-
1
-
-
0242354134
-
Statistical process monitoring: basics and beyond
-
Qin, S. J. Statistical process monitoring: basics and beyond J. Chemom. 2003, 17, 480-502
-
(2003)
J. Chemom.
, vol.17
, pp. 480-502
-
-
Qin, S.J.1
-
2
-
-
0032898793
-
Mixture principal component analysis models for process monitoring
-
Chen, J. H.; Liu, J. L. Mixture principal component analysis models for process monitoring Ind. Eng. Chem. Res. 1999, 38, 1478-1488
-
(1999)
Ind. Eng. Chem. Res.
, vol.38
, pp. 1478-1488
-
-
Chen, J.H.1
Liu, J.L.2
-
3
-
-
6344249065
-
Monitoring of processes with multiple operation modes through multiple principle component analysis models
-
Zhao, S. J.; Zhang, J. Monitoring of processes with multiple operation modes through multiple principle component analysis models Ind. Eng. Chem. Res. 2004, 43, 7025-7035
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, pp. 7025-7035
-
-
Zhao, S.J.1
Zhang, J.2
-
4
-
-
33646178973
-
Performance monitoring of processes with multiple operating modes through multiple PLS models
-
Zhao, S. J.; Zhang, J.; Xu, Y. M. Performance monitoring of processes with multiple operating modes through multiple PLS models J. Process Control. 2006, 16, 763-772
-
(2006)
J. Process Control.
, vol.16
, pp. 763-772
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
5
-
-
35148823629
-
Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes
-
Zhao, C. H.; Wang, F. L.; Lu, N. Y.; Jia, M. X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes J. Process Control. 2007, 17, 728-741
-
(2007)
J. Process Control.
, vol.17
, pp. 728-741
-
-
Zhao, C.H.1
Wang, F.L.2
Lu, N.Y.3
Jia, M.X.4
-
6
-
-
56749095428
-
Fault Detection and Classification for a Process with Multiple Production Grades
-
Liu, J. L. Fault Detection and Classification for a Process with Multiple Production Grades Ind. Eng. Chem. Res. 2008, 47, 8250-8262
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 8250-8262
-
-
Liu, J.L.1
-
7
-
-
67349090576
-
An adjoined multi-model approach for monitoring batch and transient operations
-
Ng, Y. S.; Srinivasan, R. An adjoined multi-model approach for monitoring batch and transient operations Comput. Chem. Eng. 2009, 33, 887-902
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 887-902
-
-
Ng, Y.S.1
Srinivasan, R.2
-
8
-
-
77951198040
-
Nonstationary fault detection and diagnosis for multimode processes
-
Liu, J.; Chen, D. Nonstationary fault detection and diagnosis for multimode processes AIChE J. 2010, 56, 207-219
-
(2010)
AIChE J.
, vol.56
, pp. 207-219
-
-
Liu, J.1
Chen, D.2
-
9
-
-
2342521341
-
Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
-
Choi, S. W.; Park, J. H.; Lee, I. B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis Comput. Chem. Eng. 2004, 28, 1377-1387
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1377-1387
-
-
Choi, S.W.1
Park, J.H.2
Lee, I.B.3
-
10
-
-
33947154689
-
Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor
-
Yoo, C. K.; Villez, K.; Lee, I. B.; Rosén, C.; Vanrolleghem, P. A. Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor Biotechnol. Bioeng. 2007, 96, 687-701
-
(2007)
Biotechnol. Bioeng.
, vol.96
, pp. 687-701
-
-
Yoo, C.K.1
Villez, K.2
Lee, I.B.3
Rosén, C.4
Vanrolleghem, P.A.5
-
11
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu, J.; Qin, S. J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 2008, 54, 1811-1829
-
(2008)
AIChE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
12
-
-
70349329819
-
Multiway Gaussian Mixture Model Based Multiphase Batch Process Monitoring
-
Yu, J.; Qin, S. J. Multiway Gaussian Mixture Model Based Multiphase Batch Process Monitoring Ind. Eng. Chem. Res. 2009, 48, 8585-8594
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 8585-8594
-
-
Yu, J.1
Qin, S.J.2
-
13
-
-
77649189520
-
On-line multivariate statistical monitoring of batch processes using Gaussian mixture model
-
Chen, T.; Zhang, J. On-line multivariate statistical monitoring of batch processes using Gaussian mixture model Comput. Chem. Eng. 2010, 34, 500-507
-
(2010)
Comput. Chem. Eng.
, vol.34
, pp. 500-507
-
-
Chen, T.1
Zhang, J.2
-
14
-
-
81055156706
-
A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
-
Jie, Y. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes Chem. Eng. Sci. 2012, 68, 506-519
-
(2012)
Chem. Eng. Sci.
, vol.68
, pp. 506-519
-
-
Jie, Y.1
-
15
-
-
0028354319
-
Exponentially weighted moving principal components analysis and projections to latent structures
-
Wold, S. Exponentially weighted moving principal components analysis and projections to latent structures Chemom. Intell. Lab. Syst. 1994, 23, 149-161
-
(1994)
Chemom. Intell. Lab. Syst.
, vol.23
, pp. 149-161
-
-
Wold, S.1
-
16
-
-
0030530039
-
The process chemometrics approach to process monitoring and fault detection
-
Wise, B. M.; Gallagher, N. B. The process chemometrics approach to process monitoring and fault detection J. Process Control. 1996, 6, 329-348
-
(1996)
J. Process Control.
, vol.6
, pp. 329-348
-
-
Wise, B.M.1
Gallagher, N.B.2
-
17
-
-
0034301495
-
Recursive PCA for adaptive process monitoring
-
Li, W. H.; Yue, H. H.; Valle-Cervantes, S.; Qin, S. J. Recursive PCA for adaptive process monitoring J. Process Control. 2000, 10, 471-486
-
(2000)
J. Process Control.
, vol.10
, pp. 471-486
-
-
Li, W.H.1
Yue, H.H.2
Valle-Cervantes, S.3
Qin, S.J.4
-
18
-
-
33646496576
-
On-line process state classification for adaptive monitoring
-
Lee, Y. H.; Jin, H. D.; Han, C. H. On-line process state classification for adaptive monitoring Ind. Eng. Chem. Res. 2006, 45, 3095-3107
-
(2006)
Ind. Eng. Chem. Res.
, vol.45
, pp. 3095-3107
-
-
Lee, Y.H.1
Jin, H.D.2
Han, C.H.3
-
19
-
-
31544440191
-
Robust recursive principal component analysis modeling for adaptive monitoring
-
Jin, H. D.; Lee, Y. H.; Lee, G.; Han, C. H. Robust recursive principal component analysis modeling for adaptive monitoring Ind. Eng. Chem. Res. 2006, 45, 696-703
-
(2006)
Ind. Eng. Chem. Res.
, vol.45
, pp. 696-703
-
-
Jin, H.D.1
Lee, Y.H.2
Lee, G.3
Han, C.H.4
-
20
-
-
33646536772
-
Adaptive multivariate statistical process control for monitoring time-varying processes
-
Choi, S. W.; Martin, E. B.; Morris, A. J.; Lee, I. B. Adaptive multivariate statistical process control for monitoring time-varying processes Ind. Eng. Chem. Res. 2006, 45, 3108-3118
-
(2006)
Ind. Eng. Chem. Res.
, vol.45
, pp. 3108-3118
-
-
Choi, S.W.1
Martin, E.B.2
Morris, A.J.3
Lee, I.B.4
-
21
-
-
34248378250
-
An adaptive regression adjusted monitoring and fault isolation scheme
-
Liu, H. C.; Jiang, W.; Tangirala, A.; Shah, S. An adaptive regression adjusted monitoring and fault isolation scheme J. Chemom. 2006, 20, 280-293
-
(2006)
J. Chemom.
, vol.20
, pp. 280-293
-
-
Liu, H.C.1
Jiang, W.2
Tangirala, A.3
Shah, S.4
-
22
-
-
22944436794
-
Process monitoring approach using fast moving window PCA
-
Wang, X.; Kruger, U.; Irwin, G. W. Process monitoring approach using fast moving window PCA Ind. Eng. Chem. Res. 2005, 44, 5691-5702
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 5691-5702
-
-
Wang, X.1
Kruger, U.2
Irwin, G.W.3
-
23
-
-
64249101035
-
Moving window kernel PCA for adaptive monitoring of nonlinear processes
-
Liu, X. Q.; Kruger, U.; Littler, T.; Xie, L.; Wang, S. Q. Moving window kernel PCA for adaptive monitoring of nonlinear processes Chemom. Intell. Lab. Syst. 2009, 96, 132-143
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.96
, pp. 132-143
-
-
Liu, X.Q.1
Kruger, U.2
Littler, T.3
Xie, L.4
Wang, S.Q.5
-
24
-
-
77954659382
-
Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms
-
Jeng, J. Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms J. Taiwan Inst. Chem. Eng. 2010, 41, 475-481
-
(2010)
J. Taiwan Inst. Chem. Eng.
, vol.41
, pp. 475-481
-
-
Jeng, J.1
-
25
-
-
0036522404
-
Unsupervised learning of finite mixture models
-
Figueiredo, M.; Jain, A. K. Unsupervised learning of finite mixture models IEEE Trans. Pattern Anal. 2002, 24, 381-396
-
(2002)
IEEE Trans. Pattern Anal.
, vol.24
, pp. 381-396
-
-
Figueiredo, M.1
Jain, A.K.2
-
26
-
-
0034235548
-
Using mixture principal component analysis networks to extract fuzzy rules from data
-
Chen, J. H.; Liu, J. L. Using mixture principal component analysis networks to extract fuzzy rules from data Ind. Eng. Chem. Res. 2000, 39, 2355-2367
-
(2000)
Ind. Eng. Chem. Res.
, vol.39
, pp. 2355-2367
-
-
Chen, J.H.1
Liu, J.L.2
-
27
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
28
-
-
0030217795
-
Decentralized control of the Tennessee Eastman challenge process
-
Ricker, N. L. Decentralized control of the Tennessee Eastman challenge process J. Process Control 1996, 6, 205-222
-
(1996)
J. Process Control
, vol.6
, pp. 205-222
-
-
Ricker, N.L.1
|