메뉴 건너뛰기




Volumn 58, Issue , 2013, Pages 84-97

Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models

Author keywords

Adaptive soft sensor; Gaussian process regression; Mutual information; Online prediction; Process modelling; Process monitoring

Indexed keywords

ADAPTIVE SOFT-SENSOR; GAUSSIAN PROCESS REGRESSION; MUTUAL INFORMATIONS; ONLINE PREDICTION; PROCESS MODELLING;

EID: 84880339799     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2013.06.014     Document Type: Article
Times cited : (152)

References (48)
  • 1
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks 1994, 5(4):537-550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 4
    • 27444433806 scopus 로고    scopus 로고
    • Soft-sensor development for fed-batch bioreactors using support vector regression
    • Desai K., Badhe Y., Tambe S.S., Kulkarni B.D. Soft-sensor development for fed-batch bioreactors using support vector regression. Biochemical Engineering Journal 2006, 27(3):225-239.
    • (2006) Biochemical Engineering Journal , vol.27 , Issue.3 , pp. 225-239
    • Desai, K.1    Badhe, Y.2    Tambe, S.S.3    Kulkarni, B.D.4
  • 5
    • 52949129443 scopus 로고    scopus 로고
    • Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression
    • di Sciascio F., Amicarelli A.N. Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression. Computers and Chemical Engineering 2008, 32(12):3264-3273.
    • (2008) Computers and Chemical Engineering , vol.32 , Issue.12 , pp. 3264-3273
    • di Sciascio, F.1    Amicarelli, A.N.2
  • 7
  • 9
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • François D., Rossi F., Wertz V., Verleysen M. Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 2007, 70(7-9):1276-1288.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1276-1288
    • François, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 10
    • 11144284581 scopus 로고    scopus 로고
    • Soft sensors for product quality monitoring in debutanizer distillation columns
    • Fortuna L., Graziani S., Xibilia M.G. Soft sensors for product quality monitoring in debutanizer distillation columns. Control Engineering Practice 2005, 13(4):499-508.
    • (2005) Control Engineering Practice , vol.13 , Issue.4 , pp. 499-508
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3
  • 13
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE Journal 2009, 55(7):1754-1765.
    • (2009) AIChE Journal , vol.55 , Issue.7 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 14
    • 79954505385 scopus 로고    scopus 로고
    • Quality prediction for polypropylene production process based on CLGPR model
    • Ge Z., Chen T., Song Z. Quality prediction for polypropylene production process based on CLGPR model. Control Engineering Practice 2011, 19(5):423-432.
    • (2011) Control Engineering Practice , vol.19 , Issue.5 , pp. 423-432
    • Ge, Z.1    Chen, T.2    Song, Z.3
  • 15
    • 11144325691 scopus 로고
    • Partial least-squares regression: a tutorial
    • Geladi P., Kowalski B.R. Partial least-squares regression: a tutorial. Analytica Chimica Acta 1986, 185:1-17.
    • (1986) Analytica Chimica Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 17
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga J.C.B., Meleiro L.A.C., Kiang C., Maciel Filho R. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Computers and Chemical Engineering 2009, 33(1):43-49.
    • (2009) Computers and Chemical Engineering , vol.33 , Issue.1 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    Maciel Filho, R.4
  • 25
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P., Grbić R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Computers and Chemical Engineering 2011, 35(1):1-24.
    • (2011) Computers and Chemical Engineering , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 26
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: Good practice and questionnaire survey
    • Kano M., Ogawa M. The state of the art in chemical process control in Japan: Good practice and questionnaire survey. Journal of Process Control 2010, 20(9):969-982.
    • (2010) Journal of Process Control , vol.20 , Issue.9 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 27
    • 80053188234 scopus 로고    scopus 로고
    • Variable window adaptive Kernel Principal Component Analysis for nonlinear nonstationary process monitoring
    • Khediri I.B., Limam M., Weihs C. Variable window adaptive Kernel Principal Component Analysis for nonlinear nonstationary process monitoring. Computers and Industrial Engineering 2011, 61(3):437-446.
    • (2011) Computers and Industrial Engineering , vol.61 , Issue.3 , pp. 437-446
    • Khediri, I.B.1    Limam, M.2    Weihs, C.3
  • 31
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • Liu J. On-line soft sensor for polyethylene process with multiple production grades. Control Engineering Practice 2007, 15(7):769-778.
    • (2007) Control Engineering Practice , vol.15 , Issue.7 , pp. 769-778
    • Liu, J.1
  • 35
    • 0036397757 scopus 로고    scopus 로고
    • Intelligent control applications in the process industries
    • McAvoy T.J. Intelligent control applications in the process industries. Annual Reviews in Control 2002, 26(1):75-86.
    • (2002) Annual Reviews in Control , vol.26 , Issue.1 , pp. 75-86
    • McAvoy, T.J.1
  • 37
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin S.J. Recursive PLS algorithms for adaptive data modeling. Computers and Chemical Engineering 1998, 22(4-5):503-514.
    • (1998) Computers and Chemical Engineering , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 39
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman Challenge Process
    • Ricker N.L. Decentralized control of the Tennessee Eastman Challenge Process. Journal of Process Control 1996, 6(4):205-221.
    • (1996) Journal of Process Control , vol.6 , Issue.4 , pp. 205-221
    • Ricker, N.L.1
  • 41
    • 84857548668 scopus 로고    scopus 로고
    • Methods for plant data-based process modeling in soft-sensor development
    • Slišković D., Grbić R., Hocenski Ž. Methods for plant data-based process modeling in soft-sensor development. Automatika 2011, 52(4):306-318.
    • (2011) Automatika , vol.52 , Issue.4 , pp. 306-318
    • Slišković, D.1    Grbić, R.2    Hocenski, Ž.3
  • 45
    • 21444433386 scopus 로고    scopus 로고
    • On-line estimation of concentration parameters in fermentation processes
    • Xiong Z., Huang G., Shao H. On-line estimation of concentration parameters in fermentation processes. Journal of Zhejiang University Science B 2005, 6(6):530-534.
    • (2005) Journal of Zhejiang University Science B , vol.6 , Issue.6 , pp. 530-534
    • Xiong, Z.1    Huang, G.2    Shao, H.3
  • 46
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W., Shao H., Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Computers and Chemical Engineering 2004, 28(8):1489-1498.
    • (2004) Computers and Chemical Engineering , vol.28 , Issue.8 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 47
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with bayesian inference-based finite Gaussian mixture models. AIChE Journal 2008, 54(7):1811-1829.
    • (2008) AIChE Journal , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.