메뉴 건너뛰기




Volumn 51, Issue 15, 2012, Pages 5497-5505

Dynamic multimode process modeling and monitoring using adaptive gaussian mixture models

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE GAUSSIAN MIXTURE; ADAPTIVE MONITORING; COMPLEX PROCESSES; EQUIPMENT AGING; GAUSSIAN MIXTURE MODEL; MONITORING ALGORITHMS; MONITORING APPROACH; MULTIMODES; NUMERICAL EXAMPLE; OPERATING MODES; PROCESS MODELING AND MONITORING; PROCESS VARIATION; SIMULATION PLATFORM; TENNESSEE EASTMAN; TIME INVARIANTS; TIME VARYING;

EID: 84859911625     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie202720y     Document Type: Article
Times cited : (113)

References (28)
  • 1
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin, S. J. Statistical process monitoring: basics and beyond J. Chemom. 2003, 17, 480-502
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 2
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • Chen, J. H.; Liu, J. L. Mixture principal component analysis models for process monitoring Ind. Eng. Chem. Res. 1999, 38, 1478-1488
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 1478-1488
    • Chen, J.H.1    Liu, J.L.2
  • 3
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operation modes through multiple principle component analysis models
    • Zhao, S. J.; Zhang, J. Monitoring of processes with multiple operation modes through multiple principle component analysis models Ind. Eng. Chem. Res. 2004, 43, 7025-7035
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2
  • 4
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of processes with multiple operating modes through multiple PLS models
    • Zhao, S. J.; Zhang, J.; Xu, Y. M. Performance monitoring of processes with multiple operating modes through multiple PLS models J. Process Control. 2006, 16, 763-772
    • (2006) J. Process Control. , vol.16 , pp. 763-772
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 5
    • 35148823629 scopus 로고    scopus 로고
    • Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes
    • Zhao, C. H.; Wang, F. L.; Lu, N. Y.; Jia, M. X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes J. Process Control. 2007, 17, 728-741
    • (2007) J. Process Control. , vol.17 , pp. 728-741
    • Zhao, C.H.1    Wang, F.L.2    Lu, N.Y.3    Jia, M.X.4
  • 6
    • 56749095428 scopus 로고    scopus 로고
    • Fault Detection and Classification for a Process with Multiple Production Grades
    • Liu, J. L. Fault Detection and Classification for a Process with Multiple Production Grades Ind. Eng. Chem. Res. 2008, 47, 8250-8262
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 8250-8262
    • Liu, J.L.1
  • 7
    • 67349090576 scopus 로고    scopus 로고
    • An adjoined multi-model approach for monitoring batch and transient operations
    • Ng, Y. S.; Srinivasan, R. An adjoined multi-model approach for monitoring batch and transient operations Comput. Chem. Eng. 2009, 33, 887-902
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 887-902
    • Ng, Y.S.1    Srinivasan, R.2
  • 8
    • 77951198040 scopus 로고    scopus 로고
    • Nonstationary fault detection and diagnosis for multimode processes
    • Liu, J.; Chen, D. Nonstationary fault detection and diagnosis for multimode processes AIChE J. 2010, 56, 207-219
    • (2010) AIChE J. , vol.56 , pp. 207-219
    • Liu, J.1    Chen, D.2
  • 9
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi, S. W.; Park, J. H.; Lee, I. B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis Comput. Chem. Eng. 2004, 28, 1377-1387
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.B.3
  • 10
    • 33947154689 scopus 로고    scopus 로고
    • Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor
    • Yoo, C. K.; Villez, K.; Lee, I. B.; Rosén, C.; Vanrolleghem, P. A. Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor Biotechnol. Bioeng. 2007, 96, 687-701
    • (2007) Biotechnol. Bioeng. , vol.96 , pp. 687-701
    • Yoo, C.K.1    Villez, K.2    Lee, I.B.3    Rosén, C.4    Vanrolleghem, P.A.5
  • 11
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu, J.; Qin, S. J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 2008, 54, 1811-1829
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 12
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian Mixture Model Based Multiphase Batch Process Monitoring
    • Yu, J.; Qin, S. J. Multiway Gaussian Mixture Model Based Multiphase Batch Process Monitoring Ind. Eng. Chem. Res. 2009, 48, 8585-8594
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 13
    • 77649189520 scopus 로고    scopus 로고
    • On-line multivariate statistical monitoring of batch processes using Gaussian mixture model
    • Chen, T.; Zhang, J. On-line multivariate statistical monitoring of batch processes using Gaussian mixture model Comput. Chem. Eng. 2010, 34, 500-507
    • (2010) Comput. Chem. Eng. , vol.34 , pp. 500-507
    • Chen, T.1    Zhang, J.2
  • 14
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • Jie, Y. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes Chem. Eng. Sci. 2012, 68, 506-519
    • (2012) Chem. Eng. Sci. , vol.68 , pp. 506-519
    • Jie, Y.1
  • 15
    • 0028354319 scopus 로고
    • Exponentially weighted moving principal components analysis and projections to latent structures
    • Wold, S. Exponentially weighted moving principal components analysis and projections to latent structures Chemom. Intell. Lab. Syst. 1994, 23, 149-161
    • (1994) Chemom. Intell. Lab. Syst. , vol.23 , pp. 149-161
    • Wold, S.1
  • 16
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • Wise, B. M.; Gallagher, N. B. The process chemometrics approach to process monitoring and fault detection J. Process Control. 1996, 6, 329-348
    • (1996) J. Process Control. , vol.6 , pp. 329-348
    • Wise, B.M.1    Gallagher, N.B.2
  • 18
    • 33646496576 scopus 로고    scopus 로고
    • On-line process state classification for adaptive monitoring
    • Lee, Y. H.; Jin, H. D.; Han, C. H. On-line process state classification for adaptive monitoring Ind. Eng. Chem. Res. 2006, 45, 3095-3107
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 3095-3107
    • Lee, Y.H.1    Jin, H.D.2    Han, C.H.3
  • 19
    • 31544440191 scopus 로고    scopus 로고
    • Robust recursive principal component analysis modeling for adaptive monitoring
    • Jin, H. D.; Lee, Y. H.; Lee, G.; Han, C. H. Robust recursive principal component analysis modeling for adaptive monitoring Ind. Eng. Chem. Res. 2006, 45, 696-703
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 696-703
    • Jin, H.D.1    Lee, Y.H.2    Lee, G.3    Han, C.H.4
  • 20
    • 33646536772 scopus 로고    scopus 로고
    • Adaptive multivariate statistical process control for monitoring time-varying processes
    • Choi, S. W.; Martin, E. B.; Morris, A. J.; Lee, I. B. Adaptive multivariate statistical process control for monitoring time-varying processes Ind. Eng. Chem. Res. 2006, 45, 3108-3118
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 3108-3118
    • Choi, S.W.1    Martin, E.B.2    Morris, A.J.3    Lee, I.B.4
  • 21
    • 34248378250 scopus 로고    scopus 로고
    • An adaptive regression adjusted monitoring and fault isolation scheme
    • Liu, H. C.; Jiang, W.; Tangirala, A.; Shah, S. An adaptive regression adjusted monitoring and fault isolation scheme J. Chemom. 2006, 20, 280-293
    • (2006) J. Chemom. , vol.20 , pp. 280-293
    • Liu, H.C.1    Jiang, W.2    Tangirala, A.3    Shah, S.4
  • 22
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang, X.; Kruger, U.; Irwin, G. W. Process monitoring approach using fast moving window PCA Ind. Eng. Chem. Res. 2005, 44, 5691-5702
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 23
    • 64249101035 scopus 로고    scopus 로고
    • Moving window kernel PCA for adaptive monitoring of nonlinear processes
    • Liu, X. Q.; Kruger, U.; Littler, T.; Xie, L.; Wang, S. Q. Moving window kernel PCA for adaptive monitoring of nonlinear processes Chemom. Intell. Lab. Syst. 2009, 96, 132-143
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 132-143
    • Liu, X.Q.1    Kruger, U.2    Littler, T.3    Xie, L.4    Wang, S.Q.5
  • 24
    • 77954659382 scopus 로고    scopus 로고
    • Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms
    • Jeng, J. Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms J. Taiwan Inst. Chem. Eng. 2010, 41, 475-481
    • (2010) J. Taiwan Inst. Chem. Eng. , vol.41 , pp. 475-481
    • Jeng, J.1
  • 25
    • 0036522404 scopus 로고    scopus 로고
    • Unsupervised learning of finite mixture models
    • Figueiredo, M.; Jain, A. K. Unsupervised learning of finite mixture models IEEE Trans. Pattern Anal. 2002, 24, 381-396
    • (2002) IEEE Trans. Pattern Anal. , vol.24 , pp. 381-396
    • Figueiredo, M.1    Jain, A.K.2
  • 26
    • 0034235548 scopus 로고    scopus 로고
    • Using mixture principal component analysis networks to extract fuzzy rules from data
    • Chen, J. H.; Liu, J. L. Using mixture principal component analysis networks to extract fuzzy rules from data Ind. Eng. Chem. Res. 2000, 39, 2355-2367
    • (2000) Ind. Eng. Chem. Res. , vol.39 , pp. 2355-2367
    • Chen, J.H.1    Liu, J.L.2
  • 27
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 28
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman challenge process
    • Ricker, N. L. Decentralized control of the Tennessee Eastman challenge process J. Process Control 1996, 6, 205-222
    • (1996) J. Process Control , vol.6 , pp. 205-222
    • Ricker, N.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.