메뉴 건너뛰기




Volumn 23, Issue 10, 2013, Pages 1575-1596

Design of inferential sensors in the process industry: A review of Bayesian methods

Author keywords

Bayesian methods; Grey box models; Inferential sensor; Process industry

Indexed keywords

ADVANCED MONITORING; BAYESIAN METHODS; GREY-BOX MODELS; INFERENTIAL MODELS; INFERENTIAL SENSORS; MEASUREMENT TECHNIQUES; PROCESS INDUSTRIES; REAL TIME MEASUREMENTS;

EID: 84888306466     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2013.05.007     Document Type: Review
Times cited : (242)

References (216)
  • 5
    • 0041802770 scopus 로고    scopus 로고
    • A survey of industrial model predictive control technology
    • DOI 10.1016/S0967-0661(02)00186-7, PII S0967066102001867
    • S.J. Qin, and T.A. Badgwell A survey of industrial model predictive control technology Control Engineering Practice 11 2003 733 764 (Pubitemid 36906334)
    • (2003) Control Engineering Practice , vol.11 , Issue.7 , pp. 733-764
    • Qin, S.J.1    Badgwell, T.A.2
  • 7
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: Good practice and questionnaire survey
    • M. Kano, and M. Ogawa The state of the art in chemical process control in Japan: good practice and questionnaire survey Journal of Process Control 20 2010 969 982
    • (2010) Journal of Process Control , vol.20 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 9
    • 57249097849 scopus 로고    scopus 로고
    • Dealing with irregular data in soft sensors: Bayesian method and comparative study
    • S. Khatibisepehr, and B. Huang Dealing with irregular data in soft sensors: Bayesian method and comparative study Industrial and Engineering Chemistry Research 47 2008 8713 8723
    • (2008) Industrial and Engineering Chemistry Research , vol.47 , pp. 8713-8723
    • Khatibisepehr, S.1    Huang, B.2
  • 10
    • 79955578057 scopus 로고    scopus 로고
    • Bayesian method for multirate data synthesis and model calibration
    • X. Shao, B. Huang, J.M. Lee, F. Xu, and A. Espejo Bayesian method for multirate data synthesis and model calibration AIChE Journal 57 2011 1514 1525
    • (2011) AIChE Journal , vol.57 , pp. 1514-1525
    • Shao, X.1    Huang, B.2    Lee, J.M.3    Xu, F.4    Espejo, A.5
  • 11
    • 79957508307 scopus 로고    scopus 로고
    • Bayesian methods for control loop diagnosis in presence of temporal dependent evidences
    • F. Qi, and B. Huang Bayesian methods for control loop diagnosis in presence of temporal dependent evidences Automatica 47 2011 1349 1356
    • (2011) Automatica , vol.47 , pp. 1349-1356
    • Qi, F.1    Huang, B.2
  • 14
    • 84872920533 scopus 로고    scopus 로고
    • Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications
    • M. Kano, and K. Fujiwara Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications Journal of Chemical Engineering of Japan 46 2013 1 17
    • (2013) Journal of Chemical Engineering of Japan , vol.46 , pp. 1-17
    • Kano, M.1    Fujiwara, K.2
  • 15
    • 0002096055 scopus 로고
    • An essay towards solving a problem in the doctrine of chances
    • T. Bayes An essay towards solving a problem in the doctrine of chances Biometrika 45 1973/1958 296 315
    • (1973) Biometrika , vol.45 , pp. 296-315
    • Bayes, T.1
  • 16
    • 0025460071 scopus 로고
    • A first principles approach to automated troubleshooting of chemical plants
    • S.D. Grantham, and L.H. Ungar A first principles approach to automated troubleshooting of chemical plants Computers and Chemical Engineering 14 1990 783 798
    • (1990) Computers and Chemical Engineering , vol.14 , pp. 783-798
    • Grantham, S.D.1    Ungar, L.H.2
  • 17
    • 0036532920 scopus 로고    scopus 로고
    • Product property and production rate control of styrene polymerization
    • DOI 10.1016/S0959-1524(01)00044-0, PII S0959152401000440
    • V. Prasad, M. Schley, L.P. Russo, and B.W. Bequette Product property and production rate control of styrene polymerization Journal of Process Control 12 2002 353 372 (Pubitemid 34162259)
    • (2002) Journal of Process Control , vol.12 , Issue.3 , pp. 353-372
    • Prasad, V.1    Schley, M.2    Russo, L.P.3    Wayne Bequette, B.4
  • 18
    • 0036462523 scopus 로고    scopus 로고
    • First-principles distillation inference models for product quality prediction
    • Y.Z. Friedman, E.A. Neto, and C.R. Porfirio First-principles distillation inference models for product quality prediction Hydrocarbon Processing 81 2002 54 58
    • (2002) Hydrocarbon Processing , vol.81 , pp. 54-58
    • Friedman, Y.Z.1    Neto, E.A.2    Porfirio, C.R.3
  • 20
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry
    • DOI 10.1016/j.compchemeng.2007.07.005, PII S0098135407001986, Process Systems Engineering: Contributions on the State-of-the-Art Selected extended Papers from ESCAPE '16/PSE 2006.
    • M. Kano, and Y. Nakagawa Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry Computers and Chemical Engineering 32 2008 12 24 (Pubitemid 350016270)
    • (2008) Computers and Chemical Engineering , vol.32 , Issue.1-2 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 21
    • 75849128323 scopus 로고    scopus 로고
    • Online composition estimation and experiment validation of distillation processes with switching dynamics
    • M. Olanrewaju, B. Huang, and A. Afacan Online composition estimation and experiment validation of distillation processes with switching dynamics Chemical Engineering Science 65 2010 1597 1608
    • (2010) Chemical Engineering Science , vol.65 , pp. 1597-1608
    • Olanrewaju, M.1    Huang, B.2    Afacan, A.3
  • 22
  • 23
    • 77649188787 scopus 로고    scopus 로고
    • Computer vision based interface level control in separation cells
    • P. Jampanaa, S. Shah, and R. Kadali Computer vision based interface level control in separation cells Control Engineering Practice 18 2010 349 357
    • (2010) Control Engineering Practice , vol.18 , pp. 349-357
    • Jampanaa, P.1    Shah, S.2    Kadali, R.3
  • 25
    • 52049109752 scopus 로고    scopus 로고
    • Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation
    • Computational Intelligence Theory and Applications
    • K. Dadhe, V. Roßmann, K. Durmus, and S. Engell Neural networks as a tool for gray box modelling in reactive distillation B. Reusch, Computational Intelligence. Theory and Applications, volume 2206 of Lecture Notes in Computer Sciences 2001 Springer Verlag Berlin 576 588 (Pubitemid 33359533)
    • (2001) Lecture Notes in Computer Science , Issue.2206 , pp. 576-588
    • Dadhe, K.1    Rossmann, V.2    Durmus, K.3    Engell, S.4
  • 26
    • 79956309023 scopus 로고    scopus 로고
    • Soft-sensor for copper extraction process in cobalt hydrometallurgy based on adaptive hybrid model
    • R. Jiaa, Z. Maoa, Y. Changa, and L. Zhao Soft-sensor for copper extraction process in cobalt hydrometallurgy based on adaptive hybrid model Chemical Engineering Research and Design 89 2011 722 728
    • (2011) Chemical Engineering Research and Design , vol.89 , pp. 722-728
    • Jiaa, R.1    Maoa, Z.2    Changa, Y.3    Zhao, L.4
  • 29
    • 0017133178 scopus 로고
    • Inference and missing data
    • D.B. Rubin Inference and missing data Biometrika 63 1976 581 592
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 33
    • 84863457272 scopus 로고    scopus 로고
    • Strategy for modelling nonrandom missing data mechanisms in observational studies using Bayesian methods
    • A. Mason, S. Richardson, I. Plewis, and N. Best Strategy for modelling nonrandom missing data mechanisms in observational studies using Bayesian methods Journal of Official Statistics 28 2012 279 302
    • (2012) Journal of Official Statistics , vol.28 , pp. 279-302
    • Mason, A.1    Richardson, S.2    Plewis, I.3    Best, N.4
  • 34
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • J.L. Schafer, and J.W. Graham Missing data: our view of the state of the art Psychological Methods 7 2002 147 177
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 38
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • J.W. Graham Missing data analysis: making it work in the real world Annual Review of Psychology 60 2009 549 576
    • (2009) Annual Review of Psychology , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 39
    • 77951209078 scopus 로고    scopus 로고
    • A comparison of multiple imputation with em algorithm and MCMC method for quality of life missing data
    • T.H. Lin A comparison of multiple imputation with EM algorithm and MCMC method for quality of life missing data Quality & Quantity 44 2010 277 287
    • (2010) Quality & Quantity , vol.44 , pp. 277-287
    • Lin, T.H.1
  • 40
    • 0004093524 scopus 로고    scopus 로고
    • Sage Publications Thousand Oaks, CA
    • P.D. Allison Missing Data 2002 Sage Publications Thousand Oaks, CA
    • (2002) Missing Data
    • Allison, P.D.1
  • 41
    • 30744439044 scopus 로고    scopus 로고
    • Identification of chemical processes with irregular output sampling
    • DOI 10.1016/j.conengprac.2005.01.015, PII S0967066105000602, Intelligent Control Systems and Signal Processing ICONS 2003
    • H. Raghavan, A.K. Tangirala, R.B. Gopaluni, and S.L. Shah Identification of chemical processes with irregular output sampling Control Engineering Practice 14 2006 467 480 (Pubitemid 43092174)
    • (2006) Control Engineering Practice , vol.14 , Issue.5 , pp. 467-480
    • Raghavan, H.1    Tangirala, A.K.2    Gopaluni, R.B.3    Shah, S.L.4
  • 42
    • 83355163227 scopus 로고    scopus 로고
    • Multiple model based LPV soft sensor development with irregular/missing process output measurement
    • X. Jin, S. Wang, B. Huang, and F. Forbes Multiple model based LPV soft sensor development with irregular/missing process output measurement Control Engineering Practice 20 2012 165 172
    • (2012) Control Engineering Practice , vol.20 , pp. 165-172
    • Jin, X.1    Wang, S.2    Huang, B.3    Forbes, F.4
  • 43
    • 77956401926 scopus 로고    scopus 로고
    • A Bayesian approach for control loop diagnosis with missing data
    • F. Qi, B. Huang, and E.C. Tamayo A Bayesian approach for control loop diagnosis with missing data AIChE Journal 56 2010 179 195
    • (2010) AIChE Journal , vol.56 , pp. 179-195
    • Qi, F.1    Huang, B.2    Tamayo, E.C.3
  • 44
    • 79960245463 scopus 로고    scopus 로고
    • Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples
    • Z. Ge, and Z. Song Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples AIChE Journal 57 2011 2109 2119
    • (2011) AIChE Journal , vol.57 , pp. 2109-2119
    • Ge, Z.1    Song, Z.2
  • 45
    • 84946031884 scopus 로고
    • Procedures for detecting outlying observations in samples
    • F.E. Grubbs Procedures for detecting outlying observations in samples Technometrics 11 1969 1 21
    • (1969) Technometrics , vol.11 , pp. 1-21
    • Grubbs, F.E.1
  • 46
    • 72049098542 scopus 로고    scopus 로고
    • Improvement of identification of blast furnace ironmaking process by outlier detection and missing value imputation
    • J. Zeng, and C. Gao Improvement of identification of blast furnace ironmaking process by outlier detection and missing value imputation Journal of Process Control 19 2009 1519 1528
    • (2009) Journal of Process Control , vol.19 , pp. 1519-1528
    • Zeng, J.1    Gao, C.2
  • 47
    • 79960836522 scopus 로고    scopus 로고
    • Integrating independent component analysis and local outlier factor for plant-wide process monitoring
    • J. Lee, B. Kang, and S. Kang Integrating independent component analysis and local outlier factor for plant-wide process monitoring Journal of Process Control 21 2011 1519 1528
    • (2011) Journal of Process Control , vol.21 , pp. 1519-1528
    • Lee, J.1    Kang, B.2    Kang, S.3
  • 49
    • 84874514744 scopus 로고    scopus 로고
    • A Bayesian approach to robust process identification with ARX models
    • S. Khatibisepehr, and B. Huang A Bayesian approach to robust process identification with ARX models AIChE Journal 59 2013 845 859
    • (2013) AIChE Journal , vol.59 , pp. 845-859
    • Khatibisepehr, S.1    Huang, B.2
  • 54
    • 0033359542 scopus 로고    scopus 로고
    • Novelty detection using extreme value statistics
    • DOI 10.1049/ip-vis:19990428
    • S. Roberts Novelty detection using extreme value statistics Proceedings of the IEE Vision, Image and Signal Processing. Special Issue on Applications of Neural Networks 146 1999 124 129 (Pubitemid 30500232)
    • (1999) IEE Proceedings: Vision, Image and Signal Processing , vol.146 , Issue.3 , pp. 124-129
    • Roberts, S.J.1
  • 55
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • J. Yu A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses Computers and Chemical Engineering 41 2012 134 144
    • (2012) Computers and Chemical Engineering , vol.41 , pp. 134-144
    • Yu, J.1
  • 56
    • 33845323774 scopus 로고    scopus 로고
    • Detecting anomalies in cross-classified streams: A Bayesian approach
    • D. Agarwal Detecting anomalies in cross-classified streams: a Bayesian approach Knowledge and Information Systems 11 2006 29 44
    • (2006) Knowledge and Information Systems , vol.11 , pp. 29-44
    • Agarwal, D.1
  • 57
    • 0031169206 scopus 로고    scopus 로고
    • Outliers in statistical pattern recognition and an application to automatic chromosome classification
    • PII S0167865597000494
    • G. Ritter, and M.T. Gallegos Outliers in statistical pattern recognition and an application to automatic chromosome classification Pattern Recognition Letters 18 1997 525 539 (Pubitemid 127424200)
    • (1997) Pattern Recognition Letters , vol.18 , Issue.6 , pp. 525-539
    • Ritter, G.1    Gallegos, M.T.2
  • 60
    • 0346245747 scopus 로고    scopus 로고
    • Bayesian approach to outlier detection in multivariate normal samples and linear models
    • A. Varbanov Bayesian approach to outlier detection in multivariate normal samples and linear models Communications in Statistics - Theory and Methods 27 1998 547 557 (Pubitemid 128454909)
    • (1998) Communications in Statistics - Theory and Methods , vol.27 , Issue.3 , pp. 547-557
    • Varbanov, A.1
  • 61
    • 85053486234 scopus 로고    scopus 로고
    • Outlier detection and editing procedures for continuous multivariate data
    • B. Ghosh-Dastidar, and J.L. Schafer Outlier detection and editing procedures for continuous multivariate data Journal of Official Statistics 22 2006 487 506
    • (2006) Journal of Official Statistics , vol.22 , pp. 487-506
    • Ghosh-Dastidar, B.1    Schafer, J.L.2
  • 63
    • 0035904959 scopus 로고    scopus 로고
    • Multivariate outlier detection and remediation in geochemical databases
    • DOI 10.1016/S0048-9697(01)00839-7, PII S0048969701008397
    • G.C. Lalor, and C. Zhang Multivariate outlier detection and remediation in geochemical databases The Science of The Total Environment 281 2001 99 109 (Pubitemid 33121240)
    • (2001) Science of the Total Environment , vol.281 , Issue.1-3 , pp. 99-109
    • Lalor, G.C.1    Zhang, C.2
  • 65
    • 0004296209 scopus 로고    scopus 로고
    • sixth edition Prentice-Hall Inc. New Jersey
    • W.H. Greene Econometric Analysis sixth edition 2007 Prentice-Hall Inc. New Jersey
    • (2007) Econometric Analysis
    • Greene, W.H.1
  • 68
    • 84944477553 scopus 로고
    • Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation
    • D.W. Marquardt Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation Technometrics 12 1970 591 612
    • (1970) Technometrics , vol.12 , pp. 591-612
    • Marquardt, D.W.1
  • 69
    • 33747875071 scopus 로고    scopus 로고
    • Real-time monitoring of an industrial batch process
    • DOI 10.1016/j.compchemeng.2006.05.040, PII S0098135406001529, Papers from Chemical Process Control VII CPC VII
    • O. Marjanovic, B. Lennox, D. Sandoz, K. Smith, and M. Crofts Real-time monitoring of an industrial batch process Computers and Chemical Engineering 30 2006 1476 1481 (Pubitemid 44292274)
    • (2006) Computers and Chemical Engineering , vol.30 , Issue.10-12 , pp. 1476-1481
    • Marjanovic, O.1    Lennox, B.2    Sandoz, D.3    Smith, K.4    Crofts, M.5
  • 70
    • 80055066982 scopus 로고    scopus 로고
    • Structural characterization of carbonyl compounds by IR spectroscopy and chemometrics data analysis
    • N. Mobaraki, and B. Hemmateenejad Structural characterization of carbonyl compounds by IR spectroscopy and chemometrics data analysis Chemometrics and Intelligent Laboratory Systems 109 2011 171 177
    • (2011) Chemometrics and Intelligent Laboratory Systems , vol.109 , pp. 171-177
    • Mobaraki, N.1    Hemmateenejad, B.2
  • 71
    • 79953814457 scopus 로고    scopus 로고
    • Soft sensor design by multivariate fusion of image features and process measurements
    • B. Lin, and S.B. Jrgensen Soft sensor design by multivariate fusion of image features and process measurements Journal of Process Control 21 2011 547 553
    • (2011) Journal of Process Control , vol.21 , pp. 547-553
    • Lin, B.1    Jrgensen, S.B.2
  • 72
    • 84868670175 scopus 로고    scopus 로고
    • Estimation of bitumen froth quality using Bayesian information synthesis: An application to froth transportation process
    • X. Shao, F. Xu, B. Huang, and A. Espejo Estimation of bitumen froth quality using Bayesian information synthesis: an application to froth transportation process The Canadian Journal of Chemical Engineering 90 2013 1393 1399
    • (2013) The Canadian Journal of Chemical Engineering , vol.90 , pp. 1393-1399
    • Shao, X.1    Xu, F.2    Huang, B.3    Espejo, A.4
  • 73
    • 33847162850 scopus 로고    scopus 로고
    • A systematic approach for soft sensor development
    • DOI 10.1016/j.compchemeng.2006.05.030, PII S0098135406001293, ESCAPE-15 Selected Papers from the 15th European Symposium on Computer Aided Process Engineering held in Barcelona, Spain, May 29-June 1, 2005
    • B. Lin, B. Recke, J.K.H. Knudsen, and S.B. Jrgensen A systematic approach for soft sensor development Computers and Chemical Engineering 31 2007 419 425 (Pubitemid 46282062)
    • (2007) Computers and Chemical Engineering , vol.31 , Issue.5-6 , pp. 419-425
    • Lin, B.1    Recke, B.2    Knudsen, J.K.H.3    Jorgensen, S.B.4
  • 79
    • 0036706987 scopus 로고    scopus 로고
    • Process modeling by Bayesian latent variable regression
    • M.N. Nounou, and B.R. Bakshi Process modeling by Bayesian latent variable regression AIChE Journal 48 2004 1775 1793
    • (2004) AIChE Journal , vol.48 , pp. 1775-1793
    • Nounou, M.N.1    Bakshi, B.R.2
  • 80
    • 84867701713 scopus 로고    scopus 로고
    • Signal and data processing for machine olfaction and chemical sensing: A review
    • S. Marco Signal and data processing for machine olfaction and chemical sensing: a review Sensors Journal, IEEE 12 2012 3189 3214
    • (2012) Sensors Journal, IEEE , vol.12 , pp. 3189-3214
    • Marco, S.1
  • 82
    • 84862525228 scopus 로고    scopus 로고
    • A Bayesian mixture modeling approach for assessing the effects of correlated exposures in case-control studies
    • F. de Vocht, N. Cherry, and J. Wakefield A Bayesian mixture modeling approach for assessing the effects of correlated exposures in case-control studies Journal of Exposure Science and Environmental Epidemiology 22 2012 352 360
    • (2012) Journal of Exposure Science and Environmental Epidemiology , vol.22 , pp. 352-360
    • De Vocht, F.1    Cherry, N.2    Wakefield, J.3
  • 92
    • 9944241272 scopus 로고    scopus 로고
    • Statistical and computational intelligence techniques for inferential model development: A comparative evaluation and a novel proposition for fusion
    • K. Warne, G. Prasad, S. Rezvani, and L. Maguire Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion Engineering Applications of Artificial Intelligence 17 2004 871 885
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , pp. 871-885
    • Warne, K.1    Prasad, G.2    Rezvani, S.3    Maguire, L.4
  • 98
    • 84866268194 scopus 로고    scopus 로고
    • Input variable selection for PLS modeling using nearest correlation spectral clustering
    • K. Fujiwara, H. Sawada, and M. Kano Input variable selection for PLS modeling using nearest correlation spectral clustering Chemometrics and Intelligent Laboratory Systems 118 2012 109 119
    • (2012) Chemometrics and Intelligent Laboratory Systems , vol.118 , pp. 109-119
    • Fujiwara, K.1    Sawada, H.2    Kano, M.3
  • 102
    • 33947415699 scopus 로고    scopus 로고
    • A new approach to variable selection using the TLS approach
    • DOI 10.1109/TSP.2006.882105
    • J.J. Fuchs, and S. Maria A new appraoch to variable selection using the tls approach IEEE Transactions on Signal Processing 55 2007 10 19 (Pubitemid 46443201)
    • (2007) IEEE Transactions on Signal Processing , vol.55 , Issue.1 , pp. 10-19
    • Fuchs, J.-J.1    Maria, S.2
  • 103
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G.E. Schwarz Estimating the dimension of a model Annals of Statistics 6 1978 461 464
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.E.1
  • 106
    • 67249095701 scopus 로고    scopus 로고
    • Comparison of criteria for estimating the order of autoregressive process: A monte carlo approach
    • O.I. Shittu, and M.J. Asemota Comparison of criteria for estimating the order of autoregressive process: a monte carlo approach European Journal of Scientific Research 30 2009 409 416
    • (2009) European Journal of Scientific Research , vol.30 , pp. 409-416
    • Shittu, O.I.1    Asemota, M.J.2
  • 107
    • 23844478259 scopus 로고    scopus 로고
    • Neural network modeling for small datasets
    • DOI 10.1198/004017005000000058
    • S. Ingrassia, and I. Morlini Neural network modeling for small datasets Technometrics 47 2005 297 311 (Pubitemid 41164066)
    • (2005) Technometrics , vol.47 , Issue.3 , pp. 297-311
    • Ingrassia, S.1    Morlini, I.2
  • 108
    • 84860639429 scopus 로고    scopus 로고
    • A new process variable and dynamics selection method based on a genetic algorithm-based wavelength selection method
    • H. Kaneko, and K. Funatsu A new process variable and dynamics selection method based on a genetic algorithm-based wavelength selection method AIChE Journal 58 2012 1829 1840
    • (2012) AIChE Journal , vol.58 , pp. 1829-1840
    • Kaneko, H.1    Funatsu, K.2
  • 109
    • 13944275303 scopus 로고    scopus 로고
    • Regressor selection with the analysis of variance method
    • DOI 10.1016/j.automatica.2004.11.017, PII S000510980400336X
    • I. Lind, and L. Ljung Regressor selection with the analysis of variance method Automatica 41 2005 693 700 (Pubitemid 40266217)
    • (2005) Automatica , vol.41 , Issue.4 , pp. 693-700
    • Lind, I.1    Ljung, L.2
  • 110
    • 37849012165 scopus 로고    scopus 로고
    • Regressor and structure selection in NARX models using a structured anova approach
    • I. Lind, and L. Ljung Regressor and structure selection in NARX models using a structured anova approach Automatica 44 2008 383 395
    • (2008) Automatica , vol.44 , pp. 383-395
    • Lind, I.1    Ljung, L.2
  • 112
    • 11144267998 scopus 로고    scopus 로고
    • Neural network-based software sensor: Training set design and application to a continuous pulp digester
    • DOI 10.1016/j.conengprac.2004.02.013, PII S0967066104000528
    • P. Dufour, S. Bhartiya, and P.S.F.J.D. Dhurjati III Neural network-based software sensor: training set design and application to a continuous pulp digester Control Engineering Practice 13 2005 135 143 (Pubitemid 40032230)
    • (2005) Control Engineering Practice , vol.13 , Issue.2 , pp. 135-143
    • Dufour, P.1    Bhartiya, S.2    Dhurjati, P.S.3    Doyle III, F.J.4
  • 113
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • J.C.B. Gonzagaa, L.A.C. Meleirob, C. Kianga, and R.M. Filho ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process Computers and Chemical Engineering 33 2009 43 49
    • (2009) Computers and Chemical Engineering , vol.33 , pp. 43-49
    • Gonzagaa, J.C.B.1    Meleirob, L.A.C.2    Kianga, C.3    Filho, R.M.4
  • 114
    • 69249230467 scopus 로고    scopus 로고
    • A review of Bayesian variable selection methods: What, how and which
    • R.B. O'Hara, and M.J. Sillanpää A review of Bayesian variable selection methods: what, how and which Bayesian Analysis 4 2009 85 118
    • (2009) Bayesian Analysis , vol.4 , pp. 85-118
    • O'Hara, R.B.1    Sillanpää, M.J.2
  • 115
    • 85013119491 scopus 로고    scopus 로고
    • Bayesian variable selection for random intercept modeling of gaussian and non-gaussian data
    • J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith, M. West, Oxford University Press Oxford
    • S. Frühwirth-Schnatter, and H. Wagner Bayesian variable selection for random intercept modeling of gaussian and non-gaussian data J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith, M. West, Bayesian Statistics, volume 9 of Oxford Science Publications 2011 Oxford University Press Oxford 165 200
    • (2011) Bayesian Statistics, Volume 9 of Oxford Science Publications , pp. 165-200
    • Frühwirth-Schnatter, S.1    Wagner, H.2
  • 116
    • 77953326052 scopus 로고    scopus 로고
    • Bayesian regularisation in structured additive regression: A unifying perspective on shrinkage, smoothing and predictor selection
    • L. Fahrmeir, T. Kneib, and S. Konrath Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection Statistics and Computing 20 2010 203 219
    • (2010) Statistics and Computing , vol.20 , pp. 203-219
    • Fahrmeir, L.1    Kneib, T.2    Konrath, S.3
  • 120
    • 2442597278 scopus 로고    scopus 로고
    • Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data
    • DOI 10.1051/gse:2004001
    • T.H.E. Meuwissen, and M.E. Goddard Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data Genetics Selection Evolution 36 2004 261 279 (Pubitemid 38630134)
    • (2004) Genetics Selection Evolution , vol.36 , Issue.3 , pp. 261-279
    • Meuwissen, T.H.E.1    Goddard, M.E.2
  • 121
    • 78650337471 scopus 로고    scopus 로고
    • Inference with normal-gamma prior distributions in regression problems
    • J.E. Griffin, and P.J. Brown Inference with normal-gamma prior distributions in regression problems Bayesian Analysis 5 2010 171 188
    • (2010) Bayesian Analysis , vol.5 , pp. 171-188
    • Griffin, J.E.1    Brown, P.J.2
  • 123
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for bayesian variable selection
    • E.I. George, and R.E. McCulloch Approaches for Bayesian variable selection Statistica Sinica 7 1997 339 373 (Pubitemid 127473668)
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 124
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of ppca for multimode process monitoring
    • Z. Ge, and Z. Song Mixture Bayesian regularization method of ppca for multimode process monitoring AIChE Journal 56 2010 2838 2849
    • (2010) AIChE Journal , vol.56 , pp. 2838-2849
    • Ge, Z.1    Song, Z.2
  • 125
    • 68049127780 scopus 로고    scopus 로고
    • Improving prediction capabilities of complex dynamic models via parameter selection and estimation
    • Y. Chu, Z. Huang, and J. Hahn Improving prediction capabilities of complex dynamic models via parameter selection and estimation Chemical Engineering Science 64 2009 4178 4185
    • (2009) Chemical Engineering Science , vol.64 , pp. 4178-4185
    • Chu, Y.1    Huang, Z.2    Hahn, J.3
  • 126
    • 0043240532 scopus 로고    scopus 로고
    • Maximum a posteriori estimation of transient enhanced diffusion energetics
    • DOI 10.1002/aic.690490819
    • R. Gunawan, M.Y.L. Jung, E.G. Seebauer, and R.D. Braatz Maximum A Posteriori estimation of transient enhanced diffusion energetics AIChE Journal 49 2003 2114 2123 (Pubitemid 36999452)
    • (2003) AIChE Journal , vol.49 , Issue.8 , pp. 2114-2123
    • Gunawan, R.1    Jung, M.Y.L.2    Seebauer, E.G.3    Braatz, R.D.4
  • 127
    • 13444273022 scopus 로고    scopus 로고
    • First-principles and direct design approaches for the control of pharmaceutical crystallization
    • DOI 10.1016/j.jprocont.2004.08.003, PII S0959152404001015
    • M. Fujiwara, Z.K. Nagy, J.W. Chew, and R.D. Braatz First-principles and direct design approaches for the control of pharmaceutical crystallization Journal of Process Control 15 2005 493 504 (Pubitemid 40206600)
    • (2005) Journal of Process Control , vol.15 , Issue.5 , pp. 493-504
    • Fujiwara, M.1    Nagy, Z.K.2    Chew, J.W.3    Braatz, R.D.4
  • 128
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D.J.C. MacKay Bayesian interpolation Neural Computation 4 1992 415 447
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • Mackay, D.J.C.1
  • 129
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • DOI 10.1016/j.compchemeng.2003.11.004, PII S0098135403003107
    • W. Yan, H. Shao, and X. Wang Soft sensing modeling based on support vector machine and Bayesian model selection Computers and Chemical Engineering 28 2004 1489 1498 (Pubitemid 38609097)
    • (2004) Computers and Chemical Engineering , vol.28 , Issue.8 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 130
    • 1342266172 scopus 로고    scopus 로고
    • Model selection using response measurements: Bayesian probabilistic approach
    • DOI 10.1061/(ASCE)0733-9399(2004)130:2(192)
    • J.L. Beck, and K. Yuen Model selection using response measurements: Bayesian probabilistic approach Journal of Engineering Mechanics 130 2004 192 203 (Pubitemid 38242322)
    • (2004) Journal of Engineering Mechanics , vol.130 , Issue.2 , pp. 192-203
    • Beck, J.L.1    Yuen, K.-V.2
  • 131
    • 33744551503 scopus 로고    scopus 로고
    • Bayesian learning using Gaussian process for gas identification
    • DOI 10.1109/TIM.2006.873804
    • A. Bermak, and S.B. Belhouari Bayesian learning using gaussian process for gas identification IEEE Transcation on Instrumentation and Measurement 55 2006 787 792 (Pubitemid 43811440)
    • (2006) IEEE Transactions on Instrumentation and Measurement , vol.55 , Issue.3 , pp. 787-792
    • Bermak, A.1    Belhouari, S.B.2
  • 135
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • D.J.C. MacKay Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks Network: Computation in Neural Systems 6 1995 469 505
    • (1995) Network: Computation in Neural Systems , vol.6 , pp. 469-505
    • Mackay, D.J.C.1
  • 136
    • 0034271876 scopus 로고    scopus 로고
    • The evidence framework applied to support vector machines
    • J.T. Kwok The evidence framework applied to support vector machines IEEE Transactions on Neural Network 11 2000 1162 1173
    • (2000) IEEE Transactions on Neural Network , vol.11 , pp. 1162-1173
    • Kwok, J.T.1
  • 139
    • 11844259510 scopus 로고    scopus 로고
    • Clustering-based hybrid soft sensor for an industrial polypropylene process with grade changeover operation
    • M. Kim, Y.H. Lee, I.S. Han, and C. Han Clustering-based hybrid soft sensor for an industrial polypropylene process with grade changeover operation Industrial & Engineering Chemistry Research 44 2005 334 342 (Pubitemid 40096205)
    • (2005) Industrial and Engineering Chemistry Research , vol.44 , Issue.2 , pp. 334-342
    • Kim, M.1    Lee, Y.-H.2    Han, I.-S.3    Han, C.4
  • 140
    • 61349165676 scopus 로고    scopus 로고
    • Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine
    • X.L. Li, H. Su, and J. Chu Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine Chinese Journal of Chemical Engineering 17 2009 95 99
    • (2009) Chinese Journal of Chemical Engineering , vol.17 , pp. 95-99
    • Li, X.L.1    Su, H.2    Chu, J.3
  • 146
    • 0037293274 scopus 로고    scopus 로고
    • A clustering technique for the identification of piecewise affine systems
    • G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari A clustering technique for the identification of piecewise affine systems Automatica 39 2003 205 217
    • (2003) Automatica , vol.39 , pp. 205-217
    • Ferrari-Trecate, G.1    Muselli, M.2    Liberati, D.3    Morari, M.4
  • 147
    • 77955783219 scopus 로고    scopus 로고
    • Robust identification of piecewise/switching autoregressive exogenous process
    • X. Jin, and B. Huang Robust identification of piecewise/switching autoregressive exogenous process AIChE Journal 56 2010 1829 1844
    • (2010) AIChE Journal , vol.56 , pp. 1829-1844
    • Jin, X.1    Huang, B.2
  • 148
    • 27644574126 scopus 로고    scopus 로고
    • A bounded-error approach to piecewise affine system identification
    • DOI 10.1109/TAC.2005.856667
    • A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino A bounded-error approach to piecewise affine system identification IEEE Transactions on Automatic Control 50 2005 1567 1580 (Pubitemid 41555605)
    • (2005) IEEE Transactions on Automatic Control , vol.50 , Issue.10 , pp. 1567-1580
    • Bemporad, A.1    Garulli, A.2    Paoletti, S.3    Vicino, A.4
  • 149
  • 151
    • 84870438932 scopus 로고    scopus 로고
    • A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry
    • S. Khatibisepehr, and B. Huang A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry Journal of Process Control 22 2012 1913 1929
    • (2012) Journal of Process Control , vol.22 , pp. 1913-1929
    • Khatibisepehr, S.1    Huang, B.2
  • 152
    • 33745216495 scopus 로고    scopus 로고
    • Bayesian-based on-line applicability evaluation of neural network models in modeling automotive paint spray operations
    • J. Li, and Y. Huang Bayesian-based on-line applicability evaluation of neural network models in modeling automotive paint spray operations Computers and Chemical Engineering 30 2006 1392 1399
    • (2006) Computers and Chemical Engineering , vol.30 , pp. 1392-1399
    • Li, J.1    Huang, Y.2
  • 153
    • 84855966964 scopus 로고    scopus 로고
    • Online soft sensor for hybrid systems with mixed continuous and discrete measurements
    • E. Suzdaleva, and I. Nagy Online soft sensor for hybrid systems with mixed continuous and discrete measurements Computers and Chemical Engineering 36 2012 294 300
    • (2012) Computers and Chemical Engineering , vol.36 , pp. 294-300
    • Suzdaleva, E.1    Nagy, I.2
  • 154
  • 157
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • DOI 10.1093/bioinformatics/btg419
    • U.M. Braga-Neto, and E.R. Dougherty Is cross-validation valid for small-sample microarray classification? Chemical & Biochemical Engineering Quarterly 20 2004 374 380 (Pubitemid 38262769)
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 158
    • 70450265705 scopus 로고    scopus 로고
    • Soft sensors for kerosene properties estimation and control in crude distillation unit
    • N. Bolf, G. Galinec, and M. Ivandić Soft sensors for kerosene properties estimation and control in crude distillation unit Chemical & Biochemical Engineering Quarterly 23 2009 11 17
    • (2009) Chemical & Biochemical Engineering Quarterly , vol.23 , pp. 11-17
    • Bolf, N.1    Galinec, G.2    Ivandić, M.3
  • 167
    • 79958835436 scopus 로고    scopus 로고
    • Bayesian filtering: From Kalman filters to particle filters, and beyond
    • Z. Chen Bayesian filtering: from Kalman filters to particle filters, and beyond Statistics 182 2003 1 69
    • (2003) Statistics , vol.182 , pp. 1-69
    • Chen, Z.1
  • 171
    • 0036568901 scopus 로고    scopus 로고
    • A supervisory approach to fault-tolerant control of linear multivariable systems
    • J. Prakash, S.C. Patwardhan, and S. Narasimhan A supervisory approach to fault-tolerant control of linear multivariable systems Industrial and Engineering Chemistry Research 41 2002 2270 2281 (Pubitemid 34438796)
    • (2002) Industrial and Engineering Chemistry Research , vol.41 , Issue.9 , pp. 2270-2281
    • Prakash, J.1    Patwardhan, S.C.2    Narasimhan, S.3
  • 172
    • 79954627113 scopus 로고    scopus 로고
    • Kalman-based strategies for fault detection and identification (FDI): Extensions and critical evaluation for a buffer tank system
    • K. Villez, B. Srinivasan, R. Rengaswamy, S. Narasimhan, and V. Venkatasubramanian Kalman-based strategies for fault detection and identification (FDI): extensions and critical evaluation for a buffer tank system Computers and Chemical Engineering 35 2011 806 816
    • (2011) Computers and Chemical Engineering , vol.35 , pp. 806-816
    • Villez, K.1    Srinivasan, B.2    Rengaswamy, R.3    Narasimhan, S.4    Venkatasubramanian, V.5
  • 173
    • 4644342579 scopus 로고    scopus 로고
    • Temperature oscillation calorimetry by means of a Kalman-like observer: The joint estimation of Qr and UA in a stirred tank polymerization reactor
    • F.B. Freire, and R. Giudici Temperature oscillation calorimetry by means of a Kalman-like observer: the joint estimation of Qr and UA in a stirred tank polymerization reactor Macromolecular Symposia 206 2004 15 28
    • (2004) Macromolecular Symposia , vol.206 , pp. 15-28
    • Freire, F.B.1    Giudici, R.2
  • 176
    • 41549085499 scopus 로고    scopus 로고
    • Flatness-based two-degree-of-freedom control of industrial semi-batch reactors using a new observation model for an extended Kalman filter approach
    • DOI 10.1080/00207170701558951, PII 791839694, Special Issue Dedicated to Professor Michel Fliess
    • V. Hagenmeyer, and M. Nohr Flatness-based two-degree-of-freedom control of industrial semi-batch reactors using a new observation model for an extended Kalman filter approach International Journal of Control 81 2008 428 438 (Pubitemid 351469160)
    • (2008) International Journal of Control , vol.81 , Issue.3 , pp. 428-438
    • Hagenmeyer, V.1    Nohr, M.2
  • 177
    • 80051900780 scopus 로고    scopus 로고
    • Design and validation of an innovative soft-sensor for pharmaceuticals freeze-drying monitoring
    • S. Bosca, and D. Fissore Design and validation of an innovative soft-sensor for pharmaceuticals freeze-drying monitoring Chemical Engineering Science 66 2011 5127 5136
    • (2011) Chemical Engineering Science , vol.66 , pp. 5127-5136
    • Bosca, S.1    Fissore, D.2
  • 179
    • 0034326226 scopus 로고    scopus 로고
    • New developments in state estimation for nonlinear systems
    • M. Norgaard, M. Poulsen, and O. Ravn New developments in state estimation for nonlinear systems Automatica 36 2000 1627 1638
    • (2000) Automatica , vol.36 , pp. 1627-1638
    • Norgaard, M.1    Poulsen, M.2    Ravn, O.3
  • 180
    • 21244437999 scopus 로고    scopus 로고
    • Unscented filtering and nonlinear estimation
    • DOI 10.1109/JPROC.2003.823141, Sequential State Estimation: From Kalman Filters to Particles Filters
    • S. Julier, and J.K. Uhlmann Unscented filtering and nonlinear estimation Proceedings of the IEEE 92 2004 401 422 (Pubitemid 40890750)
    • (2004) Proceedings of the IEEE , vol.92 , Issue.3 , pp. 401-422
    • Julier, S.J.1    Uhlmann, J.K.2
  • 181
    • 58749086947 scopus 로고    scopus 로고
    • Computation of arrival cost for moving horizon estimation via unscented Kalman filtering
    • C.C. Qu, and J. Hahn Computation of arrival cost for moving horizon estimation via unscented Kalman filtering Journal of Process Control 19 2009 358 363
    • (2009) Journal of Process Control , vol.19 , pp. 358-363
    • Qu, C.C.1    Hahn, J.2
  • 182
    • 77955193344 scopus 로고    scopus 로고
    • On-line estimation in fed-batch fermentation process using state space model and unscented Kalman filter
    • J. Wang, Z. Liqiang, and Y. Tao On-line estimation in fed-batch fermentation process using state space model and unscented Kalman filter Chinese Journal of Chemical Engineering 18 2010 258 264
    • (2010) Chinese Journal of Chemical Engineering , vol.18 , pp. 258-264
    • Wang, J.1    Liqiang, Z.2    Tao, Y.3
  • 184
    • 84857781333 scopus 로고    scopus 로고
    • Fault diagnosis and accommodation of nonlinear systems based on multiple-model adaptive unscented Kalman filter and switched MPC and H-infinity loop-shaping controller
    • A. Mirzaee, and K. Salahshoor Fault diagnosis and accommodation of nonlinear systems based on multiple-model adaptive unscented Kalman filter and switched MPC and H-infinity loop-shaping controller Journal of Process Control 22 2012 626 634
    • (2012) Journal of Process Control , vol.22 , pp. 626-634
    • Mirzaee, A.1    Salahshoor, K.2
  • 189
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • G. Evenson The ensemble Kalman filter: theoretical formulation and practical implementation Ocean Dynamics 53 2003 343367
    • (2003) Ocean Dynamics , vol.53 , pp. 343367
    • Evenson, G.1
  • 190
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • DOI 10.1109/78.978374, PII S1053587X0200569X
    • M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking IEEE Transactions on Signal Processing 50 2002 174 188 (Pubitemid 34291500)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 191
    • 17744380204 scopus 로고    scopus 로고
    • Particle filters for state and parameter estimation in batch processes
    • DOI 10.1016/j.jprocont.2005.01.001, PII S095915240500017X
    • T. Chen, J. Morris, and E. Martin Particle filters for state and parameter estimation in batch processes Journal of Process Control 15 2005 665 673 (Pubitemid 40574537)
    • (2005) Journal of Process Control , vol.15 , Issue.6 , pp. 665-673
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 192
    • 59349110051 scopus 로고    scopus 로고
    • A particle filter approach to identification of nonlinear processes under missing observations
    • R.B. Gopaluni A particle filter approach to identification of nonlinear processes under missing observations The Canadian Journal of Chemical Engineering 86 2008 1081 1092
    • (2008) The Canadian Journal of Chemical Engineering , vol.86 , pp. 1081-1092
    • Gopaluni, R.B.1
  • 193
    • 84867229655 scopus 로고    scopus 로고
    • Identification of nonlinear parameter varying systems with missing output data
    • J. Deng, and B. Huang Identification of nonlinear parameter varying systems with missing output data AIChE Journal 58 2012 3454 3467
    • (2012) AIChE Journal , vol.58 , pp. 3454-3467
    • Deng, J.1    Huang, B.2
  • 197
    • 0031168001 scopus 로고    scopus 로고
    • Recursive exponentially weighted PLS and its applications to adaptive control and prediction
    • PII S0959152496000124
    • B.S. Dayal, and J.F. MacGregor Recursive exponentially weighted PLS and its applications to adaptive control and prediction Journal of Process Control 7 1997 169 179 (Pubitemid 127372162)
    • (1997) Journal of Process Control , vol.7 , Issue.3 , pp. 169-179
    • Dayal, B.S.1    MacGregor, J.F.2
  • 200
    • 0035263882 scopus 로고    scopus 로고
    • Just-in-time modeling for function prediction and its applications
    • Q. Zheng, and H. Kimura Just-in-time modeling for function prediction and its applications Asian Journal of Control 3 2001 35 44 (Pubitemid 32982095)
    • (2001) Asian Journal of Control , vol.3 , Issue.1 , pp. 35-44
    • Zheng, Q.B.1    Kimua, H.2
  • 201
    • 78149281663 scopus 로고    scopus 로고
    • A novel calibration approach of soft sensor based on multirate data fusion technology
    • Y. Wu, and X. Luo A novel calibration approach of soft sensor based on multirate data fusion technology Journal of Process Control 20 2010 1252 1260
    • (2010) Journal of Process Control , vol.20 , pp. 1252-1260
    • Wu, Y.1    Luo, X.2
  • 204
    • 0022160837 scopus 로고
    • Data reconcilliation and gross error detection in chemical process networks
    • A.C. Tamhane, and R.S.H. Mah Data reconcilliation and gross error detection in chemical process networks Technometrics 27 1985 409 422
    • (1985) Technometrics , vol.27 , pp. 409-422
    • Tamhane, A.C.1    Mah, R.S.H.2
  • 205
    • 0002222209 scopus 로고
    • A Bayesian approach to gross error detection in chemical process data: Part i: Model development
    • A.C. Tamhane A Bayesian approach to gross error detection in chemical process data: Part i: Model development Chemometrics and Intelligent Laboratory Systems 4 1988 33 45
    • (1988) Chemometrics and Intelligent Laboratory Systems , vol.4 , pp. 33-45
    • Tamhane, A.C.1
  • 206
    • 30744449226 scopus 로고    scopus 로고
    • Likelihood and Bayesian methods for accurate identification of measurement biases in pseudo steady-state processes
    • DOI 10.1205/cherd.04270
    • S. Devanathan, S.B. Vardeman, and S.D.K. Rollins Likelihood and Bayesian methods for accurate identification of measurement biases in pseudo steady-state processes Chemical Engineering Research and Design 83 2005 1391 1398 (Pubitemid 43092241)
    • (2005) Chemical Engineering Research and Design , vol.83 , Issue.12 , pp. 1391-1398
    • Devanathan, S.1    Vardeman, S.B.2    Rollins, D.K.3
  • 207
    • 35348965851 scopus 로고    scopus 로고
    • A Bayesian approach to the detection of gross errors based on posterior probability
    • DOI 10.1007/s00190-006-0132-y
    • Q. Gui, Y. Gong, G. Li, and B. Li A Bayesian approach to the detection of gross errors based on posterior probability Journal of Geodesy 81 2007 651 659 (Pubitemid 47603969)
    • (2007) Journal of Geodesy , vol.81 , Issue.10 , pp. 651-659
    • Gui, Q.1    Gong, Y.2    Li, G.3    Li, B.4
  • 209
    • 81155132533 scopus 로고    scopus 로고
    • Dynamic Bayesian approach to gross error detection and compensation with application toward an oil sands process
    • R. Gonzalez, B. Huang, F. Xu, and A. Espejo Dynamic Bayesian approach to gross error detection and compensation with application toward an oil sands process Chemical Engineering Science 67 2012 44 56
    • (2012) Chemical Engineering Science , vol.67 , pp. 44-56
    • Gonzalez, R.1    Huang, B.2    Xu, F.3    Espejo, A.4
  • 211
    • 79955611348 scopus 로고    scopus 로고
    • Applicability domains and accuracy of prediction of soft sensor models
    • H. Kaneko, M. Arakawa, and K. Funatsu Applicability domains and accuracy of prediction of soft sensor models AIChE Journal 57 2010 1506 1513
    • (2010) AIChE Journal , vol.57 , pp. 1506-1513
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 212
    • 79960526726 scopus 로고    scopus 로고
    • Improvement and estimation of prediction accuracy of soft sensor models based on time difference
    • K.G. Mehrotra, C.K. Mohan, J.C. Oh, P.K. Varshney, M. Ali, Springer-Verlag Berlin
    • H. Kaneko, and K. Funatsu Improvement and estimation of prediction accuracy of soft sensor models based on time difference K.G. Mehrotra, C.K. Mohan, J.C. Oh, P.K. Varshney, M. Ali, Modern Approaches in Applied Intelligence, volume 6703 of Lecture Notes in Computer Science 2011 Springer-Verlag Berlin 115 124
    • (2011) Modern Approaches in Applied Intelligence, Volume 6703 of Lecture Notes in Computer Science , pp. 115-124
    • Kaneko, H.1    Funatsu, K.2
  • 213
    • 0027557151 scopus 로고
    • Grey-box modelling and identification using physical knowledge and Bayesian techniques
    • H.J.A.F. Tulleken Grey-box modelling and identification using physical knowledge and Bayesian techniques Automatica 29 1993 285 308
    • (1993) Automatica , vol.29 , pp. 285-308
    • Tulleken, H.J.A.F.1
  • 214
    • 65449146082 scopus 로고    scopus 로고
    • Exact Bayesian regression of piecewise constant functions
    • M. Hutter Exact Bayesian regression of piecewise constant functions Bayesian Analysis 2 2007 635 664
    • (2007) Bayesian Analysis , vol.2 , pp. 635-664
    • Hutter, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.