메뉴 건너뛰기




Volumn 111, Issue , 2014, Pages 350-363

A localized adaptive soft sensor for dynamic system modeling

Author keywords

Adaptive thresholding; Averaged bias updating; Averaged LASS; LASS; Moving window

Indexed keywords

ALGORITHMS; LEAST SQUARES APPROXIMATIONS;

EID: 84896913551     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2014.03.002     Document Type: Article
Times cited : (37)

References (34)
  • 1
    • 59349107270 scopus 로고    scopus 로고
    • A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
    • Ahmed F., Nazier S., Yeo Y.K. A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant. Korean J. Chem. Eng. 2009, 26(1):14-20.
    • (2009) Korean J. Chem. Eng. , vol.26 , Issue.1 , pp. 14-20
    • Ahmed, F.1    Nazier, S.2    Yeo, Y.K.3
  • 2
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C., Chiu M. A new data-based methodology for nonlinear process modeling. Chem. Eng. Sci. 2004, 59(13):2801-2810.
    • (2004) Chem. Eng. Sci. , vol.59 , Issue.13 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.2
  • 3
    • 0031168001 scopus 로고    scopus 로고
    • Recursive exponentially weighted PLS and its applications to adaptive control and prediction
    • Dayal B.S., MacGregor J.F. Recursive exponentially weighted PLS and its applications to adaptive control and prediction. J. Process Control 1997, 7(3):169-179.
    • (1997) J. Process Control , vol.7 , Issue.3 , pp. 169-179
    • Dayal, B.S.1    MacGregor, J.F.2
  • 4
    • 0034661658 scopus 로고    scopus 로고
    • Soft sensors development for on-line bioreactor state estimation
    • de Assis A.J., Filho R.M. Soft sensors development for on-line bioreactor state estimation. Comput. Chem. Eng. 2000, 24(2-7):1099-1103.
    • (2000) Comput. Chem. Eng. , vol.24 , Issue.2-7 , pp. 1099-1103
    • de Assis, A.J.1    Filho, R.M.2
  • 6
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J. 2009, 55(7):1754-1765.
    • (2009) AIChE J. , vol.55 , Issue.7 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 7
    • 79954505385 scopus 로고    scopus 로고
    • Quality prediction for polypropylene production process based on CLGPR model
    • Ge Z., Chen T., Song Z. Quality prediction for polypropylene production process based on CLGPR model. Control Eng. Pract. 2011, 19(5):423-432.
    • (2011) Control Eng. Pract. , vol.19 , Issue.5 , pp. 423-432
    • Ge, Z.1    Chen, T.2    Song, Z.3
  • 8
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Ge Z., Song Z., Gao F. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52(10):3543-3562.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , Issue.10 , pp. 3543-3562
    • Ge, Z.1    Song, Z.2    Gao, F.3
  • 9
    • 11144325691 scopus 로고
    • Partial least-squares regression: a tutorial
    • Geladi P., Kowalski B.R. Partial least-squares regression: a tutorial. Anal. Chim. Acta 1986, 185:1-17.
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 11
    • 0036769410 scopus 로고    scopus 로고
    • Pattern Matching in Historical Data
    • Johannesmeyer M.C., Singhal A., Seborg D.E. Pattern Matching in Historical Data. AIChE J. 2002, 48(9):2022-2038.
    • (2002) AIChE J. , vol.48 , Issue.9 , pp. 2022-2038
    • Johannesmeyer, M.C.1    Singhal, A.2    Seborg, D.E.3
  • 12
    • 0034205619 scopus 로고    scopus 로고
    • On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models
    • Johansen T.A., Shorten R., Murray-Smith R. On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 2000, 8(3):297-313.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.3 , pp. 297-313
    • Johansen, T.A.1    Shorten, R.2    Murray-Smith, R.3
  • 14
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J. 2011, 57(5):1288-1301.
    • (2011) AIChE J. , vol.57 , Issue.5 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 15
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33(4):795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 16
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P., Grbić R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2010, 35(1):1-24.
    • (2010) Comput. Chem. Eng. , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 17
    • 58749107569 scopus 로고    scopus 로고
    • Two-stage subspace identification for soft sensor design and disturbance estimation
    • Kano M., Lee S., Hasebe S. Two-stage subspace identification for soft sensor design and disturbance estimation. J. Process Control 2009, 19(2):179-186.
    • (2009) J. Process Control , vol.19 , Issue.2 , pp. 179-186
    • Kano, M.1    Lee, S.2    Hasebe, S.3
  • 18
    • 14944347949 scopus 로고    scopus 로고
    • A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling
    • Li C., Ye H., Wang G., Zhang J. A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling. Chem. Eng. Technol. 2005, 28(2):141-152.
    • (2005) Chem. Eng. Technol. , vol.28 , Issue.2 , pp. 141-152
    • Li, C.1    Ye, H.2    Wang, G.3    Zhang, J.4
  • 19
    • 0036397757 scopus 로고    scopus 로고
    • Intelligent ''control'' applications in the process industries
    • McAvoy T. Intelligent ''control'' applications in the process industries. Annu. Rev. Control. 2002, 26(1):75-86.
    • (2002) Annu. Rev. Control. , vol.26 , Issue.1 , pp. 75-86
    • McAvoy, T.1
  • 20
    • 33645417998 scopus 로고    scopus 로고
    • Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process
    • Mu S., Zeng Y., Liu R., Wu P., Su H., Chu J. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. J. Process Control 2006, 16(6):557-566.
    • (2006) J. Process Control , vol.16 , Issue.6 , pp. 557-566
    • Mu, S.1    Zeng, Y.2    Liu, R.3    Wu, P.4    Su, H.5    Chu, J.6
  • 21
    • 0030856185 scopus 로고    scopus 로고
    • PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space
    • Negiz A., Çinar A. PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space. Chemom. Intell. Lab. Syst. 1997, 38(2):209-221.
    • (1997) Chemom. Intell. Lab. Syst. , vol.38 , Issue.2 , pp. 209-221
    • Negiz, A.1    Çinar, A.2
  • 22
    • 80052566365 scopus 로고    scopus 로고
    • Recursive GPR for nonlinear dynamic process modeling
    • Ni W., Tan S.K., Ng W.J. Recursive GPR for nonlinear dynamic process modeling. Chem. Eng. J. 2011, 173(2):636-643.
    • (2011) Chem. Eng. J. , vol.173 , Issue.2 , pp. 636-643
    • Ni, W.1    Tan, S.K.2    Ng, W.J.3
  • 24
    • 84861071787 scopus 로고    scopus 로고
    • Moving-window GPR for nonlinear dynamic system modeling with dual updating and dual preprocessing
    • Ni W., Tan S.K., Ng W.J., Brown S.D. Moving-window GPR for nonlinear dynamic system modeling with dual updating and dual preprocessing. Ind. Eng. Chem. Res. 2012, 51(18):6416-6428.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , Issue.18 , pp. 6416-6428
    • Ni, W.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4
  • 25
    • 84862208873 scopus 로고    scopus 로고
    • A localized, adaptive recursive partial least squares regression for dynamic system modeling
    • Ni W., Tan S.K., Ng W.J., Brown S.D. A localized, adaptive recursive partial least squares regression for dynamic system modeling. Ind. Eng. Chem. Res. 2012, 51(23):8025-8039.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , Issue.23 , pp. 8025-8039
    • Ni, W.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4
  • 26
    • 84867488978 scopus 로고    scopus 로고
    • GPR model with signal preprocessing and bias update for dynamic processes modeling
    • Ni W., Wang K., Chen T., Ng W.J., Tan S.K. GPR model with signal preprocessing and bias update for dynamic processes modeling. Control Eng. Pract. 2012, 20(12):1281-1292.
    • (2012) Control Eng. Pract. , vol.20 , Issue.12 , pp. 1281-1292
    • Ni, W.1    Wang, K.2    Chen, T.3    Ng, W.J.4    Tan, S.K.5
  • 27
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin S.J. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22(4-5):503-514.
    • (1998) Comput. Chem. Eng. , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 28
    • 0034551618 scopus 로고    scopus 로고
    • Neural networks for the identification and control of blast furnace hot metal quality
    • Radhakrishnan V., Mohamed A. Neural networks for the identification and control of blast furnace hot metal quality. J. Process Control 2000, 10(6):509-524.
    • (2000) J. Process Control , vol.10 , Issue.6 , pp. 509-524
    • Radhakrishnan, V.1    Mohamed, A.2
  • 29
    • 0032451290 scopus 로고    scopus 로고
    • Recursive data-based prediction and control of batch product quality
    • Russell S.A., Kesavan P., Lee J.H., Ogunnaike B.A. Recursive data-based prediction and control of batch product quality. AIChE J. 1998, 44(11):2442-2458.
    • (1998) AIChE J. , vol.44 , Issue.11 , pp. 2442-2458
    • Russell, S.A.1    Kesavan, P.2    Lee, J.H.3    Ogunnaike, B.A.4
  • 30
    • 33746991704 scopus 로고    scopus 로고
    • Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant
    • Sharmin R., Sundararaj U., Shah S., Griend L.V., Sun.Y. Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant. Chem. Eng. Sci. 2006, 61(19):6372-6384.
    • (2006) Chem. Eng. Sci. , vol.61 , Issue.19 , pp. 6372-6384
    • Sharmin, R.1    Sundararaj, U.2    Shah, S.3    Griend, L.V.4    Sun, Y.5
  • 31
    • 0033652276 scopus 로고    scopus 로고
    • Modeling of dynamic systems using latent variable and subspace methods
    • Shi R., MacGregor J.F. Modeling of dynamic systems using latent variable and subspace methods. J. Chemometr. 2000, 14(5-6):423-439.
    • (2000) J. Chemometr. , vol.14 , Issue.5-6 , pp. 423-439
    • Shi, R.1    MacGregor, J.F.2
  • 32
    • 84857548668 scopus 로고    scopus 로고
    • Methods for plant data-based process modeling in soft-sensor development
    • Slišković D., Grbić R., Hocenski Ž. Methods for plant data-based process modeling in soft-sensor development. Automatika 2011, 52(4):306-318.
    • (2011) Automatika , vol.52 , Issue.4 , pp. 306-318
    • Slišković, D.1    Grbić, R.2    Hocenski, Ž.3
  • 33
    • 0001940299 scopus 로고    scopus 로고
    • Dynamic multivariate statistical process control using partial least squares and canonical variate analysis
    • Simoglou A., Martin E.B., Morris A.J. Dynamic multivariate statistical process control using partial least squares and canonical variate analysis. Comput. Chem. Eng. 1999, 23:S277-S280.
    • (1999) Comput. Chem. Eng. , vol.23
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.