메뉴 건너뛰기




Volumn 47, Issue , 2013, Pages 88-107

Data-derived soft-sensors for biological wastewater treatment plants: An overview

Author keywords

Data driven models; Soft sensors; Wastewater treatment; Water quality monitoring

Indexed keywords

BIOLOGICAL WASTE WATER TREATMENT; BIOLOGICAL WASTEWATER TREATMENT PLANT; DATA-DRIVEN MODEL; PROCESS DIAGNOSTICS; PROCESS INFORMATION; SOFT SENSORS; SOFT-SENSING TECHNIQUE; WATER QUALITY MONITORING;

EID: 84879310945     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2013.05.009     Document Type: Review
Times cited : (227)

References (195)
  • 1
    • 0344453230 scopus 로고
    • Application of partial least-squares modelling in the optimization of a waste-water treatment plant
    • Aarnio P., Minkkinen P. Application of partial least-squares modelling in the optimization of a waste-water treatment plant. Anal. Chim. Acta 1986, 191:457-460.
    • (1986) Anal. Chim. Acta , vol.191 , pp. 457-460
    • Aarnio, P.1    Minkkinen, P.2
  • 2
    • 52949138733 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of continuous wastewater treatment plants
    • Aguado D., Rosen C. Multivariate statistical monitoring of continuous wastewater treatment plants. Eng. Appl. Artif. Intell. 2008, 53:1080-1091.
    • (2008) Eng. Appl. Artif. Intell. , vol.53 , pp. 1080-1091
    • Aguado, D.1    Rosen, C.2
  • 3
    • 33750734428 scopus 로고    scopus 로고
    • Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment
    • Aguado D., Ferrer A., Seco A., Ferrer J. Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment. Chemometr. Intell. Lab. 2006, 84:75-81.
    • (2006) Chemometr. Intell. Lab. , vol.84 , pp. 75-81
    • Aguado, D.1    Ferrer, A.2    Seco, A.3    Ferrer, J.4
  • 4
    • 33845485486 scopus 로고    scopus 로고
    • Multivariate SPC of a sequencing batch reactor for wastewater treatment
    • Aguado D., Ferrer A., Ferrer J., Seco A. Multivariate SPC of a sequencing batch reactor for wastewater treatment. Chemometr. Intell. Lab. 2007, 85:82-93.
    • (2007) Chemometr. Intell. Lab. , vol.85 , pp. 82-93
    • Aguado, D.1    Ferrer, A.2    Ferrer, J.3    Seco, A.4
  • 5
    • 34447537782 scopus 로고    scopus 로고
    • Process understanding of a wastewater batch reactor with block-wise PLS
    • Aguado D., Zarzo M., Seco A., Ferrer A. Process understanding of a wastewater batch reactor with block-wise PLS. Environmetrics 2007, 18:551-560.
    • (2007) Environmetrics , vol.18 , pp. 551-560
    • Aguado, D.1    Zarzo, M.2    Seco, A.3    Ferrer, A.4
  • 6
    • 58249091983 scopus 로고    scopus 로고
    • Amethodology for sequencing batch reactor identification with artificial neural networks: a case study
    • Aguado D., Ribes J., Montoya T., Ferrer J., Seco A. Amethodology for sequencing batch reactor identification with artificial neural networks: a case study. Comput. Chem. Eng. 2009, 33:465-472.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 465-472
    • Aguado, D.1    Ribes, J.2    Montoya, T.3    Ferrer, J.4    Seco, A.5
  • 7
    • 0020338469 scopus 로고
    • The process of classification and learning the meaning of linguistic descriptors of concepts
    • North-Holland Publishing Company, New York, M. Gupta, E. Sanchez (Eds.)
    • Aguilar-Martin J., López de Mántaras R. The process of classification and learning the meaning of linguistic descriptors of concepts. Approximate Reasoning in Decision Analysis 1982, 165-175. North-Holland Publishing Company, New York. M. Gupta, E. Sanchez (Eds.).
    • (1982) Approximate Reasoning in Decision Analysis , pp. 165-175
    • Aguilar-Martin, J.1    López de Mántaras, R.2
  • 8
    • 33646741559 scopus 로고    scopus 로고
    • Integrated soft sensor model for flow control
    • Äijälä G., Lumley D. Integrated soft sensor model for flow control. Wat. Sci. Tech. 2006, 53:473-482.
    • (2006) Wat. Sci. Tech. , vol.53 , pp. 473-482
    • Äijälä, G.1    Lumley, D.2
  • 12
    • 0033611717 scopus 로고    scopus 로고
    • Non-linear projection to latent structures revisited: the quadratic PLS algorithm
    • Baffi G., Martin E., Morris A. Non-linear projection to latent structures revisited: the quadratic PLS algorithm. Comput. Chem. Eng. 1999, 23:395-411.
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 395-411
    • Baffi, G.1    Martin, E.2    Morris, A.3
  • 13
    • 85000305072 scopus 로고    scopus 로고
    • Real-time fault detection and isolation in biological wastewater treatment plants
    • Baggiani F., Marsili-Libelli S. Real-time fault detection and isolation in biological wastewater treatment plants. Water Sci. Technol. 2009, 60:2949-2961.
    • (2009) Water Sci. Technol. , vol.60 , pp. 2949-2961
    • Baggiani, F.1    Marsili-Libelli, S.2
  • 15
    • 0037191667 scopus 로고    scopus 로고
    • Nonlinear PLS modeling with fuzzy inference system
    • Bang Y., Yoo C., Lee I.B. Nonlinear PLS modeling with fuzzy inference system. Chem. Int. Lab. Sys. 2003, 64:137-155.
    • (2003) Chem. Int. Lab. Sys. , vol.64 , pp. 137-155
    • Bang, Y.1    Yoo, C.2    Lee, I.B.3
  • 16
    • 70349592179 scopus 로고    scopus 로고
    • ALevenberg-Marquardt learning applied for recurrent neural identification and control of a wastewater treatment bioprocess
    • Baruch I.S., Mariaca-Gaspar C.R. ALevenberg-Marquardt learning applied for recurrent neural identification and control of a wastewater treatment bioprocess. Int. J. Intell. Syst. 2009, 24:1094-1114.
    • (2009) Int. J. Intell. Syst. , vol.24 , pp. 1094-1114
    • Baruch, I.S.1    Mariaca-Gaspar, C.R.2
  • 17
    • 84958970477 scopus 로고    scopus 로고
    • Adaptive neural control of nonlinear systems
    • Springer, Berlin, G. Dorffner, H. Bischof, K. Hornik (Eds.)
    • Baruch I., Flores J., Thomas F., Garrido R. Adaptive neural control of nonlinear systems. Artificial Neural Networks - ICANN 2001 2001, 930-936. Springer, Berlin. G. Dorffner, H. Bischof, K. Hornik (Eds.).
    • (2001) Artificial Neural Networks - ICANN 2001 , pp. 930-936
    • Baruch, I.1    Flores, J.2    Thomas, F.3    Garrido, R.4
  • 18
    • 13844296578 scopus 로고    scopus 로고
    • Adaptive recurrent neural network control of biological wastewater treatment
    • Baruch I.S., Georgieva P., Barrera-Cortes J. Adaptive recurrent neural network control of biological wastewater treatment. Int. J. Intell. Syst. 2005, 20:173-193.
    • (2005) Int. J. Intell. Syst. , vol.20 , pp. 173-193
    • Baruch, I.S.1    Georgieva, P.2    Barrera-Cortes, J.3
  • 19
    • 0032961142 scopus 로고    scopus 로고
    • Towards a model of input-output behaviour of wastewater treatment plants using soft computing techniques
    • Belanche L.A., Valdés J.J., Comas J., Roda I.R., Poch M. Towards a model of input-output behaviour of wastewater treatment plants using soft computing techniques. Environ. Model. Softw. 1999, 14:409-419.
    • (1999) Environ. Model. Softw. , vol.14 , pp. 409-419
    • Belanche, L.A.1    Valdés, J.J.2    Comas, J.3    Roda, I.R.4    Poch, M.5
  • 21
    • 0021583718 scopus 로고
    • FCM: the fuzzy c-means clustering algorithm
    • Bezdek J., Ehrlich R., Full W. FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10:191-203.
    • (1984) Comput. Geosci. , vol.10 , pp. 191-203
    • Bezdek, J.1    Ehrlich, R.2    Full, W.3
  • 22
    • 33646728374 scopus 로고    scopus 로고
    • Automatic detection of exogenous respiration end-point using artificial neural network
    • Bisschops I., Spanjers H., Keesman K. Automatic detection of exogenous respiration end-point using artificial neural network. Water Sci. Technol. 2006, 53:273-281.
    • (2006) Water Sci. Technol. , vol.53 , pp. 273-281
    • Bisschops, I.1    Spanjers, H.2    Keesman, K.3
  • 23
    • 0343380932 scopus 로고    scopus 로고
    • Indirect measurement of key water quality parameters in sewage treatment plants
    • Blom H.A. Indirect measurement of key water quality parameters in sewage treatment plants. J.Chemometr. 1996, 10:697-706.
    • (1996) J.Chemometr. , vol.10 , pp. 697-706
    • Blom, H.A.1
  • 24
    • 0026748143 scopus 로고
    • Application of neural networks to water and wastewater treatment plant operation
    • Boger Z. Application of neural networks to water and wastewater treatment plant operation. ISA T. 1992, 31:25-33.
    • (1992) ISA T. , vol.31 , pp. 25-33
    • Boger, Z.1
  • 25
    • 0034749693 scopus 로고    scopus 로고
    • Improving the efficiency of a wastewater treatment plant by fuzzy control and neural networks
    • Bongards M. Improving the efficiency of a wastewater treatment plant by fuzzy control and neural networks. Water Sci. Technol. 2001, 43:189-196.
    • (2001) Water Sci. Technol. , vol.43 , pp. 189-196
    • Bongards, M.1
  • 26
    • 78149352373 scopus 로고    scopus 로고
    • Modelling of wastewater treatment plant for monitoring and control purposes by state - space wavelet networks
    • Borowa A., Brdys M.A., Mazur K. Modelling of wastewater treatment plant for monitoring and control purposes by state - space wavelet networks. Int. J. Comput. Commun. Control 2007, 2:121-131.
    • (2007) Int. J. Comput. Commun. Control , vol.2 , pp. 121-131
    • Borowa, A.1    Brdys, M.A.2    Mazur, K.3
  • 27
    • 84894884147 scopus 로고    scopus 로고
    • Prediction of activated sludge filamentous bulking using ATP data and neural networks
    • Brault J.M., Labib R., Perrier M., Stuart P. Prediction of activated sludge filamentous bulking using ATP data and neural networks. Can. J. Chem. Eng. 2010, 9999:1-13.
    • (2010) Can. J. Chem. Eng. , vol.9999 , pp. 1-13
    • Brault, J.M.1    Labib, R.2    Perrier, M.3    Stuart, P.4
  • 28
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 29
    • 0030813663 scopus 로고    scopus 로고
    • PARAFAC: tutorial and applications
    • Bro R. PARAFAC: tutorial and applications. Chemometr. Intell. Lab. 1997, 38:149-171.
    • (1997) Chemometr. Intell. Lab. , vol.38 , pp. 149-171
    • Bro, R.1
  • 30
    • 78751528101 scopus 로고    scopus 로고
    • Aneural network approach for on-line fault detection of nitrogen sensors in alternated active sludge treatment plants
    • Caccavale F., Digiulio P., Iamarino M., Masi S., Pierri F. Aneural network approach for on-line fault detection of nitrogen sensors in alternated active sludge treatment plants. Water Sci. Technol. 2010, 62:2760-2768.
    • (2010) Water Sci. Technol. , vol.62 , pp. 2760-2768
    • Caccavale, F.1    Digiulio, P.2    Iamarino, M.3    Masi, S.4    Pierri, F.5
  • 31
    • 0026237454 scopus 로고
    • Sludge bulking analysis and forecasting: application of system identification and artificial neural computing technologies
    • Capodaglio A.G., Jones H.V., Novotny V., Feng X. Sludge bulking analysis and forecasting: application of system identification and artificial neural computing technologies. Water Res. 1991, 25:1217-1224.
    • (1991) Water Res. , vol.25 , pp. 1217-1224
    • Capodaglio, A.G.1    Jones, H.V.2    Novotny, V.3    Feng, X.4
  • 33
    • 75149148129 scopus 로고    scopus 로고
    • Software sensors are a real alternative to true sensors
    • Cecil D., Kozlowska M. Software sensors are a real alternative to true sensors. Environ. Model. Softw. 2010, 25:622-625.
    • (2010) Environ. Model. Softw. , vol.25 , pp. 622-625
    • Cecil, D.1    Kozlowska, M.2
  • 34
    • 0034847598 scopus 로고    scopus 로고
    • Ahybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process
    • Choi D.J., Park H. Ahybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process. Water Res. 2001, 35:3959-3967.
    • (2001) Water Res. , vol.35 , pp. 3959-3967
    • Choi, D.J.1    Park, H.2
  • 35
    • 22544446792 scopus 로고    scopus 로고
    • New tool for evaluation of performance of wastewater treatment plant: artificial neural network
    • Çinar Ö. New tool for evaluation of performance of wastewater treatment plant: artificial neural network. Process. Biochem. 2005, 40:2980-2984.
    • (2005) Process. Biochem. , vol.40 , pp. 2980-2984
    • Çinar, Ö.1
  • 36
    • 33745941576 scopus 로고    scopus 로고
    • Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network
    • Çinar Ö., Hasar H., Kinari C. Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network. J.Biotech. 2006, 123:204-209.
    • (2006) J.Biotech. , vol.123 , pp. 204-209
    • Çinar, Ö.1    Hasar, H.2    Kinari, C.3
  • 37
    • 38049083865 scopus 로고    scopus 로고
    • Modeling carbon and nitrogen removal in an industrial wastewater treatment plant using an adaptive network-based fuzzy inference system
    • Civelekoglu G., Perendeci A., Yigit N.O., Kitis M. Modeling carbon and nitrogen removal in an industrial wastewater treatment plant using an adaptive network-based fuzzy inference system. Clean - Soil, Air, Water 2007, 35:617-625.
    • (2007) Clean - Soil, Air, Water , vol.35 , pp. 617-625
    • Civelekoglu, G.1    Perendeci, A.2    Yigit, N.O.3    Kitis, M.4
  • 38
    • 48849089672 scopus 로고    scopus 로고
    • Neural networks complemented with genetic algorithms and fuzzy systems for predicting nitrogenous effluent variables in wastewater treatment plants
    • Clara N. Neural networks complemented with genetic algorithms and fuzzy systems for predicting nitrogenous effluent variables in wastewater treatment plants. WSEAS Trans. Syst. 2008, 7:695-705.
    • (2008) WSEAS Trans. Syst. , vol.7 , pp. 695-705
    • Clara, N.1
  • 42
    • 84872899419 scopus 로고    scopus 로고
    • Monitoring nitrate concentrations in the denitrifying post-filtration unit of a municipal wastewater treatment plant
    • Corona F., Mulas M., Haimi H., Sundell L., Heinonen M., Vahala R. Monitoring nitrate concentrations in the denitrifying post-filtration unit of a municipal wastewater treatment plant. J.Process. Contr. 2013, 23:158-170.
    • (2013) J.Process. Contr. , vol.23 , pp. 158-170
    • Corona, F.1    Mulas, M.2    Haimi, H.3    Sundell, L.4    Heinonen, M.5    Vahala, R.6
  • 43
    • 0028969090 scopus 로고
    • Dynamic modelling of the activated sludge process: improving prediction using neural networks
    • Côté M., Grandjean B.P.A., Lessard P., Thibault J. Dynamic modelling of the activated sludge process: improving prediction using neural networks. Water Res. 1995, 29:995-1004.
    • (1995) Water Res. , vol.29 , pp. 995-1004
    • Côté, M.1    Grandjean, B.P.A.2    Lessard, P.3    Thibault, J.4
  • 45
    • 0343449995 scopus 로고
    • Atheory for neural networks with time delays
    • Morgan Kaufmann Publishers Inc., San Mateo, R. Lippmann, J. Moody, D. Touretzky (Eds.)
    • de Vries B., Principe J. Atheory for neural networks with time delays. Advances in Neural Information Processing Systems 3 1991, 162-168. Morgan Kaufmann Publishers Inc., San Mateo. R. Lippmann, J. Moody, D. Touretzky (Eds.).
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 162-168
    • de Vries, B.1    Principe, J.2
  • 46
    • 49649118346 scopus 로고    scopus 로고
    • Predictive modeling for wastewater applications: linear and nonlinear approaches
    • Dellana S.A., West D. Predictive modeling for wastewater applications: linear and nonlinear approaches. Environ. Model. Softw. 2009, 24:96-106.
    • (2009) Environ. Model. Softw. , vol.24 , pp. 96-106
    • Dellana, S.A.1    West, D.2
  • 47
    • 77952889909 scopus 로고    scopus 로고
    • Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN)
    • Delnavaz M., Ayati B., Ganjidoust H. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN). J.Hazard. Mater. 2010, 179:769-775.
    • (2010) J.Hazard. Mater. , vol.179 , pp. 769-775
    • Delnavaz, M.1    Ayati, B.2    Ganjidoust, H.3
  • 49
    • 41549123713 scopus 로고    scopus 로고
    • An open distributed architecture for sensor networks for risk management
    • Douglas J., Usländer T., Schimak G., Esteban J., Denzer R. An open distributed architecture for sensor networks for risk management. Sensors 2008, 8:1755-1773.
    • (2008) Sensors , vol.8 , pp. 1755-1773
    • Douglas, J.1    Usländer, T.2    Schimak, G.3    Esteban, J.4    Denzer, R.5
  • 51
    • 84855195778 scopus 로고    scopus 로고
    • Data-driven modeling approaches to support wastewater treatment plant operation
    • Dürrenmatt D., Gujer W. Data-driven modeling approaches to support wastewater treatment plant operation. Environ. Model. Softw. 2012, 30:47-56.
    • (2012) Environ. Model. Softw. , vol.30 , pp. 47-56
    • Dürrenmatt, D.1    Gujer, W.2
  • 52
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J. Finding structure in time. Cogn. Sci. 1990, 14:179-211.
    • (1990) Cogn. Sci. , vol.14 , pp. 179-211
    • Elman, J.1
  • 54
    • 60649120410 scopus 로고    scopus 로고
    • Use of neurofuzzy networks to improve wastewater flow-rate forecasting
    • Fernandez F.J., Seco A., Ferrer J., Rodrigo M.A. Use of neurofuzzy networks to improve wastewater flow-rate forecasting. Environ. Model. Softw. 2009, 24:686-693.
    • (2009) Environ. Model. Softw. , vol.24 , pp. 686-693
    • Fernandez, F.J.1    Seco, A.2    Ferrer, J.3    Rodrigo, M.A.4
  • 55
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7:179-188.
    • (1936) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.1
  • 57
    • 0031211090 scopus 로고    scopus 로고
    • Adecision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., Schapire R. Adecision-theoretic generalization of on-line learning and an application to boosting. J.Comput. Syst. Sci. 1997, 55:119-139.
    • (1997) J.Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 58
    • 0028952467 scopus 로고
    • System identification and real-time pattern recognition by neural networks for an activated sludge process
    • Fu C., Poch M. System identification and real-time pattern recognition by neural networks for an activated sludge process. Environ. Int. 1995, 21:57-69.
    • (1995) Environ. Int. , vol.21 , pp. 57-69
    • Fu, C.1    Poch, M.2
  • 59
    • 0033204743 scopus 로고    scopus 로고
    • Neural networks applied to fault detection of a biotechnological process
    • Fuente M.J., Vega P. Neural networks applied to fault detection of a biotechnological process. Eng. Appl. Artif. Intell. 1999, 12:569-584.
    • (1999) Eng. Appl. Artif. Intell. , vol.12 , pp. 569-584
    • Fuente, M.J.1    Vega, P.2
  • 60
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J. 2009, 55:1754-1765.
    • (2009) AIChE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 63
    • 29144432300 scopus 로고    scopus 로고
    • End-point detection of the aerobic phase in a biological reactor using SOM and clustering algorithms
    • González I.M., López García H. End-point detection of the aerobic phase in a biological reactor using SOM and clustering algorithms. Eng. Appl. Artif. Intell. 2006, 19:19-28.
    • (2006) Eng. Appl. Artif. Intell. , vol.19 , pp. 19-28
    • González, I.M.1    López García, H.2
  • 64
    • 37249067172 scopus 로고    scopus 로고
    • New mathematical procedure for the automatic estimation of influent characteristics in WWTPs
    • Grau P., Beltrán S., de Gracia M., Ayesa E. New mathematical procedure for the automatic estimation of influent characteristics in WWTPs. Water Sci. Technol. 2007, 56:95-106.
    • (2007) Water Sci. Technol. , vol.56 , pp. 95-106
    • Grau, P.1    Beltrán, S.2    de Gracia, M.3    Ayesa, E.4
  • 65
    • 29144439121 scopus 로고    scopus 로고
    • KSOM and MLP neural networks for on-line estimating the efficiency of an activated sludge process
    • Grieu S., Thiery F., Traoré A., Nguyen T.P., Barreau M., Polit M. KSOM and MLP neural networks for on-line estimating the efficiency of an activated sludge process. Chem. Eng. J. 2006, 116:1-11.
    • (2006) Chem. Eng. J. , vol.116 , pp. 1-11
    • Grieu, S.1    Thiery, F.2    Traoré, A.3    Nguyen, T.P.4    Barreau, M.5    Polit, M.6
  • 67
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J.Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J.Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 68
    • 0029900210 scopus 로고    scopus 로고
    • Estimation of wastewater process parameters using neural networks
    • Häck M., Köhne M. Estimation of wastewater process parameters using neural networks. Water Sci. Technol. 1996, 33:101-115.
    • (1996) Water Sci. Technol. , vol.33 , pp. 101-115
    • Häck, M.1    Köhne, M.2
  • 69
    • 3342965223 scopus 로고    scopus 로고
    • Prediction of wastewater treatment plant performance using artificial neural networks
    • Hamed M.M., Khalafallah M.G., Hassanien E.A. Prediction of wastewater treatment plant performance using artificial neural networks. Environ. Model. Softw. 2004, 19:919-928.
    • (2004) Environ. Model. Softw. , vol.19 , pp. 919-928
    • Hamed, M.M.1    Khalafallah, M.G.2    Hassanien, E.A.3
  • 70
    • 0032727764 scopus 로고    scopus 로고
    • Integrated wastewater treatment plant performance evaluation using artificial neural networks
    • Hamoda M.F., Al-Ghusain I.A., Hassan A.H. Integrated wastewater treatment plant performance evaluation using artificial neural networks. Water Sci. Technol. 1999, 40:55-65.
    • (1999) Water Sci. Technol. , vol.40 , pp. 55-65
    • Hamoda, M.F.1    Al-Ghusain, I.A.2    Hassan, A.H.3
  • 71
    • 34447309364 scopus 로고    scopus 로고
    • Prediction of chemical oxygen demand (COD) based on wavelet decomposition and neural networks
    • Hanbay D., Turkoglu I., Demir Y. Prediction of chemical oxygen demand (COD) based on wavelet decomposition and neural networks. Clean - Soil, Air, Water 2007, 35:250-254.
    • (2007) Clean - Soil, Air, Water , vol.35 , pp. 250-254
    • Hanbay, D.1    Turkoglu, I.2    Demir, Y.3
  • 72
    • 0001138328 scopus 로고
    • Ak-means clustering algorithm
    • Hartigan J., Wong M. Ak-means clustering algorithm. Appl. Stat. 1979, 28:100-108.
    • (1979) Appl. Stat. , vol.28 , pp. 100-108
    • Hartigan, J.1    Wong, M.2
  • 73
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference, and Prediction
    • Springer
    • Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics 2009, Springer. second ed.
    • (2009) Springer Series in Statistics
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 77
    • 82455198610 scopus 로고    scopus 로고
    • Subtraction analysis based on self-organizing maps for an industrial wastewater treatment process
    • Heikkinen M., Poutiainen H., Liukkonen M., Heikkinen T., Hiltunen Y. Subtraction analysis based on self-organizing maps for an industrial wastewater treatment process. Math. Comput. Simulat. 2011, 82:450-459.
    • (2011) Math. Comput. Simulat. , vol.82 , pp. 450-459
    • Heikkinen, M.1    Poutiainen, H.2    Liukkonen, M.3    Heikkinen, T.4    Hiltunen, Y.5
  • 79
    • 77954860904 scopus 로고    scopus 로고
    • Anomaly detection in streaming environmental data: a data-driven modeling approach
    • Hill D., Minsker B. Anomaly detection in streaming environmental data: a data-driven modeling approach. Environ. Model. Softw. 2010, 25:1014-1022.
    • (2010) Environ. Model. Softw. , vol.25 , pp. 1014-1022
    • Hill, D.1    Minsker, B.2
  • 80
    • 79551660724 scopus 로고    scopus 로고
    • Real-time Bayesian anomaly detection in streaming environmental data
    • Hill D., Minsker B., Amir E. Real-time Bayesian anomaly detection in streaming environmental data. Water Resour. Res. 2009, 45. 10.1029/2008WR006956.
    • (2009) Water Resour. Res. , vol.45
    • Hill, D.1    Minsker, B.2    Amir, E.3
  • 81
    • 0037399368 scopus 로고    scopus 로고
    • Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis
    • Hong Y.S.T., Rosen M.R., Bhamidimarri R. Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis. Water Res. 2003, 37:1608-1618.
    • (2003) Water Res. , vol.37 , pp. 1608-1618
    • Hong, Y.S.T.1    Rosen, M.R.2    Bhamidimarri, R.3
  • 82
    • 34249743593 scopus 로고    scopus 로고
    • Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks
    • Hong S.H., Lee M.W., Lee D.S., Park J.M. Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks. Biochem. Eng. J. 2007, 35:365-370.
    • (2007) Biochem. Eng. J. , vol.35 , pp. 365-370
    • Hong, S.H.1    Lee, M.W.2    Lee, D.S.3    Park, J.M.4
  • 83
    • 0000107975 scopus 로고
    • Relations between two sets of variants
    • Hotelling H. Relations between two sets of variants. Biometrika 1936, 28:321-377.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 84
    • 77958175011 scopus 로고    scopus 로고
    • Afast predicting neural fuzzy model for on-line estimation of nutrient dynamics in an anoxic/oxic process
    • Huang M.Z., Wan J.Q., Ma Y.W., Li W.J., Sun X.F., Wan Y. Afast predicting neural fuzzy model for on-line estimation of nutrient dynamics in an anoxic/oxic process. Bioresour. Technol. 2010, 101:1642-1651.
    • (2010) Bioresour. Technol. , vol.101 , pp. 1642-1651
    • Huang, M.Z.1    Wan, J.Q.2    Ma, Y.W.3    Li, W.J.4    Sun, X.F.5    Wan, Y.6
  • 86
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE T. Syst. Man. Cy 1993, 23:665-685.
    • (1993) IEEE T. Syst. Man. Cy , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 89
    • 79551647814 scopus 로고    scopus 로고
    • Ph.D. thesis, Bournemouth University, School of Design, Engineering & Computing, Bournemouth, UK
    • Kadlec P. On Robust and Adaptive Soft Sensors 2009, Ph.D. thesis, Bournemouth University, School of Design, Engineering & Computing, Bournemouth, UK.
    • (2009) On Robust and Adaptive Soft Sensors
    • Kadlec, P.1
  • 91
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 92
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P., Gabrys B., Grbić R. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2011, 35:1-24.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Gabrys, B.2    Grbić, R.3
  • 94
    • 80051703942 scopus 로고    scopus 로고
    • Modeling of biological water and wastewater treatment processes using artificial neural networks
    • Khataee A.R., Kasiri M.B. Modeling of biological water and wastewater treatment processes using artificial neural networks. Clean - Soil, Air, Water 2011, 39:742-749.
    • (2011) Clean - Soil, Air, Water , vol.39 , pp. 742-749
    • Khataee, A.R.1    Kasiri, M.B.2
  • 95
    • 69749089289 scopus 로고    scopus 로고
    • Asystematic approach to data-driven modeling and soft sensing in a full-scale plant
    • Kim M.H., Kim Y.S., Prabu A.A., Yoo C.K. Asystematic approach to data-driven modeling and soft sensing in a full-scale plant. Water Sci. Technol. 2009, 60:363-370.
    • (2009) Water Sci. Technol. , vol.60 , pp. 363-370
    • Kim, M.H.1    Kim, Y.S.2    Prabu, A.A.3    Yoo, C.K.4
  • 96
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 101
    • 0037142398 scopus 로고    scopus 로고
    • Hybrid neural network modeling of a full-scale industrial wastewater treatment process
    • Lee D.S., Jeon C.O., Park J.M., Chang K.S. Hybrid neural network modeling of a full-scale industrial wastewater treatment process. Biotechnol. Bioeng. 2002, 78:670-682.
    • (2002) Biotechnol. Bioeng. , vol.78 , pp. 670-682
    • Lee, D.S.1    Jeon, C.O.2    Park, J.M.3    Chang, K.S.4
  • 102
    • 1142309573 scopus 로고    scopus 로고
    • Sensor fault identification based on time-lagged PCA in dynamic processes
    • Lee C., Choi S.W., Lee I.B. Sensor fault identification based on time-lagged PCA in dynamic processes. Chemometr. Intell. Lab. 2004, 70:165-178.
    • (2004) Chemometr. Intell. Lab. , vol.70 , pp. 165-178
    • Lee, C.1    Choi, S.W.2    Lee, I.B.3
  • 103
    • 18944372441 scopus 로고    scopus 로고
    • Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant
    • Lee D.S., Vanrolleghem P.A., Park J.M. Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant. J.Biotechnol. 2005, 115:317-328.
    • (2005) J.Biotechnol. , vol.115 , pp. 317-328
    • Lee, D.S.1    Vanrolleghem, P.A.2    Park, J.M.3
  • 104
    • 33644619997 scopus 로고    scopus 로고
    • Sensor fault diagnosis in a wastewater treatment process
    • Lee C., Choi S.W., Lee I.B. Sensor fault diagnosis in a wastewater treatment process. Water Sci. Technol. 2006, 53:251-257.
    • (2006) Water Sci. Technol. , vol.53 , pp. 251-257
    • Lee, C.1    Choi, S.W.2    Lee, I.B.3
  • 105
    • 33847335454 scopus 로고    scopus 로고
    • Robust adaptive partial least squares modeling of a full-scale industrial wastewater treatment process
    • Lee H.W., Lee M.W., Park J.M. Robust adaptive partial least squares modeling of a full-scale industrial wastewater treatment process. Ind. Eng. Chem. Res. 2007, 46:955-964.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 955-964
    • Lee, H.W.1    Lee, M.W.2    Park, J.M.3
  • 106
    • 50449095583 scopus 로고    scopus 로고
    • Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors
    • Lee M.W., Hong S.H., Choi H., Kim J.H., Lee D.S., Park J.M. Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors. Process. Biochem. 2008, 43:1107-1113.
    • (2008) Process. Biochem. , vol.43 , pp. 1107-1113
    • Lee, M.W.1    Hong, S.H.2    Choi, H.3    Kim, J.H.4    Lee, D.S.5    Park, J.M.6
  • 107
    • 69349084795 scopus 로고    scopus 로고
    • Multi-scale extension of PLS algorithm for advanced on-line process monitoring
    • Lee H.W., Lee M.W., Park J.M. Multi-scale extension of PLS algorithm for advanced on-line process monitoring. Chemometr. Intell. Lab. 2009, 98:201-212.
    • (2009) Chemometr. Intell. Lab. , vol.98 , pp. 201-212
    • Lee, H.W.1    Lee, M.W.2    Park, J.M.3
  • 109
    • 0036209691 scopus 로고    scopus 로고
    • Adaptive multiscale principal components analysis for online monitoring of wastewater treatment
    • Lennox J., Rosen C. Adaptive multiscale principal components analysis for online monitoring of wastewater treatment. Water Sci. Technol. 2002, 45:227-235.
    • (2002) Water Sci. Technol. , vol.45 , pp. 227-235
    • Lennox, J.1    Rosen, C.2
  • 113
    • 0036210497 scopus 로고    scopus 로고
    • On-line instrument confirmation: how can we check that our instruments are working?
    • Lumley D. On-line instrument confirmation: how can we check that our instruments are working?. Water Sci. Technol. 2002, 53:469-476.
    • (2002) Water Sci. Technol. , vol.53 , pp. 469-476
    • Lumley, D.1
  • 115
    • 0025522027 scopus 로고
    • Adaptive estimation of bioactivities in the activated sludge process
    • Marsili-Libelli S. Adaptive estimation of bioactivities in the activated sludge process. IEE Proc-D 1990, 137:349-356.
    • (1990) IEE Proc-D , vol.137 , pp. 349-356
    • Marsili-Libelli, S.1
  • 116
    • 33344458202 scopus 로고    scopus 로고
    • Control of SBR switching by fuzzy pattern recognitions
    • Marsili-Libelli S. Control of SBR switching by fuzzy pattern recognitions. Water Res. 2006, 40:1095-1107.
    • (2006) Water Res. , vol.40 , pp. 1095-1107
    • Marsili-Libelli, S.1
  • 117
    • 0030131491 scopus 로고    scopus 로고
    • Adaptive fuzzy pattern recognition in the anaerobic digestion process
    • Marsili-Libelli S., Müller A. Adaptive fuzzy pattern recognition in the anaerobic digestion process. Pattern Recogn. Lett. 1996, 17:651-659.
    • (1996) Pattern Recogn. Lett. , vol.17 , pp. 651-659
    • Marsili-Libelli, S.1    Müller, A.2
  • 119
    • 4444352202 scopus 로고    scopus 로고
    • Multivariate monitoring of a biological wastewater treatment process: a case study at Melbourne water's western treatment plant
    • Miettinen T., Hurse T.J., Connor M.A., Reinikainen S.P., Minkkinen Multivariate monitoring of a biological wastewater treatment process: a case study at Melbourne water's western treatment plant. Chemometr. Intell. Lab. 2004, 73:131-138.
    • (2004) Chemometr. Intell. Lab. , vol.73 , pp. 131-138
    • Miettinen, T.1    Hurse, T.J.2    Connor, M.A.3    Reinikainen, S.P.4    Minkkinen5
  • 120
    • 33846897687 scopus 로고    scopus 로고
    • Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance
    • Mjalli F.S., Al-Asheh S., Alfadala H.E. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. J.Environ. Manage. 2007, 83:329-338.
    • (2007) J.Environ. Manage. , vol.83 , pp. 329-338
    • Mjalli, F.S.1    Al-Asheh, S.2    Alfadala, H.E.3
  • 121
    • 0003475268 scopus 로고
    • volume EPA-600/2-76-198 of Environmental Protection Technology, U.S. Environmental Protection Agency, Office of Research and Development, Municipal Environmental Research Laboratory
    • Molvar A.E., Roesler J.F., Babcock R.H. Instrumentation and Automation Experiences in Wastewater-treatment Facilities 1976, volume EPA-600/2-76-198 of Environmental Protection Technology, U.S. Environmental Protection Agency, Office of Research and Development, Municipal Environmental Research Laboratory.
    • (1976) Instrumentation and Automation Experiences in Wastewater-treatment Facilities
    • Molvar, A.E.1    Roesler, J.F.2    Babcock, R.H.3
  • 122
    • 56249119537 scopus 로고    scopus 로고
    • Identification of process operating state with operational map in municipal wastewater treatment plant
    • Moon T.S., Kim Y.J., Kim J.R., Cha J.H., Kim D.H., Kim C.W. Identification of process operating state with operational map in municipal wastewater treatment plant. J.Environ. Manage. 2009, 90:772-778.
    • (2009) J.Environ. Manage. , vol.90 , pp. 772-778
    • Moon, T.S.1    Kim, Y.J.2    Kim, J.R.3    Cha, J.H.4    Kim, D.H.5    Kim, C.W.6
  • 123
    • 47849094032 scopus 로고    scopus 로고
    • Modeling of the activated sludge process by using artificial neural networks with automated architecture screening
    • Moral H., Aksoy A., Gokcay C.F. Modeling of the activated sludge process by using artificial neural networks with automated architecture screening. Comput. Chem. Eng. 2008, 32:2471-2478.
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 2471-2478
    • Moral, H.1    Aksoy, A.2    Gokcay, C.F.3
  • 125
    • 0032490622 scopus 로고    scopus 로고
    • Modeling of activated sludge plants treatment efficiency with PLSR: a process analytical case study
    • Mujunen S.P., Minkkinen P., Teppola P., Wirkkala R.S. Modeling of activated sludge plants treatment efficiency with PLSR: a process analytical case study. Chemometr. Intell. Lab. 1998, 41:83-94.
    • (1998) Chemometr. Intell. Lab. , vol.41 , pp. 83-94
    • Mujunen, S.P.1    Minkkinen, P.2    Teppola, P.3    Wirkkala, R.S.4
  • 127
    • 84857109831 scopus 로고    scopus 로고
    • ICA and me - a subjective review
    • Olsson G. ICA and me - a subjective review. Water Res. 2012, 46:1585-1626.
    • (2012) Water Res. , vol.46 , pp. 1585-1626
    • Olsson, G.1
  • 128
    • 0041622872 scopus 로고    scopus 로고
    • Application of information technology to decision support in treatment plant operation
    • Olsson G., Newell B., Rosen C., Ingildsen P. Application of information technology to decision support in treatment plant operation. Water Sci. Technol. 2003, 47:35-42.
    • (2003) Water Sci. Technol. , vol.47 , pp. 35-42
    • Olsson, G.1    Newell, B.2    Rosen, C.3    Ingildsen, P.4
  • 130
    • 34447509444 scopus 로고    scopus 로고
    • Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent
    • Pai T.Y., Tsai Y.P., Lo H.M., Tsai C.H., Lin C.Y. Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent. Comput. Chem. Eng. 2007, 31:1272-1281.
    • (2007) Comput. Chem. Eng. , vol.31 , pp. 1272-1281
    • Pai, T.Y.1    Tsai, Y.P.2    Lo, H.M.3    Tsai, C.H.4    Lin, C.Y.5
  • 131
    • 53649106857 scopus 로고    scopus 로고
    • Comparisons of grey and neural network prediction of industrial park wastewater effluent using influent quality and online monitoring parameters
    • Pai T.Y., Chuang S.H., Wan T.J., Lo H.M., Tsai Y.P., Su H.C., Yu L.F., Hu H.C., Sung P.J. Comparisons of grey and neural network prediction of industrial park wastewater effluent using influent quality and online monitoring parameters. Environ. Monit. Assess. 2008, 146:51-66.
    • (2008) Environ. Monit. Assess. , vol.146 , pp. 51-66
    • Pai, T.Y.1    Chuang, S.H.2    Wan, T.J.3    Lo, H.M.4    Tsai, Y.P.5    Su, H.C.6    Yu, L.F.7    Hu, H.C.8    Sung, P.J.9
  • 135
    • 4444375164 scopus 로고    scopus 로고
    • Treatment of pulp and paper mill wastewater - a review
    • Pokhrel D., Viraraghavan T. Treatment of pulp and paper mill wastewater - a review. Sci. Total Environ. 2004, 333:37-58.
    • (2004) Sci. Total Environ. , vol.333 , pp. 37-58
    • Pokhrel, D.1    Viraraghavan, T.2
  • 136
  • 137
    • 0003147964 scopus 로고
    • Use of artificial neural networks: predicting trickling filter performance in a municipal wastewater treatment plant
    • Pu H.C., Hung Y.T. Use of artificial neural networks: predicting trickling filter performance in a municipal wastewater treatment plant. Environ. Manage. Health 1995, 6:16-27.
    • (1995) Environ. Manage. Health , vol.6 , pp. 16-27
    • Pu, H.C.1    Hung, Y.T.2
  • 138
    • 19844364728 scopus 로고    scopus 로고
    • Development and implementation of a real-time control system for nitrogen removal using OUR and ORP as end points
    • Puig S., Corominas L., Vives M., Balaguer M., Colprim J., Colomer J. Development and implementation of a real-time control system for nitrogen removal using OUR and ORP as end points. Ind. Eng. Chem. Res. 2005, 44:3367-3373.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 3367-3373
    • Puig, S.1    Corominas, L.2    Vives, M.3    Balaguer, M.4    Colprim, J.5    Colomer, J.6
  • 139
    • 84879317467 scopus 로고    scopus 로고
    • The chemical oxygen demand modelling based on a dynamic structure neural network
    • InTech, F.S.G. Einschlag (Ed.)
    • Qiao J., Chen Q., Han H. The chemical oxygen demand modelling based on a dynamic structure neural network. Waste Water - Evaluation and Management 2011, InTech. F.S.G. Einschlag (Ed.).
    • (2011) Waste Water - Evaluation and Management
    • Qiao, J.1    Chen, Q.2    Han, H.3
  • 140
    • 0026853320 scopus 로고
    • Nonlinear PLS modeling using neural networks
    • Qin S., McAvoy T. Nonlinear PLS modeling using neural networks. Comput. Chem. Eng. 1992, 16:379-391.
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 379-391
    • Qin, S.1    McAvoy, T.2
  • 141
    • 33947712235 scopus 로고    scopus 로고
    • Artificial neural networks for rapid WWTP performance evaluation: methodology and case study
    • Ráduly B., Gernaey K.V., Capodaglio A.G., Mikkelsen P.S., Henze M. Artificial neural networks for rapid WWTP performance evaluation: methodology and case study. Environ. Model. Softw. 2007, 22:1208-1216.
    • (2007) Environ. Model. Softw. , vol.22 , pp. 1208-1216
    • Ráduly, B.1    Gernaey, K.V.2    Capodaglio, A.G.3    Mikkelsen, P.S.4    Henze, M.5
  • 142
    • 77953151580 scopus 로고    scopus 로고
    • Data reconciliation for wastewater treatment plant simulation studies - planning for high-quality data and typical sources of errors
    • Rieger L., Takács I., Villez K., Siegrist H., Lessard P., Vanrolleghem P.A., Comeau Y. Data reconciliation for wastewater treatment plant simulation studies - planning for high-quality data and typical sources of errors. Water Environ. Res. 2010, 82:426-433.
    • (2010) Water Environ. Res. , vol.82 , pp. 426-433
    • Rieger, L.1    Takács, I.2    Villez, K.3    Siegrist, H.4    Lessard, P.5    Vanrolleghem, P.A.6    Comeau, Y.7
  • 144
    • 15844418455 scopus 로고    scopus 로고
    • Identifying outliers in correlated water quality data
    • Robinson R.B., Cox C.D., Odom K. Identifying outliers in correlated water quality data. J.Environ. Eng. 2005, 131:651-657.
    • (2005) J.Environ. Eng. , vol.131 , pp. 651-657
    • Robinson, R.B.1    Cox, C.D.2    Odom, K.3
  • 146
    • 0034908862 scopus 로고    scopus 로고
    • Multivariate and multiscale monitoring of wastewater treatment operation
    • Rosen C., Lennox J.A. Multivariate and multiscale monitoring of wastewater treatment operation. Water Res. 2001, 35:3402-3410.
    • (2001) Water Res. , vol.35 , pp. 3402-3410
    • Rosen, C.1    Lennox, J.A.2
  • 147
    • 0031757693 scopus 로고    scopus 로고
    • Disturbance detection in wastewater treatment plants
    • Rosen C., Olsson G. Disturbance detection in wastewater treatment plants. Water Sci. Technol. 1998, 37:197-205.
    • (1998) Water Sci. Technol. , vol.37 , pp. 197-205
    • Rosen, C.1    Olsson, G.2
  • 148
    • 0035013208 scopus 로고    scopus 로고
    • Supervisory control of wastewater treatment plants by combining principal component analysis and fuzzy c-means clustering
    • Rosen C., Yuan Z. Supervisory control of wastewater treatment plants by combining principal component analysis and fuzzy c-means clustering. Water Sci. Technol. 2001, 43:147-156.
    • (2001) Water Sci. Technol. , vol.43 , pp. 147-156
    • Rosen, C.1    Yuan, Z.2
  • 149
    • 0036204225 scopus 로고    scopus 로고
    • Aframework for extreme-event control in wastewater treatment
    • Rosen C., Larsson M., Jeppsson U., Yuan Z. Aframework for extreme-event control in wastewater treatment. Water Sci. Technol. 2002, 45:299-308.
    • (2002) Water Sci. Technol. , vol.45 , pp. 299-308
    • Rosen, C.1    Larsson, M.2    Jeppsson, U.3    Yuan, Z.4
  • 150
    • 0242418167 scopus 로고    scopus 로고
    • Multivariate on-line monitoring: challenges and solutions for modern wastewater treatment operation
    • Rosen C., Röttorp J., Jeppsson U. Multivariate on-line monitoring: challenges and solutions for modern wastewater treatment operation. Water Sci. Technol. 2003, 47:171-179.
    • (2003) Water Sci. Technol. , vol.47 , pp. 171-179
    • Rosen, C.1    Röttorp, J.2    Jeppsson, U.3
  • 151
    • 12344271339 scopus 로고    scopus 로고
    • Towards a common benchmark for long-term process control and monitoring performance evaluation
    • Rosen C., Jeppsson U., Vanrolleghem P.A. Towards a common benchmark for long-term process control and monitoring performance evaluation. Water Sci. Technol. 2004, 50:41-49.
    • (2004) Water Sci. Technol. , vol.50 , pp. 41-49
    • Rosen, C.1    Jeppsson, U.2    Vanrolleghem, P.A.3
  • 152
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel hilbert space
    • Rosipal R., Trejo L.J. Kernel partial least squares regression in reproducing kernel hilbert space. J.Mach. Learn. Res. 2001, 2:97-123.
    • (2001) J.Mach. Learn. Res. , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 156
    • 34547875061 scopus 로고    scopus 로고
    • Replacing outliers and missing values from activated sludge data using Kohonen self-organizing map
    • Rustum R., Adeloye A.J. Replacing outliers and missing values from activated sludge data using Kohonen self-organizing map. J.Environ. Eng. 2007, 133:909-916.
    • (2007) J.Environ. Eng. , vol.133 , pp. 909-916
    • Rustum, R.1    Adeloye, A.J.2
  • 157
    • 39749167837 scopus 로고    scopus 로고
    • Applying Kohonen self-organizing map as a software sensor to predict biochemical oxygen demand
    • Rustum R., Adeloye A.J., Scholz M. Applying Kohonen self-organizing map as a software sensor to predict biochemical oxygen demand. Water Environ. Res. 2008, 80:32-40.
    • (2008) Water Environ. Res. , vol.80 , pp. 32-40
    • Rustum, R.1    Adeloye, A.J.2    Scholz, M.3
  • 158
    • 21744442500 scopus 로고    scopus 로고
    • Ph.D. thesis, Ghent University, Faculty of Agricultural and Applied Biological Sciences, Ghent, Belgium
    • Sin G. Systematic Calibration of Activated Sludge Models 2004, Ph.D. thesis, Ghent University, Faculty of Agricultural and Applied Biological Sciences, Ghent, Belgium.
    • (2004) Systematic Calibration of Activated Sludge Models
    • Sin, G.1
  • 160
    • 1142279487 scopus 로고    scopus 로고
    • Online estimation of wastewater nitrifiable nitrogen, nitrification and denitrification rates, using ORP and DO dynamics
    • Spérandio M., Queinnec I. Online estimation of wastewater nitrifiable nitrogen, nitrification and denitrification rates, using ORP and DO dynamics. Water Sci. Technol. 2004, 49:31-38.
    • (2004) Water Sci. Technol. , vol.49 , pp. 31-38
    • Spérandio, M.1    Queinnec, I.2
  • 161
    • 0000388992 scopus 로고
    • Consistent nonparametric regression
    • Stone C. Consistent nonparametric regression. Ann. Stat. 1977, 5:595-620.
    • (1977) Ann. Stat. , vol.5 , pp. 595-620
    • Stone, C.1
  • 162
    • 0000376692 scopus 로고
    • Wavelets
    • Strang G. Wavelets. Am. Sci. 1994, 82:250-255.
    • (1994) Am. Sci. , vol.82 , pp. 250-255
    • Strang, G.1
  • 163
    • 0033377733 scopus 로고    scopus 로고
    • Neural fuzzy modeling of anaerobic biological wastewater treatment systems
    • Tay J.H., Zhang X. Neural fuzzy modeling of anaerobic biological wastewater treatment systems. J.Environ. Eng. ASCE 1999, 125:1149-1159.
    • (1999) J.Environ. Eng. ASCE , vol.125 , pp. 1149-1159
    • Tay, J.H.1    Zhang, X.2
  • 164
    • 0034256936 scopus 로고    scopus 로고
    • Afast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems
    • Tay J.H., Zhang X. Afast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems. Water Res. 2000, 34:2849-2860.
    • (2000) Water Res. , vol.34 , pp. 2849-2860
    • Tay, J.H.1    Zhang, X.2
  • 166
    • 0001130141 scopus 로고    scopus 로고
    • Possibilistic and fuzzy c-means clustering for process monitoring in an activated sludge waste-water treatment plant
    • Teppola P., Minkkinen P. Possibilistic and fuzzy c-means clustering for process monitoring in an activated sludge waste-water treatment plant. J.Chemometr. 1999, 13:445-459.
    • (1999) J.Chemometr. , vol.13 , pp. 445-459
    • Teppola, P.1    Minkkinen, P.2
  • 167
    • 0030780449 scopus 로고    scopus 로고
    • Partial least squares modeling of an activated sludge plant: a case study
    • Teppola P., Mujunen S.P., Minkkinen P. Partial least squares modeling of an activated sludge plant: a case study. Chemometr. Intell. Lab. 1997, 38:197-208.
    • (1997) Chemometr. Intell. Lab. , vol.38 , pp. 197-208
    • Teppola, P.1    Mujunen, S.P.2    Minkkinen, P.3
  • 168
    • 0032490672 scopus 로고    scopus 로고
    • Acombined approach of partial least squares and fuzzy c-means clustering for the monitoring of an activated-sludge waste-water treatment plant
    • Teppola P., Mujunen S.P., Minkkinen P. Acombined approach of partial least squares and fuzzy c-means clustering for the monitoring of an activated-sludge waste-water treatment plant. Chemometr. Intell. Lab. 1998, 41:95-103.
    • (1998) Chemometr. Intell. Lab. , vol.41 , pp. 95-103
    • Teppola, P.1    Mujunen, S.P.2    Minkkinen, P.3
  • 170
    • 0033580127 scopus 로고    scopus 로고
    • Kalman filter for updating the coefficients of regression models. A case study from an activated sludge waste-water treatment plant
    • Teppola P., Mujunen S.P., Minkkinen P. Kalman filter for updating the coefficients of regression models. A case study from an activated sludge waste-water treatment plant. Chemometr. Intell. Lab. 1999, 45:371-384.
    • (1999) Chemometr. Intell. Lab. , vol.45 , pp. 371-384
    • Teppola, P.1    Mujunen, S.P.2    Minkkinen, P.3
  • 172
  • 174
    • 0037192009 scopus 로고    scopus 로고
    • Analysis of activated sludge process using multivariate statistical tools - a PCA approach
    • Tomita R.K., Park S.W., Sotomayor O.A.Z. Analysis of activated sludge process using multivariate statistical tools - a PCA approach. Chem. Eng. J. 2002, 90:283-290.
    • (2002) Chem. Eng. J. , vol.90 , pp. 283-290
    • Tomita, R.K.1    Park, S.W.2    Sotomayor, O.A.Z.3
  • 175
    • 0026701375 scopus 로고
    • Kinetic model for the effects of heavy metals on activated sludge process using neural networks
    • Tyagi R.D., Du Y.G. Kinetic model for the effects of heavy metals on activated sludge process using neural networks. Environ. Technol. 1992, 13:883-890.
    • (1992) Environ. Technol. , vol.13 , pp. 883-890
    • Tyagi, R.D.1    Du, Y.G.2
  • 176
    • 0037214850 scopus 로고    scopus 로고
    • On-line monitoring equipment for wastewater treatment processes: state of the art
    • Vanrolleghem P.A., Lee D.S. On-line monitoring equipment for wastewater treatment processes: state of the art. Water Sci. Technol. 2003, 47:1-34.
    • (2003) Water Sci. Technol. , vol.47 , pp. 1-34
    • Vanrolleghem, P.A.1    Lee, D.S.2
  • 177
    • 45549109188 scopus 로고    scopus 로고
    • Combining multiway principal component analysis (MPCA) and clustering for efficient data mining of historical data sets of SBR processes
    • Villez K., Ruiz M., Sin G., Colomer J., Rosen C., Vanrolleghem P.A. Combining multiway principal component analysis (MPCA) and clustering for efficient data mining of historical data sets of SBR processes. Water Sci. Technol. 2008, 57:1659-1666.
    • (2008) Water Sci. Technol. , vol.57 , pp. 1659-1666
    • Villez, K.1    Ruiz, M.2    Sin, G.3    Colomer, J.4    Rosen, C.5    Vanrolleghem, P.A.6
  • 181
    • 79951857690 scopus 로고    scopus 로고
    • Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system
    • Wan J., Huang M., Ma Y., Guo W., Wang Y., Zhang H., Li W., Sun X. Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system. Appl. Softw. Comput. 2011, 11:3238-3246.
    • (2011) Appl. Softw. Comput. , vol.11 , pp. 3238-3246
    • Wan, J.1    Huang, M.2    Ma, Y.3    Guo, W.4    Wang, Y.5    Zhang, H.6    Li, W.7    Sun, X.8
  • 182
    • 78649906588 scopus 로고    scopus 로고
    • Water Environment Federation, WEF Manual of Practice No. FD-3, WEF Press
    • Industrial Wastewater Management, Treatment and Disposal 2008, Water Environment Federation, WEF Manual of Practice No. FD-3, WEF Press. third ed.
    • (2008) Industrial Wastewater Management, Treatment and Disposal
  • 183
    • 0034380644 scopus 로고    scopus 로고
    • Identifying process conditions in an urban wastewater treatment plant
    • West D., Mangiameli P. Identifying process conditions in an urban wastewater treatment plant. Int. J. Oper. Prod. Man. 2000, 20:573-590.
    • (2000) Int. J. Oper. Prod. Man. , vol.20 , pp. 573-590
    • West, D.1    Mangiameli, P.2
  • 185
    • 56149125295 scopus 로고    scopus 로고
    • On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant
    • Woo S.H., Jeon C.O., Yun Y.S., Choi H., Lee C.S., Lee D.S. On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant. J.Hazard. Mater. 2009, 161:538-544.
    • (2009) J.Hazard. Mater. , vol.161 , pp. 538-544
    • Woo, S.H.1    Jeon, C.O.2    Yun, Y.S.3    Choi, H.4    Lee, C.S.5    Lee, D.S.6
  • 186
    • 85043091942 scopus 로고    scopus 로고
    • Woodard & Curran, Inc., Butterworth-Heinemann
    • Industrial Waste Treatment Handbook 2006, Woodard & Curran, Inc., Butterworth-Heinemann. second ed.
    • (2006) Industrial Waste Treatment Handbook
  • 187
    • 79960918087 scopus 로고    scopus 로고
    • Artificial intelligence-based prediction models for environmental engineering
    • Yetilmezsoy K., Ozkaya B., Cakmakci M. Artificial intelligence-based prediction models for environmental engineering. Neural Netw. World 2011, 21:193-218.
    • (2011) Neural Netw. World , vol.21 , pp. 193-218
    • Yetilmezsoy, K.1    Ozkaya, B.2    Cakmakci, M.3
  • 189
    • 0141831911 scopus 로고    scopus 로고
    • Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants
    • Yoo C.K., Vanrolleghem P.A., Lee I.B. Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants. J.Biotechnol. 2003, 105:135-163.
    • (2003) J.Biotechnol. , vol.105 , pp. 135-163
    • Yoo, C.K.1    Vanrolleghem, P.A.2    Lee, I.B.3
  • 190
    • 13444262016 scopus 로고    scopus 로고
    • Application of fuzzy partial least squares (FPLS) modeling nonlinear biological processes
    • Yoo C.K., Bang Y.H., Lee I.B., Vanrolleghem P.A., Rosen C. Application of fuzzy partial least squares (FPLS) modeling nonlinear biological processes. Korean J. Chem. Eng. 2004, 21:1087-1097.
    • (2004) Korean J. Chem. Eng. , vol.21 , pp. 1087-1097
    • Yoo, C.K.1    Bang, Y.H.2    Lee, I.B.3    Vanrolleghem, P.A.4    Rosen, C.5
  • 192
    • 0032144732 scopus 로고    scopus 로고
    • State space neural network. Properties and applications
    • Zamarrenoa J., Vega P. State space neural network. Properties and applications. Neural Netw. 1998, 11:1099-1112.
    • (1998) Neural Netw. , vol.11 , pp. 1099-1112
    • Zamarrenoa, J.1    Vega, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.