메뉴 건너뛰기




Volumn 130, Issue , 2014, Pages 115-122

Ensemble independent component regression models and soft sensing application

Author keywords

Ensemble learning model; Independent component regression; Soft sensor

Indexed keywords

POLYPROPYLENE;

EID: 84887725182     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2013.09.009     Document Type: Article
Times cited : (35)

References (31)
  • 1
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 2
    • 26944462733 scopus 로고    scopus 로고
    • Independent component analysis yields chemically interpretable latent variables in multivariate regression
    • Gustafsson M.G. Independent component analysis yields chemically interpretable latent variables in multivariate regression. J. Chem. Inf. Model. 2005, 45:1244-1255.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1244-1255
    • Gustafsson, M.G.1
  • 3
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvarinen A., Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000, 13:411-430.
    • (2000) Neural Netw. , vol.13 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 4
    • 0037086546 scopus 로고    scopus 로고
    • Dimension reduction of process dynamic trends using independent component analysis
    • Li R.F., Wang X.Z. Dimension reduction of process dynamic trends using independent component analysis. Comput. Chem. Eng. 2002, 26:467-473.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 467-473
    • Li, R.F.1    Wang, X.Z.2
  • 5
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge Z.Q., Song Z.H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Ind. Eng. Chem. Res. 2007, 46:2054-2063.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054-2063
    • Ge, Z.Q.1    Song, Z.H.2
  • 6
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge Z.Q., Song Z.H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control. Eng. Pract. 2008, 16:1427-1437.
    • (2008) Control. Eng. Pract. , vol.16 , pp. 1427-1437
    • Ge, Z.Q.1    Song, Z.H.2
  • 7
    • 61849101892 scopus 로고    scopus 로고
    • Multiway kernel independent component analysis based on feature samples for batch process monitoring
    • Tian X.M., Zhang X.L., Deng X.G., Chen S. Multiway kernel independent component analysis based on feature samples for batch process monitoring. Neurocomputing 2009, 72:1584-1596.
    • (2009) Neurocomputing , vol.72 , pp. 1584-1596
    • Tian, X.M.1    Zhang, X.L.2    Deng, X.G.3    Chen, S.4
  • 8
    • 84863563165 scopus 로고    scopus 로고
    • Local ICA for multivariate statistical fault diagnosis in systems with unknown signal and error distributions
    • Ge Z.Q., Xie L., Kruger U., Song Z.H. Local ICA for multivariate statistical fault diagnosis in systems with unknown signal and error distributions. AIChE J 2012, 58:2357-2372.
    • (2012) AIChE J , vol.58 , pp. 2357-2372
    • Ge, Z.Q.1    Xie, L.2    Kruger, U.3    Song, Z.H.4
  • 9
    • 83855163548 scopus 로고    scopus 로고
    • Fast independent component analysis algorithm for quaternion valued signals
    • Javidi S., Took C.C., Mandic D.P. Fast independent component analysis algorithm for quaternion valued signals. IEEE Trans. Neural Netw. 2011, 22:1967-1978.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , pp. 1967-1978
    • Javidi, S.1    Took, C.C.2    Mandic, D.P.3
  • 10
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Ge Z.Q., Song Z.H., Gao F.R. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52:3543-3562.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 3543-3562
    • Ge, Z.Q.1    Song, Z.H.2    Gao, F.R.3
  • 11
    • 82255179126 scopus 로고    scopus 로고
    • Combining nonlinear independent component analysis and neural network for the prediction of Asian stock market indexes
    • Dai W.S., Wu J.Y., Lu C.J. Combining nonlinear independent component analysis and neural network for the prediction of Asian stock market indexes. Expert Syst. Appl. 2012, 39:4444-4452.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 4444-4452
    • Dai, W.S.1    Wu, J.Y.2    Lu, C.J.3
  • 12
    • 0035385132 scopus 로고    scopus 로고
    • A new approach to near-infrared spectral data analysis using independent component analysis
    • Chen J., Wang X.Z. A new approach to near-infrared spectral data analysis using independent component analysis. J. Chem. Inf. Comput. Sci. 2001, 41:992-1001.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 992-1001
    • Chen, J.1    Wang, X.Z.2
  • 13
    • 28844473286 scopus 로고    scopus 로고
    • Independent component analysis and regression applied on sensory data
    • Westad F. Independent component analysis and regression applied on sensory data. J. Chemometr. 2005, 19:171-179.
    • (2005) J. Chemometr. , vol.19 , pp. 171-179
    • Westad, F.1
  • 14
    • 33646136443 scopus 로고    scopus 로고
    • A new regression method based on independent component analysis
    • Shao X.G., Wang W., Hou Z.Y., Cai W.S. A new regression method based on independent component analysis. Talanta 2006, 69:676-680.
    • (2006) Talanta , vol.69 , pp. 676-680
    • Shao, X.G.1    Wang, W.2    Hou, Z.Y.3    Cai, W.S.4
  • 15
    • 33845793937 scopus 로고    scopus 로고
    • Extracting underlying meaningful features and canceling noise using independent component analysis for direct marketing
    • Ahn H., Choi E., Han I. Extracting underlying meaningful features and canceling noise using independent component analysis for direct marketing. Expert Syst. Appl. 2007, 33:181-191.
    • (2007) Expert Syst. Appl. , vol.33 , pp. 181-191
    • Ahn, H.1    Choi, E.2    Han, I.3
  • 16
    • 42149192690 scopus 로고    scopus 로고
    • Development of a new regression analysis method using independent component analysis
    • Kaneko H., Arakawa M., Funatsu K. Development of a new regression analysis method using independent component analysis. J. Chem. Inf. Model. 2008, 48:534-541.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 534-541
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 17
    • 78649363675 scopus 로고    scopus 로고
    • Optimized independent components for parameter regression
    • Zhang Y.W., Zhang Y. Optimized independent components for parameter regression. Chemom. Intell. Lab. Syst. 2010, 104:214-222.
    • (2010) Chemom. Intell. Lab. Syst. , vol.104 , pp. 214-222
    • Zhang, Y.W.1    Zhang, Y.2
  • 18
    • 77952795514 scopus 로고    scopus 로고
    • Independent component regression for predicting the responses of biaxial base-isolated buildings
    • Shirali S., Hazra B., Narasimhan S., Pandey M.D. Independent component regression for predicting the responses of biaxial base-isolated buildings. Earthq. Eng. Struct. Dyn. 2010, 39:583-590.
    • (2010) Earthq. Eng. Struct. Dyn. , vol.39 , pp. 583-590
    • Shirali, S.1    Hazra, B.2    Narasimhan, S.3    Pandey, M.D.4
  • 19
    • 78650935600 scopus 로고    scopus 로고
    • Determination of glucose concentration from NIR spectra using independent component regression
    • Ai-Mbaideen A., Benaissa M. Determination of glucose concentration from NIR spectra using independent component regression. Chemom. Intell. Lab. Syst. 2011, 105:131-135.
    • (2011) Chemom. Intell. Lab. Syst. , vol.105 , pp. 131-135
    • Ai-Mbaideen, A.1    Benaissa, M.2
  • 20
    • 80052273847 scopus 로고    scopus 로고
    • Coupling subband decomposition and independent component regression for quantitative NIR spectroscopy
    • Ai-Mbaideen A., Benaissa M. Coupling subband decomposition and independent component regression for quantitative NIR spectroscopy. Chemom. Intell. Lab. Syst. 2011, 108:112-122.
    • (2011) Chemom. Intell. Lab. Syst. , vol.108 , pp. 112-122
    • Ai-Mbaideen, A.1    Benaissa, M.2
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 22
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20:832-844.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 23
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • Tao D.C., Tang X.O., Li X.L., Wu X.D. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28:1088-1099.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , pp. 1088-1099
    • Tao, D.C.1    Tang, X.O.2    Li, X.L.3    Wu, X.D.4
  • 24
    • 77955305868 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on linear subspace and Bayesian inference
    • Ge Z.Q., Zhang M.G., Song Z.H. Nonlinear process monitoring based on linear subspace and Bayesian inference. J. Process Control 2010, 20:676-688.
    • (2010) J. Process Control , vol.20 , pp. 676-688
    • Ge, Z.Q.1    Zhang, M.G.2    Song, Z.H.3
  • 26
    • 77956619458 scopus 로고    scopus 로고
    • A comparative assessment of ensemble learning for credit scoring
    • Wang G., Hao J.X., Ma J.A., Jiang H.B. A comparative assessment of ensemble learning for credit scoring. Expert Syst. Appl. 2011, 38:223-230.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 223-230
    • Wang, G.1    Hao, J.X.2    Ma, J.A.3    Jiang, H.B.4
  • 27
    • 84874770366 scopus 로고    scopus 로고
    • Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring
    • Ge Z.Q., Song Z.H. Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring. Chemom. Intell. Lab. Syst. 2013, 123:1-8.
    • (2013) Chemom. Intell. Lab. Syst. , vol.123 , pp. 1-8
    • Ge, Z.Q.1    Song, Z.H.2
  • 28
    • 84880905980 scopus 로고    scopus 로고
    • Bagging support vector data description model for batch process monitoring
    • Ge Z.Q., Song Z.H. Bagging support vector data description model for batch process monitoring. J. Process Control 2013, 23:1090-1096.
    • (2013) J. Process Control , vol.23 , pp. 1090-1096
    • Ge, Z.Q.1    Song, Z.H.2
  • 29
    • 78650948925 scopus 로고    scopus 로고
    • Bagging for robust non-linear multivariate calibration of spectroscopy
    • Wang K., Chen T., Lau R. Bagging for robust non-linear multivariate calibration of spectroscopy. Chemom. Intell. Lab. Syst. 2011, 105:1-6.
    • (2011) Chemom. Intell. Lab. Syst. , vol.105 , pp. 1-6
    • Wang, K.1    Chen, T.2    Lau, R.3
  • 30
    • 33750321050 scopus 로고    scopus 로고
    • Melt index prediction by neural networks based on independent component analysis and multi-scale analysis
    • Shi J., Liu X.G., Sun Y.X. Melt index prediction by neural networks based on independent component analysis and multi-scale analysis. Neurocomputing 2006, 70:280-287.
    • (2006) Neurocomputing , vol.70 , pp. 280-287
    • Shi, J.1    Liu, X.G.2    Sun, Y.X.3
  • 31
    • 0027698199 scopus 로고
    • Mathematical modeling, optimization, and quality control of high pressure polymerization reactors
    • Kiparissides C., Verros G., MacGregor J.F. Mathematical modeling, optimization, and quality control of high pressure polymerization reactors. J. Macromol. Sci. Rev. Macromol. Chem. Phys. 1993, C33:437-527.
    • (1993) J. Macromol. Sci. Rev. Macromol. Chem. Phys. , vol.C33 , pp. 437-527
    • Kiparissides, C.1    Verros, G.2    MacGregor, J.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.