메뉴 건너뛰기




Volumn 42, Issue 6, 2015, Pages 2935-2948

A dynamic and on-line ensemble regression for changing environments

Author keywords

Concept drift; Ensemble learning; Learning in changing environments; Regression

Indexed keywords

REGRESSION ANALYSIS; SOCIAL NETWORKING (ONLINE); VIRTUAL REALITY;

EID: 84949117585     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2014.11.053     Document Type: Article
Times cited : (54)

References (41)
  • 1
    • 84891873347 scopus 로고    scopus 로고
    • Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring
    • Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41(8), 3825-3830.
    • (2014) Expert Systems with Applications , vol.41 , Issue.8 , pp. 3825-3830
    • Abellán, J.1    Mantas, C.J.2
  • 3
    • 84893811951 scopus 로고    scopus 로고
    • Combining block-based and online methods in learning ensembles from concept drifting data streams
    • 0
    • Brzezinski, D., & Stefanowski, J. (2014). Combining block-based and online methods in learning ensembles from concept drifting data streams. Information Sciences, 265(0), 50-67.
    • (2014) Information Sciences , vol.265 , pp. 50-67
    • Brzezinski, D.1    Stefanowski, J.2
  • 5
    • 7444250934 scopus 로고    scopus 로고
    • Fast and light boosting for adaptive mining of data streams
    • Advances in knowledge discovery and data mining. Berlin Heidelberg: Springer
    • Chu, F., & Zaniolo, C. (2004). Fast and light boosting for adaptive mining of data streams. In Advances in knowledge discovery and data mining. Lecture notes in computer science (Vol. 3056, pp. 282-292). Berlin Heidelberg: Springer.
    • (2004) Lecture Notes in Computer Science , vol.3056 , pp. 282-292
    • Chu, F.1    Zaniolo, C.2
  • 6
    • 70449436537 scopus 로고    scopus 로고
    • Incremental learning in nonstationary environments with controlled forgetting
    • Elwell, R., & Polikar, R., (2009). Incremental learning in nonstationary environments with controlled forgetting. In Proc. of the int. joint conf. on neural networks (pp. 771-778).
    • (2009) Proc. Of the Int. Joint Conf. On Neural Networks , pp. 771-778
    • Elwell, R.1    Polikar, R.2
  • 7
    • 80053634784 scopus 로고    scopus 로고
    • Incremental learning of concept drift in nonstationary environments
    • Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonstationary environments. IEEE Transactions on Neural Networks, 22(10), 1517-1531.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.10 , pp. 1517-1531
    • Elwell, R.1    Polikar, R.2
  • 10
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1-67.
    • (1991) The Annals of Statistics , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 11
    • 84861963447 scopus 로고    scopus 로고
    • Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control
    • Galicia, H. J., He, Q. P., & Wang, J. (2012). Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control. Control Engineering Practice, 20(8), 747-760.
    • (2012) Control Engineering Practice , vol.20 , Issue.8 , pp. 747-760
    • Galicia, H.J.1    He, Q.P.2    Wang, J.3
  • 12
    • 80052097384 scopus 로고    scopus 로고
    • Product identification in industrial batch fermentation using a variable forgetting factor
    • Gjerkes, H., Malensek, J., Sitar, A., & Golobic, I. (2011). Product identification in industrial batch fermentation using a variable forgetting factor. Control Engineering Practice, 19(10), 1208-1215.
    • (2011) Control Engineering Practice , vol.19 , Issue.10 , pp. 1208-1215
    • Gjerkes, H.1    Malensek, J.2    Sitar, A.3    Golobic, I.4
  • 13
    • 84880339799 scopus 로고    scopus 로고
    • Adaptive soft sensor for online prediction and process monitoring based on a mixture of gaussian process models
    • 0
    • Grbić, R., Slišković, D., & Kadlec, P. (2013). Adaptive soft sensor for online prediction and process monitoring based on a mixture of gaussian process models. Computers & Chemical Engineering, 58(0), 84-97.
    • (2013) Computers & Chemical Engineering , vol.58 , pp. 84-97
    • Grbić, R.1    Slišković, D.2    Kadlec, P.3
  • 16
    • 84905686213 scopus 로고    scopus 로고
    • Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes
    • 0
    • Jin, H., Chen, X., Yang, J., & Wu, L. (2014). Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes. Computers & Chemical Engineering, 71(0), 77-93.
    • (2014) Computers & Chemical Engineering , vol.71 , pp. 77-93
    • Jin, H.1    Chen, X.2    Yang, J.3    Wu, L.4
  • 17
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec, P., & Gabrys, B. (2011). Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE Journal, 57(5), 1288-1301.
    • (2011) AIChE Journal , vol.57 , Issue.5 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 18
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for datadriven soft sensors
    • Kadlec, P., Grbić, R., & Gabrys, B. (2011). Review of adaptation mechanisms for datadriven soft sensors. Computers & Chemical Engineering, 35(1), 1-24.
    • (2011) Computers & Chemical Engineering , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 19
    • 84903588321 scopus 로고    scopus 로고
    • Adaptive soft sensor based on online support vector regression and bayesian ensemble learning for various states in chemical plants
    • 0
    • Kaneko, H., & Funatsu, K. (2014). Adaptive soft sensor based on online support vector regression and bayesian ensemble learning for various states in chemical plants. Chemometrics and Intelligent Laboratory Systems, 137(0), 57-66.
    • (2014) Chemometrics and Intelligent Laboratory Systems , vol.137 , pp. 57-66
    • Kaneko, H.1    Funatsu, K.2
  • 20
    • 31844453033 scopus 로고    scopus 로고
    • Using additive expert ensembles to cope with concept drift
    • New York, NY, USA: ACM
    • Kolter, J. Z., & Maloof, M. A. (2005). Using additive expert ensembles to cope with concept drift. In Proc. of the 22nd int. conf. on machine learning (pp. 449-456). New York, NY, USA: ACM.
    • (2005) Proc. Of the 22nd Int. Conf. On Machine Learning , pp. 449-456
    • Kolter, J.Z.1    Maloof, M.A.2
  • 21
    • 77954299719 scopus 로고    scopus 로고
    • Ensemble of online sequential extreme learning machine
    • Lan, Y., Soh, Y. C., & Huang, G.-B. (2009). Ensemble of online sequential extreme learning machine. Neurocomputing, 72(13-15), 3391-3395.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 3391-3395
    • Lan, Y.1    Soh, Y.C.2    Huang, G.-B.3
  • 24
    • 71349085411 scopus 로고    scopus 로고
    • Model optimization of SVM for a fermentation soft sensor
    • Liu, G., Zhou, D., Xu, H., & Mei, C. (2010). Model optimization of SVM for a fermentation soft sensor. Expert Systems with Applications, 37 (4), 2708-2713.
    • (2010) Expert Systems with Applications , vol.37 , Issue.4 , pp. 2708-2713
    • Liu, G.1    Zhou, D.2    Xu, H.3    Mei, C.4
  • 25
    • 84878657664 scopus 로고    scopus 로고
    • A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler
    • 0
    • Lv, Y., Liu, J., Yang, T., & Zeng, D. (2013). A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler. Energy, 55 (0), 319-329.
    • (2013) Energy , vol.55 , pp. 319-329
    • Lv, Y.1    Liu, J.2    Yang, T.3    Zeng, D.4
  • 26
    • 84919807229 scopus 로고    scopus 로고
    • Novel associative classifier based on dynamic adaptive PSO: Application to determining candidates for thoracic surgery
    • Mangat, V., & Vig, R. (2014). Novel associative classifier based on dynamic adaptive PSO: Application to determining candidates for thoracic surgery. Expert Systems with Applications, 41(18), 8234-8244.
    • (2014) Expert Systems with Applications , vol.41 , Issue.18 , pp. 8234-8244
    • Mangat, V.1    Vig, R.2
  • 28
    • 84896913551 scopus 로고    scopus 로고
    • A localized adaptive soft sensor for dynamic system modeling
    • 0
    • Ni, W., Brown, S. D., & Man, R. (2014). A localized adaptive soft sensor for dynamic system modeling. Chemical Engineering Science, 111(0), 350-363.
    • (2014) Chemical Engineering Science , vol.111 , pp. 350-363
    • Ni, W.1    Brown, S.D.2    Man, R.3
  • 29
    • 38049021568 scopus 로고    scopus 로고
    • Adaptive classifiers-ensemble system for tracking concept drift
    • Nishida, K., & Yamauchi, K., (2007). Adaptive classifiers-ensemble system for tracking concept drift. In Int. conf. on machine learning and cybernetics. Vol. 6 (pp. 3607-3612).
    • (2007) Int. Conf. On Machine Learning and Cybernetics. , vol.6 , pp. 3607-3612
    • Nishida, K.1    Yamauchi, K.2
  • 30
    • 26444530040 scopus 로고    scopus 로고
    • ACE: Adaptive classifiers-ensemble system for concept-drifting environments
    • Multiple classifier systems. Berlin Heidelberg: Springer
    • Nishida, K., Yamauchi, K., & Omori, T. (2005). ACE: Adaptive classifiers-ensemble system for concept-drifting environments. In Multiple classifier systems. Lecture notes in computer science (Vol. 3541, pp. 176-185). Berlin Heidelberg: Springer.
    • (2005) Lecture Notes in Computer Science , vol.3541 , pp. 176-185
    • Nishida, K.1    Yamauchi, K.2    Omori, T.3
  • 32
    • 84884161251 scopus 로고    scopus 로고
    • Ensemble learning
    • C. Zhang & Y. Ma (Eds.), New York, NY, USA: Springer
    • Polikar, R. (2012). Ensemble learning. In C. Zhang & Y. Ma (Eds.), Ensemble machine learning: Methods and applications (pp. 1-34). New York, NY, USA: Springer.
    • (2012) Ensemble Machine Learning: Methods and Applications , pp. 1-34
    • Polikar, R.1
  • 33
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin, S. J. (1998). Recursive PLS algorithms for adaptive data modeling. Computers & Chemical Engineering, 22(4-5), 503-514.
    • (1998) Computers & Chemical Engineering , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 35
    • 33745780111 scopus 로고    scopus 로고
    • Experiments with AdaBoost. RT, an improved boosting scheme for regression
    • Shrestha, D. L., & Solomatine, D. P. (2006). Experiments with AdaBoost. RT, an improved boosting scheme for regression. Neural Computation, 18(7), 1678-1710.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1678-1710
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 36
    • 84884161728 scopus 로고    scopus 로고
    • Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development
    • 0
    • Soares, S., Antunes, C. H., & Araújo, R. (2013). Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development. Neurocomputing, 121(0), 498-511.
    • (2013) Neurocomputing , vol.121 , pp. 498-511
    • Soares, S.1    Antunes, C.H.2    Araújo, R.3
  • 37
    • 84910607774 scopus 로고    scopus 로고
    • An on-line weighted ensemble of regressor models to handle concept drifts
    • 0
    • Soares, S. G., & Araújo, R. (2015). An on-line weighted ensemble of regressor models to handle concept drifts. Engineering Applications of Artificial Intelligence, 37(0), 392-406.
    • (2015) Engineering Applications of Artificial Intelligence , vol.37 , pp. 392-406
    • Soares, S.G.1    Araújo, R.2
  • 39
    • 26444562687 scopus 로고    scopus 로고
    • Tech. rep., The University of Dublin, Trinity College, Department of Computer Science, Dublin, Ireland
    • Tsymbal, A. (2004). The problem of concept drift: Definitions and related work. Tech. rep., The University of Dublin, Trinity College, Department of Computer Science, Dublin, Ireland.
    • (2004) The Problem of Concept Drift: Definitions and Related Work
    • Tsymbal, A.1
  • 41
    • 79955579227 scopus 로고    scopus 로고
    • A novel identification method for hybrid (N)PLS dynamical systems with application to bioprocesses
    • von Stosch, M., Oliveira, R., Peres, J., & de Azevedo, S. F. (2011). A novel identification method for hybrid (N)PLS dynamical systems with application to bioprocesses. Expert Systems with Applications, 38(9), 10862-10874.
    • (2011) Expert Systems with Applications , vol.38 , Issue.9 , pp. 10862-10874
    • Von Stosch, M.1    Oliveira, R.2    Peres, J.3    De Azevedo, S.F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.