-
1
-
-
84891873347
-
Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring
-
Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41(8), 3825-3830.
-
(2014)
Expert Systems with Applications
, vol.41
, Issue.8
, pp. 3825-3830
-
-
Abellán, J.1
Mantas, C.J.2
-
3
-
-
84893811951
-
Combining block-based and online methods in learning ensembles from concept drifting data streams
-
0
-
Brzezinski, D., & Stefanowski, J. (2014). Combining block-based and online methods in learning ensembles from concept drifting data streams. Information Sciences, 265(0), 50-67.
-
(2014)
Information Sciences
, vol.265
, pp. 50-67
-
-
Brzezinski, D.1
Stefanowski, J.2
-
4
-
-
84898932856
-
Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping
-
Caruana, R., Lawrence, S., & Giles, L., (2000). Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. In Proc. neural information processing systems conf. NIPS'00 (pp. 402-408).
-
(2000)
Proc. Neural Information Processing Systems Conf. NIPS'00
, pp. 402-408
-
-
Caruana, R.1
Lawrence, S.2
Giles, L.3
-
5
-
-
7444250934
-
Fast and light boosting for adaptive mining of data streams
-
Advances in knowledge discovery and data mining. Berlin Heidelberg: Springer
-
Chu, F., & Zaniolo, C. (2004). Fast and light boosting for adaptive mining of data streams. In Advances in knowledge discovery and data mining. Lecture notes in computer science (Vol. 3056, pp. 282-292). Berlin Heidelberg: Springer.
-
(2004)
Lecture Notes in Computer Science
, vol.3056
, pp. 282-292
-
-
Chu, F.1
Zaniolo, C.2
-
6
-
-
70449436537
-
Incremental learning in nonstationary environments with controlled forgetting
-
Elwell, R., & Polikar, R., (2009). Incremental learning in nonstationary environments with controlled forgetting. In Proc. of the int. joint conf. on neural networks (pp. 771-778).
-
(2009)
Proc. Of the Int. Joint Conf. On Neural Networks
, pp. 771-778
-
-
Elwell, R.1
Polikar, R.2
-
7
-
-
80053634784
-
Incremental learning of concept drift in nonstationary environments
-
Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonstationary environments. IEEE Transactions on Neural Networks, 22(10), 1517-1531.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, Issue.10
, pp. 1517-1531
-
-
Elwell, R.1
Polikar, R.2
-
8
-
-
84878825414
-
An adaptive ensemble classifier for mining concept drifting data streams
-
Farid, D. M., Zhang, L., Hossain, A., Rahman, C. M., Strachan, R., Sexton, G., & Dahal, K. (2013). An adaptive ensemble classifier for mining concept drifting data streams. Expert Systems with Applications, 40(15), 5895-5906.
-
(2013)
Expert Systems with Applications
, vol.40
, Issue.15
, pp. 5895-5906
-
-
Farid, D.M.1
Zhang, L.2
Hossain, A.3
Rahman, C.M.4
Strachan, R.5
Sexton, G.6
Dahal, K.7
-
9
-
-
44349146289
-
-
Secaucus, NJ, USA: Springer-Verlag New York, Inc.
-
Fortuna, L., Graziani, S., Rizzo, A., & Xibilia, M. G. (2006). Soft sensors for monitoring and control of industrial processes (advances in industrial control). Secaucus, NJ, USA: Springer-Verlag New York, Inc.
-
(2006)
Soft Sensors for Monitoring and Control of Industrial Processes (Advances in Industrial Control)
-
-
Fortuna, L.1
Graziani, S.2
Rizzo, A.3
Xibilia, M.G.4
-
10
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1-67.
-
(1991)
The Annals of Statistics
, vol.19
, Issue.1
, pp. 1-67
-
-
Friedman, J.H.1
-
11
-
-
84861963447
-
Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control
-
Galicia, H. J., He, Q. P., & Wang, J. (2012). Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control. Control Engineering Practice, 20(8), 747-760.
-
(2012)
Control Engineering Practice
, vol.20
, Issue.8
, pp. 747-760
-
-
Galicia, H.J.1
He, Q.P.2
Wang, J.3
-
12
-
-
80052097384
-
Product identification in industrial batch fermentation using a variable forgetting factor
-
Gjerkes, H., Malensek, J., Sitar, A., & Golobic, I. (2011). Product identification in industrial batch fermentation using a variable forgetting factor. Control Engineering Practice, 19(10), 1208-1215.
-
(2011)
Control Engineering Practice
, vol.19
, Issue.10
, pp. 1208-1215
-
-
Gjerkes, H.1
Malensek, J.2
Sitar, A.3
Golobic, I.4
-
13
-
-
84880339799
-
Adaptive soft sensor for online prediction and process monitoring based on a mixture of gaussian process models
-
0
-
Grbić, R., Slišković, D., & Kadlec, P. (2013). Adaptive soft sensor for online prediction and process monitoring based on a mixture of gaussian process models. Computers & Chemical Engineering, 58(0), 84-97.
-
(2013)
Computers & Chemical Engineering
, vol.58
, pp. 84-97
-
-
Grbić, R.1
Slišković, D.2
Kadlec, P.3
-
16
-
-
84905686213
-
Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes
-
0
-
Jin, H., Chen, X., Yang, J., & Wu, L. (2014). Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes. Computers & Chemical Engineering, 71(0), 77-93.
-
(2014)
Computers & Chemical Engineering
, vol.71
, pp. 77-93
-
-
Jin, H.1
Chen, X.2
Yang, J.3
Wu, L.4
-
17
-
-
79954599740
-
Local learning-based adaptive soft sensor for catalyst activation prediction
-
Kadlec, P., & Gabrys, B. (2011). Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE Journal, 57(5), 1288-1301.
-
(2011)
AIChE Journal
, vol.57
, Issue.5
, pp. 1288-1301
-
-
Kadlec, P.1
Gabrys, B.2
-
18
-
-
78649468188
-
Review of adaptation mechanisms for datadriven soft sensors
-
Kadlec, P., Grbić, R., & Gabrys, B. (2011). Review of adaptation mechanisms for datadriven soft sensors. Computers & Chemical Engineering, 35(1), 1-24.
-
(2011)
Computers & Chemical Engineering
, vol.35
, Issue.1
, pp. 1-24
-
-
Kadlec, P.1
Grbić, R.2
Gabrys, B.3
-
19
-
-
84903588321
-
Adaptive soft sensor based on online support vector regression and bayesian ensemble learning for various states in chemical plants
-
0
-
Kaneko, H., & Funatsu, K. (2014). Adaptive soft sensor based on online support vector regression and bayesian ensemble learning for various states in chemical plants. Chemometrics and Intelligent Laboratory Systems, 137(0), 57-66.
-
(2014)
Chemometrics and Intelligent Laboratory Systems
, vol.137
, pp. 57-66
-
-
Kaneko, H.1
Funatsu, K.2
-
20
-
-
31844453033
-
Using additive expert ensembles to cope with concept drift
-
New York, NY, USA: ACM
-
Kolter, J. Z., & Maloof, M. A. (2005). Using additive expert ensembles to cope with concept drift. In Proc. of the 22nd int. conf. on machine learning (pp. 449-456). New York, NY, USA: ACM.
-
(2005)
Proc. Of the 22nd Int. Conf. On Machine Learning
, pp. 449-456
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
21
-
-
77954299719
-
Ensemble of online sequential extreme learning machine
-
Lan, Y., Soh, Y. C., & Huang, G.-B. (2009). Ensemble of online sequential extreme learning machine. Neurocomputing, 72(13-15), 3391-3395.
-
(2009)
Neurocomputing
, vol.72
, Issue.13-15
, pp. 3391-3395
-
-
Lan, Y.1
Soh, Y.C.2
Huang, G.-B.3
-
22
-
-
34047174077
-
A fast and accurate online sequential learning algorithm for feedforward networks
-
Liang, N.-Y., Huang, G.-B., Saratchandran, P., & Sundararajan, N. (2006). A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 17(6), 1411-1423.
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.6
, pp. 1411-1423
-
-
Liang, N.-Y.1
Huang, G.-B.2
Saratchandran, P.3
Sundararajan, N.4
-
23
-
-
33847162850
-
A systematic approach for soft sensor development
-
Lin, B., Recke, B., Knudsen, J. K. H., & Jørgensen, S. B. (2007). A systematic approach for soft sensor development. Computers & Chemical Engineering, 31(5-6), 419-425.
-
(2007)
Computers & Chemical Engineering
, vol.31
, Issue.5-6
, pp. 419-425
-
-
Lin, B.1
Recke, B.2
Knudsen, J.K.H.3
Jørgensen, S.B.4
-
24
-
-
71349085411
-
Model optimization of SVM for a fermentation soft sensor
-
Liu, G., Zhou, D., Xu, H., & Mei, C. (2010). Model optimization of SVM for a fermentation soft sensor. Expert Systems with Applications, 37 (4), 2708-2713.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.4
, pp. 2708-2713
-
-
Liu, G.1
Zhou, D.2
Xu, H.3
Mei, C.4
-
25
-
-
84878657664
-
A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler
-
0
-
Lv, Y., Liu, J., Yang, T., & Zeng, D. (2013). A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler. Energy, 55 (0), 319-329.
-
(2013)
Energy
, vol.55
, pp. 319-329
-
-
Lv, Y.1
Liu, J.2
Yang, T.3
Zeng, D.4
-
26
-
-
84919807229
-
Novel associative classifier based on dynamic adaptive PSO: Application to determining candidates for thoracic surgery
-
Mangat, V., & Vig, R. (2014). Novel associative classifier based on dynamic adaptive PSO: Application to determining candidates for thoracic surgery. Expert Systems with Applications, 41(18), 8234-8244.
-
(2014)
Expert Systems with Applications
, vol.41
, Issue.18
, pp. 8234-8244
-
-
Mangat, V.1
Vig, R.2
-
27
-
-
84857738059
-
DDD: A new ensemble approach for dealing with concept drift
-
Minku, L. L., & Yao, X. (2012). DDD: A new ensemble approach for dealing with concept drift. IEEE Transactions on Knowledge and Data Engineering, 24(4), 619-633.
-
(2012)
IEEE Transactions on Knowledge and Data Engineering
, vol.24
, Issue.4
, pp. 619-633
-
-
Minku, L.L.1
Yao, X.2
-
28
-
-
84896913551
-
A localized adaptive soft sensor for dynamic system modeling
-
0
-
Ni, W., Brown, S. D., & Man, R. (2014). A localized adaptive soft sensor for dynamic system modeling. Chemical Engineering Science, 111(0), 350-363.
-
(2014)
Chemical Engineering Science
, vol.111
, pp. 350-363
-
-
Ni, W.1
Brown, S.D.2
Man, R.3
-
30
-
-
26444530040
-
ACE: Adaptive classifiers-ensemble system for concept-drifting environments
-
Multiple classifier systems. Berlin Heidelberg: Springer
-
Nishida, K., Yamauchi, K., & Omori, T. (2005). ACE: Adaptive classifiers-ensemble system for concept-drifting environments. In Multiple classifier systems. Lecture notes in computer science (Vol. 3541, pp. 176-185). Berlin Heidelberg: Springer.
-
(2005)
Lecture Notes in Computer Science
, vol.3541
, pp. 176-185
-
-
Nishida, K.1
Yamauchi, K.2
Omori, T.3
-
32
-
-
84884161251
-
Ensemble learning
-
C. Zhang & Y. Ma (Eds.), New York, NY, USA: Springer
-
Polikar, R. (2012). Ensemble learning. In C. Zhang & Y. Ma (Eds.), Ensemble machine learning: Methods and applications (pp. 1-34). New York, NY, USA: Springer.
-
(2012)
Ensemble Machine Learning: Methods and Applications
, pp. 1-34
-
-
Polikar, R.1
-
33
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Qin, S. J. (1998). Recursive PLS algorithms for adaptive data modeling. Computers & Chemical Engineering, 22(4-5), 503-514.
-
(1998)
Computers & Chemical Engineering
, vol.22
, Issue.4-5
, pp. 503-514
-
-
Qin, S.J.1
-
34
-
-
84949138748
-
-
Schimunek, B., Chalmers, J., Kettaneh-Wold, N., & Ho, T. T., (2008). Process drift recognition and solutions.
-
(2008)
Process Drift Recognition and Solutions
-
-
Schimunek, B.1
Chalmers, J.2
Kettaneh-Wold, N.3
Ho, T.T.4
-
35
-
-
33745780111
-
Experiments with AdaBoost. RT, an improved boosting scheme for regression
-
Shrestha, D. L., & Solomatine, D. P. (2006). Experiments with AdaBoost. RT, an improved boosting scheme for regression. Neural Computation, 18(7), 1678-1710.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1678-1710
-
-
Shrestha, D.L.1
Solomatine, D.P.2
-
36
-
-
84884161728
-
Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development
-
0
-
Soares, S., Antunes, C. H., & Araújo, R. (2013). Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development. Neurocomputing, 121(0), 498-511.
-
(2013)
Neurocomputing
, vol.121
, pp. 498-511
-
-
Soares, S.1
Antunes, C.H.2
Araújo, R.3
-
37
-
-
84910607774
-
An on-line weighted ensemble of regressor models to handle concept drifts
-
0
-
Soares, S. G., & Araújo, R. (2015). An on-line weighted ensemble of regressor models to handle concept drifts. Engineering Applications of Artificial Intelligence, 37(0), 392-406.
-
(2015)
Engineering Applications of Artificial Intelligence
, vol.37
, pp. 392-406
-
-
Soares, S.G.1
Araújo, R.2
-
38
-
-
80655146441
-
Design and application of soft sensor using ensemble methods
-
Soares, S., Araújo, R., Sousa, P., & Souza, F., (2011). Design and application of soft sensor using ensemble methods. In Proc. of the 16th IEEE int. conf. on emerging technologies and factory automation. ETFA'11 (pp. 1-8).
-
(2011)
Proc. Of the 16th IEEE Int. Conf. On Emerging Technologies and Factory Automation. ETFA'11
, pp. 1-8
-
-
Soares, S.1
Araújo, R.2
Sousa, P.3
Souza, F.4
-
39
-
-
26444562687
-
-
Tech. rep., The University of Dublin, Trinity College, Department of Computer Science, Dublin, Ireland
-
Tsymbal, A. (2004). The problem of concept drift: Definitions and related work. Tech. rep., The University of Dublin, Trinity College, Department of Computer Science, Dublin, Ireland.
-
(2004)
The Problem of Concept Drift: Definitions and Related Work
-
-
Tsymbal, A.1
-
40
-
-
84861186931
-
Chemical gas sensor drift compensation using classifier ensembles
-
0
-
Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L., & Huerta, R. (2012). Chemical gas sensor drift compensation using classifier ensembles. Sensors and Actuators B: Chemical, 166-167(0), 320-329.
-
(2012)
Sensors and Actuators B: Chemical
, vol.166-167
, pp. 320-329
-
-
Vergara, A.1
Vembu, S.2
Ayhan, T.3
Ryan, M.A.4
Homer, M.L.5
Huerta, R.6
-
41
-
-
79955579227
-
A novel identification method for hybrid (N)PLS dynamical systems with application to bioprocesses
-
von Stosch, M., Oliveira, R., Peres, J., & de Azevedo, S. F. (2011). A novel identification method for hybrid (N)PLS dynamical systems with application to bioprocesses. Expert Systems with Applications, 38(9), 10862-10874.
-
(2011)
Expert Systems with Applications
, vol.38
, Issue.9
, pp. 10862-10874
-
-
Von Stosch, M.1
Oliveira, R.2
Peres, J.3
De Azevedo, S.F.4
|