-
1
-
-
35548968908
-
Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
-
Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput Chem Eng. 2008;32:12-24.
-
(2008)
Comput Chem Eng.
, vol.32
, pp. 12-24
-
-
Kano, M.1
Nakagawa, Y.2
-
2
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Comput Chem Eng. 2009;33:795-814.
-
(2009)
Comput Chem Eng.
, vol.33
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
3
-
-
58449118276
-
Development of a new soft sensor method using independent component analysis and partial least squares
-
Kaneko H, Arakawa M, Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J. 2009;55:87-98.
-
(2009)
AIChE J.
, vol.55
, pp. 87-98
-
-
Kaneko, H.1
Arakawa, M.2
Funatsu, K.3
-
4
-
-
79955611348
-
Applicability domains and accuracy of prediction of soft sensor models
-
Kaneko H, Arakawa M, Funatsu K. Applicability domains and accuracy of prediction of soft sensor models. AIChE J. 2011;57:1506-1513.
-
(2011)
AIChE J.
, vol.57
, pp. 1506-1513
-
-
Kaneko, H.1
Arakawa, M.2
Funatsu, K.3
-
5
-
-
79954599740
-
Local learning-based adaptive soft sensor for catalyst activation prediction
-
Kadlec P, Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction, AIChE J. 2010;57:1288-1301.
-
(2010)
AIChE J.
, vol.57
, pp. 1288-1301
-
-
Kadlec, P.1
Gabrys, B.2
-
6
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Qin SJ. Recursive PLS algorithms for adaptive data modeling. Comput Chem Eng. 1998;22:503-514.
-
(1998)
Comput Chem Eng.
, vol.22
, pp. 503-514
-
-
Qin, S.J.1
-
7
-
-
2942558590
-
A new data-based methodology for nonlinear process modeling
-
Cheng C, Chiu MS. A new data-based methodology for nonlinear process modeling. Chem Eng Sci. 2004;59:2801-2810.
-
(2004)
Chem Eng Sci.
, vol.59
, pp. 2801-2810
-
-
Cheng, C.1
Chiu, M.S.2
-
8
-
-
68049143320
-
Soft-sensor development using correlation-based just-in-time modeling
-
Fujiwara K, Kano M, Hasebe S, Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J. 2009;55:1754-1765.
-
(2009)
AIChE J.
, vol.55
, pp. 1754-1765
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
-
9
-
-
79959784751
-
Maintenance-free soft sensor models with time difference of process variables
-
Kaneko H, Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom Intell Lab Syst. 2011;107:312-317.
-
(2011)
Chemom Intell Lab Syst.
, vol.107
, pp. 312-317
-
-
Kaneko, H.1
Funatsu, K.2
-
10
-
-
80055094175
-
A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
-
Kaneko H, Funatsu K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom Intell Lab Syst. 2011;109:197-206.
-
(2011)
Chemom Intell Lab Syst.
, vol.109
, pp. 197-206
-
-
Kaneko, H.1
Funatsu, K.2
-
11
-
-
0030269512
-
Identification of faulty sensors using principal component analysis
-
Dunia R, Qin SJ, Edgar TF, McAvoy TJ. Identification of faulty sensors using principal component analysis. AIChE J. 1996;42:2797-2812.
-
(1996)
AIChE J.
, vol.42
, pp. 2797-2812
-
-
Dunia, R.1
Qin, S.J.2
Edgar, T.F.3
McAvoy, T.J.4
|