scopus 로고    scopus 로고
    • Self annealing: Unifying deterministic annealing and relaxation labeling
    • M. Pelillo and E. Hancock, eds.; Springer Verlag
    • A. Rangarajan, "Self Annealing: Unifying Deterministic Annealing and Relaxation Labeling," Energy Minimization Methods in Computer Vision and Pattern Recognition, M. Pelillo and E. Hancock, eds., pp. 229-244, Springer Verlag, 1997.
    • (1997) Energy Minimization Methods in Computer Vision and Pattern Recognition , pp. 229-244
    • Rangarajan, A.1
  • 45
    • 79955803023 scopus 로고    scopus 로고
    • The infinite gaussian mixture model
    • S. Solla, T. Leen, and K.-R. Müller, eds.; MIT Press
    • C. Rasmussen, "The Infinite Gaussian Mixture Model," Advances in Neural Information Processing Systems 12, S. Solla, T. Leen, and K.-R. Müller, eds., pp. 554-560, MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems 12 , pp. 554-560
    • Rasmussen, C.1
  • 46
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • S. Raudys and A.K. Jain, "Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, pp. 252-264, 1991.
    • (1991) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.13 , pp. 252-264
    • Raudys, S.1    Jain, A.K.2
  • 47
    • 0019020917 scopus 로고
    • On dimensionality, sample size, classification error, and complexity of classification algorithms in pattern recognition
    • S. Raudys and V. Pikelis, "On Dimensionality, Sample Size, Classification Error, and Complexity of Classification Algorithms in Pattern Recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 2, pp. 243-252, 1980.
    • (1980) IEEE Trans. Pattern Analysis and Machice Intelligence , vol.2 , pp. 243-252
    • Raudys, S.1    Pikelis, V.2
  • 48
    • 18244378520 scopus 로고    scopus 로고
    • On bayesian analysis of mixtures with unknown number of components
    • S. Richardson and P. Green, "On Bayesian Analysis of Mixtures with Unknown Number of Components," J. Royal Statistical Soc. B, vol. 59, pp. 731-792, 1997.
    • (1997) J. Royal Statistical Soc. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 51
    • 21744460005 scopus 로고    scopus 로고
    • Practical bayesian density estimation using mixtures of normals
    • K. Roeder and L. Wasserman, "Practical Bayesian Density Estimation Using Mixtures of Normals," J. Am. Statistical Assoc., vol. 92, pp. 894-902, 1997.
    • (1997) J. Am. Statistical Assoc. , vol.92 , pp. 894-902
    • Roeder, K.1    Wasserman, L.2
  • 52
    • 0032202775 scopus 로고    scopus 로고
    • Deterministic annealing for clustering, compression, classification, regression, and related optimization problems
    • K. Rose, "Deterministic Annealing for Clustering, Compression, Classification, Regression, and Related Optimization Problems," Proc. IEEE, vol. 86, pp. 2210-2239, 1998.
    • (1998) Proc. IEEE , vol.86 , pp. 2210-2239
    • Rose, K.1
  • 53
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the Dimension of a Model, Annals of Statistics, vol. 6, pp. 461-464, 1978
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 54
    • 0001942153 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using cross-validated likelihood
    • P. Smyth, "Model Selection for Probabilistic Clustering Using Cross-Validated Likelihood," Statistics and Computing, vol, 10, no. 1, pp. 63-72, 2000.
    • (2000) Statistics and Computing , vol.10 , Issue.1 , pp. 63-72
    • Smyth, P.1
  • 55
    • 0028497290 scopus 로고
    • Maximum likelihood training of probabilistic neural networks
    • R. Streit and T. Luginbuhl, "Maximum Likelihood Training of Probabilistic Neural Networks," IEEE Trans. Neural Networks, vol. 5, no. 5, pp. 764-783, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.5 , pp. 764-783
    • Streit, R.1    Luginbuhl, T.2
  • 56
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • M. Tipping and C. Bishop, "Mixtures of Probabilistic Principal Component Analyzers," Neural Computation, vol. 11, no. 2, pp. 443-482, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 58
    • 0032029288 scopus 로고    scopus 로고
    • Deterministic annealing EM algorithm
    • N. Ueda and R. Nakano, "Deterministic Annealing EM Algorithm," Neural Networks, vol. 11, pp. 271-282, 1998.
    • (1998) Neural Networks , vol.11 , pp. 271-282
    • Ueda, N.1    Nakano, R.2
  • 60
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and kolmogorov complexity
    • C. Wallace and D. Dowe, "Minimum Message Length and Kolmogorov Complexity," The Computer J., vol. 42, no. 4, pp. 270-283, 1999.
    • (1999) The Computer J. , vol.42 , Issue.4 , pp. 270-283
    • Wallace, C.1    Dowe, D.2
  • 61
    • 0000208682 scopus 로고
    • Estimation and inference via compact coding
    • C. Wallace and P. Freeman, "Estimation and Inference Via Compact Coding," J. Royal Statistical Soc. (B), vol. 49, no. 3, pp. 241-252, 1987.
    • (1987) J. Royal Statistical Soc. (B) , vol.49 , Issue.3 , pp. 241-252
    • Wallace, C.1    Freeman, P.2
  • 62
    • 84950442225 scopus 로고
    • Information ratios for validating mixture analysis
    • M. Whindham and A. Cutler, "Information Ratios for Validating Mixture Analysis," J. Am. Statistical Assoc., vol. 87, pp. 1188-1192, 1992.
    • (1992) J. Am. Statistical Assoc. , vol.87 , pp. 1188-1192
    • Whindham, M.1    Cutler, A.2
  • 63
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for gaussian mixtures
    • L. Xu and M. Jordan, "On Convergence Properties of the EM Algorithm for Gaussian Mixtures," Neural Computation, vol. 8, pp. 129-151, 1996.
    • (1996) Neural Computation , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.2
  • 64
    • 0002684291 scopus 로고
    • Maximal data information prior distributions
    • A. Aykac and C. Brumat, eds.; Amsterdam: North Holland
    • A. Zellner, "Maximal Data Information Prior Distributions," New Developments in the Applications of Bayesian Methods, A. Aykac and C. Brumat, eds., pp. 211-232, Amsterdam: North Holland, 1977.
    • (1977) New Developments in the Applications of Bayesian Methods , pp. 211-232
    • Zellner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.