-
1
-
-
44349146289
-
-
Springer, London
-
Fortuna L., Graziani S., Rizzo A., Xibilia M.G. Soft Sensors for Monitoring and Control of Industrial Processes 2007, Springer, London.
-
(2007)
Soft Sensors for Monitoring and Control of Industrial Processes
-
-
Fortuna, L.1
Graziani, S.2
Rizzo, A.3
Xibilia, M.G.4
-
2
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
3
-
-
84872920533
-
Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications
-
Kano M., Fujiwara K. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications. J. Chem. Eng. Jpn. 2013, 46:1-17.
-
(2013)
J. Chem. Eng. Jpn.
, vol.46
, pp. 1-17
-
-
Kano, M.1
Fujiwara, K.2
-
4
-
-
35548968908
-
Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
-
Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 2008, 32:12-24.
-
(2008)
Comput. Chem. Eng.
, vol.32
, pp. 12-24
-
-
Kano, M.1
Nakagawa, Y.2
-
5
-
-
84883736569
-
Long-term industrial applications ofinferential control based on just-in-timesoft-sensors: economical impact and challenges
-
Kim S., Kano M., Hasebe S., Takinami A., Seki T. Long-term industrial applications ofinferential control based on just-in-timesoft-sensors: economical impact and challenges. Ind. Eng. Chem. Res. 2013, 52:12346-12356.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 12346-12356
-
-
Kim, S.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
Seki, T.5
-
6
-
-
33847162850
-
A systematic approach for soft sensor development
-
Lin B., Recke B., Knudsen J.K., Jørgensen S.B. A systematic approach for soft sensor development. Comput. Chem. Eng. 2007, 31:419-425.
-
(2007)
Comput. Chem. Eng.
, vol.31
, pp. 419-425
-
-
Lin, B.1
Recke, B.2
Knudsen, J.K.3
Jørgensen, S.B.4
-
7
-
-
84857548668
-
Methods for plant data-based process modeling in soft-sensor development
-
Sliskovic D., Grbic R., Hocenski Z. Methods for plant data-based process modeling in soft-sensor development. Automatica 2011, 52:306-318.
-
(2011)
Automatica
, vol.52
, pp. 306-318
-
-
Sliskovic, D.1
Grbic, R.2
Hocenski, Z.3
-
9
-
-
84892445860
-
Mixture semisupervised principal component regression model and soft sensor application
-
Ge Z., Huang B., Song Z. Mixture semisupervised principal component regression model and soft sensor application. AICHE J. 2014, 60:533-545.
-
(2014)
AICHE J.
, vol.60
, pp. 533-545
-
-
Ge, Z.1
Huang, B.2
Song, Z.3
-
10
-
-
84889685311
-
External analysis-based regression model for robust soft sensing of multimode chemical processes
-
Ge Z., Song Z., Kano M. External analysis-based regression model for robust soft sensing of multimode chemical processes. AICHE J. 2014, 60:136-147.
-
(2014)
AICHE J.
, vol.60
, pp. 136-147
-
-
Ge, Z.1
Song, Z.2
Kano, M.3
-
11
-
-
33746991704
-
Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based soft sensor for a LDPE plant
-
Sharmin R., Sundararaj U., Shah S., Vande Griend L., Sun Y.-J. Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based soft sensor for a LDPE plant. Chem. Eng. Sci. 2006, 61:6372-6384.
-
(2006)
Chem. Eng. Sci.
, vol.61
, pp. 6372-6384
-
-
Sharmin, R.1
Sundararaj, U.2
Shah, S.3
Vande Griend, L.4
Sun, Y.-J.5
-
13
-
-
84887725182
-
Ensemble independent component regression models and soft sensing application
-
Ge Z., Song Z. Ensemble independent component regression models and soft sensing application. Chemom. Intell. Lab. Syst. 2014, 130:115-122.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.130
, pp. 115-122
-
-
Ge, Z.1
Song, Z.2
-
14
-
-
58449118276
-
Development of a new soft sensor method using independent component analysis and partial least squares
-
Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AICHE J. 2009, 55:87-98.
-
(2009)
AICHE J.
, vol.55
, pp. 87-98
-
-
Kaneko, H.1
Arakawa, M.2
Funatsu, K.3
-
15
-
-
84905686213
-
Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes
-
Jin H., Chen X., Yang J., Wu L. Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes. Comput. Chem. Eng. 2014, 71:77-93.
-
(2014)
Comput. Chem. Eng.
, vol.71
, pp. 77-93
-
-
Jin, H.1
Chen, X.2
Yang, J.3
Wu, L.4
-
16
-
-
84868224530
-
Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
-
Yu J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind. Eng. Chem. Res. 2012, 51:13227-13237.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 13227-13237
-
-
Yu, J.1
-
17
-
-
40449133038
-
Nonlinear multivariate quality estimation and prediction based on kernel partial least squares
-
Zhang X., Yan W., Shao H. Nonlinear multivariate quality estimation and prediction based on kernel partial least squares. Ind. Eng. Chem. Res. 2008, 47:1120-1131.
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 1120-1131
-
-
Zhang, X.1
Yan, W.2
Shao, H.3
-
18
-
-
78149468553
-
Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
-
Zhang Y., Ma C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS. Chem. Eng. Sci. 2011, 66:64-72.
-
(2011)
Chem. Eng. Sci.
, vol.66
, pp. 64-72
-
-
Zhang, Y.1
Ma, C.2
-
19
-
-
84906872234
-
Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes
-
Yuan X., Ge Z., Song Z. Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes. Ind. Eng. Chem. Res. 2014, 53:13736-13749.
-
(2014)
Ind. Eng. Chem. Res.
, vol.53
, pp. 13736-13749
-
-
Yuan, X.1
Ge, Z.2
Song, Z.3
-
20
-
-
84855946000
-
Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation
-
Cui L., Xie P., Sun J., Yu T., Yuan J. Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation. Comput. Chem. Eng. 2012, 36:386-391.
-
(2012)
Comput. Chem. Eng.
, vol.36
, pp. 386-391
-
-
Cui, L.1
Xie, P.2
Sun, J.3
Yu, T.4
Yuan, J.5
-
21
-
-
57049112694
-
ANN-basedsoft-sensor for real-time process monitoring and control of an industrial polymerization process
-
Gonzaga J., Meleiro L., Kiang C., Maciel Filho R. ANN-basedsoft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput. Chem. Eng. 2009, 33:43-49.
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 43-49
-
-
Gonzaga, J.1
Meleiro, L.2
Kiang, C.3
Maciel Filho, R.4
-
22
-
-
33947266512
-
Development of a soft sensor for a batch distillation column using support vector regression techniques
-
Jain P., Rahman I., Kulkarni B. Development of a soft sensor for a batch distillation column using support vector regression techniques. Chem. Eng. Res. Des. 2007, 85:283-287.
-
(2007)
Chem. Eng. Res. Des.
, vol.85
, pp. 283-287
-
-
Jain, P.1
Rahman, I.2
Kulkarni, B.3
-
23
-
-
84859392648
-
A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
-
Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
-
(2012)
Comput. Chem. Eng.
, vol.41
, pp. 134-144
-
-
Yu, J.1
-
24
-
-
61749095807
-
Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems
-
Jassar S., Liao Z., Zhao L. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems. Build. Environ. 2009, 44:1609-1616.
-
(2009)
Build. Environ.
, vol.44
, pp. 1609-1616
-
-
Jassar, S.1
Liao, Z.2
Zhao, L.3
-
25
-
-
61849183105
-
Bagging for Gaussian process regression
-
Chen T., Ren J. Bagging for Gaussian process regression. Neurocomputing 2009, 72:1605-1610.
-
(2009)
Neurocomputing
, vol.72
, pp. 1605-1610
-
-
Chen, T.1
Ren, J.2
-
27
-
-
84905715987
-
Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression
-
Yuan X., Ge Z., Song Z. Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression. Chemom. Intell. Lab. Syst. 2014, 138:97-109.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.138
, pp. 97-109
-
-
Yuan, X.1
Ge, Z.2
Song, Z.3
-
28
-
-
34147222905
-
On-line soft sensor for polyethylene process with multiple production grades
-
Liu J. On-line soft sensor for polyethylene process with multiple production grades. Control. Eng. Pract. 2007, 15:769-778.
-
(2007)
Control. Eng. Pract.
, vol.15
, pp. 769-778
-
-
Liu, J.1
-
29
-
-
84874515333
-
A Bayesian model averaging based multi-kernelGaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty
-
Yu J., Chen K., Rashid M.M. A Bayesian model averaging based multi-kernelGaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty. Chem. Eng. Sci. 2013, 93:96-109.
-
(2013)
Chem. Eng. Sci.
, vol.93
, pp. 96-109
-
-
Yu, J.1
Chen, K.2
Rashid, M.M.3
-
30
-
-
19844382757
-
Stage-based process analysis and quality prediction for batch processes
-
Lu N., Gao F. Stage-based process analysis and quality prediction for batch processes. Ind. Eng. Chem. Res. 2005, 44:3547-3555.
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 3547-3555
-
-
Lu, N.1
Gao, F.2
-
32
-
-
84864805251
-
Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
-
Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem. Eng. Sci. 2012, 82:22-30.
-
(2012)
Chem. Eng. Sci.
, vol.82
, pp. 22-30
-
-
Yu, J.1
-
33
-
-
61349165676
-
Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine
-
Li X., Su H., Chu J. Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine. Chin. J. Chem. Eng. 2009, 17:95-99.
-
(2009)
Chin. J. Chem. Eng.
, vol.17
, pp. 95-99
-
-
Li, X.1
Su, H.2
Chu, J.3
-
34
-
-
78650945964
-
Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
-
Niu D.-p., Wang F.-l., Zhang L.-l., He D.-k., Jia M.-x. Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression. Chemom. Intell. Lab. Syst. 2011, 105:125-130.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.105
, pp. 125-130
-
-
Niu, D.-P.1
Wang, F.-L.2
Zhang, L.-L.3
He, D.-K.4
Jia, M.-X.5
-
35
-
-
71549120384
-
The boosting: a new idea of building models
-
Cao D.S., Xu Q.S., Liang Y.-Z., Zhang L.-X., Li H.-D. The boosting: a new idea of building models. Chemom. Intell. Lab. Syst. 2010, 100:1-11.
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.100
, pp. 1-11
-
-
Cao, D.S.1
Xu, Q.S.2
Liang, Y.-Z.3
Zhang, L.-X.4
Li, H.-D.5
-
36
-
-
84888306466
-
Design of inferential sensors in the process industry: a review of Bayesian methods
-
Khatibisepehr S., Huang B., Khare S. Design of inferential sensors in the process industry: a review of Bayesian methods. J. Process Control 2013, 23:1575-1596.
-
(2013)
J. Process Control
, vol.23
, pp. 1575-1596
-
-
Khatibisepehr, S.1
Huang, B.2
Khare, S.3
-
37
-
-
78649468188
-
Review of adaptation mechanisms for data-driven soft sensors
-
Kadlec P., Grbić R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2011, 35:1-24.
-
(2011)
Comput. Chem. Eng.
, vol.35
, pp. 1-24
-
-
Kadlec, P.1
Grbić, R.2
Gabrys, B.3
-
38
-
-
84879309312
-
Classification of the degradation of soft sensor models and discussion on adaptive models
-
Kaneko H., Funatsu K. Classification of the degradation of soft sensor models and discussion on adaptive models. AICHE J. 2013, 59:2339-2347.
-
(2013)
AICHE J.
, vol.59
, pp. 2339-2347
-
-
Kaneko, H.1
Funatsu, K.2
-
39
-
-
77956444702
-
The state of the art in chemical process control in Japan: good practice and questionnaire survey
-
Kano M., Ogawa M. The state of the art in chemical process control in Japan: good practice and questionnaire survey. J. Process Control 2010, 20:969-982.
-
(2010)
J. Process Control
, vol.20
, pp. 969-982
-
-
Kano, M.1
Ogawa, M.2
-
40
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Joe Qin S. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22:503-514.
-
(1998)
Comput. Chem. Eng.
, vol.22
, pp. 503-514
-
-
Joe Qin, S.1
-
41
-
-
59349107270
-
A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
-
Ahmed F., Nazir S., Yeo Y.K. A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant. Korean J. Chem. Eng. 2009, 26:14-20.
-
(2009)
Korean J. Chem. Eng.
, vol.26
, pp. 14-20
-
-
Ahmed, F.1
Nazir, S.2
Yeo, Y.K.3
-
42
-
-
33645417998
-
Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process
-
Mu S., Zeng Y., Liu R., Wu P., Su H., Chu J. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. J. Process Control 2006, 16:557-566.
-
(2006)
J. Process Control
, vol.16
, pp. 557-566
-
-
Mu, S.1
Zeng, Y.2
Liu, R.3
Wu, P.4
Su, H.5
Chu, J.6
-
43
-
-
84862208873
-
Localized, adaptive recursive partial least squares regression for dynamic system modeling
-
Ni W., Tan S.K., Ng W.J., Brown S.D. Localized, adaptive recursive partial least squares regression for dynamic system modeling. Ind. Eng. Chem. Res. 2012, 51:8025-8039.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 8025-8039
-
-
Ni, W.1
Tan, S.K.2
Ng, W.J.3
Brown, S.D.4
-
44
-
-
84861071787
-
Moving-windowGPR for nonlinear dynamic system modeling with dual updating and dual preprocessing
-
Ni W., Tan S.K., Ng W.J., Brown S.D. Moving-windowGPR for nonlinear dynamic system modeling with dual updating and dual preprocessing. Ind. Eng. Chem. Res. 2012, 51:6416-6428.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 6416-6428
-
-
Ni, W.1
Tan, S.K.2
Ng, W.J.3
Brown, S.D.4
-
45
-
-
84896913551
-
A localized adaptive soft sensor for dynamic system modeling
-
Ni W., Brown S.D., Man R. A localized adaptive soft sensor for dynamic system modeling. Chem. Eng. Sci. 2014, 111:350-363.
-
(2014)
Chem. Eng. Sci.
, vol.111
, pp. 350-363
-
-
Ni, W.1
Brown, S.D.2
Man, R.3
-
46
-
-
84883140452
-
Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size
-
Kaneko H., Funatsu K. Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size. Comput. Chem. Eng. 2013, 58:288-297.
-
(2013)
Comput. Chem. Eng.
, vol.58
, pp. 288-297
-
-
Kaneko, H.1
Funatsu, K.2
-
47
-
-
84892441284
-
Application of online support vector regression for soft sensors
-
Kaneko H., Funatsu K. Application of online support vector regression for soft sensors. AICHE J. 2014, 60:600-612.
-
(2014)
AICHE J.
, vol.60
, pp. 600-612
-
-
Kaneko, H.1
Funatsu, K.2
-
48
-
-
22944436794
-
Process monitoring approach using fast moving window PCA
-
Wang X., Kruger U., Irwin G.W. Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res. 2005, 44:5691-5702.
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 5691-5702
-
-
Wang, X.1
Kruger, U.2
Irwin, G.W.3
-
49
-
-
79959784751
-
Maintenance-free soft sensor models with time difference of process variables
-
Kaneko H., Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom. Intell. Lab. Syst. 2011, 107:312-317.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.107
, pp. 312-317
-
-
Kaneko, H.1
Funatsu, K.2
-
50
-
-
84874624320
-
Development and industrial application of soft sensors with on-line Bayesian model updating strategy
-
Deng J., Xie L., Chen L., Khatibisepehr S., Huang B., Xu F., Espejo A. Development and industrial application of soft sensors with on-line Bayesian model updating strategy. J. Process Control 2013, 23:317-325.
-
(2013)
J. Process Control
, vol.23
, pp. 317-325
-
-
Deng, J.1
Xie, L.2
Chen, L.3
Khatibisepehr, S.4
Huang, B.5
Xu, F.6
Espejo, A.7
-
51
-
-
79954599740
-
Local learning-based adaptive soft sensor for catalyst activation prediction
-
Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AICHE J. 2011, 57:1288-1301.
-
(2011)
AICHE J.
, vol.57
, pp. 1288-1301
-
-
Kadlec, P.1
Gabrys, B.2
-
52
-
-
27144556425
-
Incremental online learning in high dimensions
-
Vijayakumar S., D'souza A., Schaal S. Incremental online learning in high dimensions. Neural Comput. 2005, 17:2602-2634.
-
(2005)
Neural Comput.
, vol.17
, pp. 2602-2634
-
-
Vijayakumar, S.1
D'souza, A.2
Schaal, S.3
-
53
-
-
84880339799
-
Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
-
Grbić R., Slišković D., Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput. Chem. Eng. 2013, 58:84-97.
-
(2013)
Comput. Chem. Eng.
, vol.58
, pp. 84-97
-
-
Grbić, R.1
Slišković, D.2
Kadlec, P.3
-
54
-
-
84903588321
-
Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants
-
Kaneko H., Funatsu K. Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants. Chemom. Intell. Lab. Syst. 2014, 135:57-66.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.135
, pp. 57-66
-
-
Kaneko, H.1
Funatsu, K.2
-
55
-
-
80055094175
-
A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
-
Kaneko H., Funatsu K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom. Intell. Lab. Syst. 2011, 109:197-206.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.109
, pp. 197-206
-
-
Kaneko, H.1
Funatsu, K.2
-
56
-
-
0031073475
-
Locally weighted learning for control
-
Springer, Netherlands, D.W. Aha (Ed.)
-
Atkeson C.G., Moore A.W., Schaal S. Locally weighted learning for control. Lazy Learning 1997, 75-113. Springer, Netherlands. D.W. Aha (Ed.).
-
(1997)
Lazy Learning
, pp. 75-113
-
-
Atkeson, C.G.1
Moore, A.W.2
Schaal, S.3
-
57
-
-
0032625723
-
Lazy learning for local modelling and control design
-
Bontempi G., Birattari M., Bersini H. Lazy learning for local modelling and control design. Int. J. Control. 1999, 72:643-658.
-
(1999)
Int. J. Control.
, vol.72
, pp. 643-658
-
-
Bontempi, G.1
Birattari, M.2
Bersini, H.3
-
58
-
-
2942558590
-
A new data-based methodology for nonlinear process modeling
-
Cheng C., Chiu M.-S. A new data-based methodology for nonlinear process modeling. Chem. Eng. Sci. 2004, 59:2801-2810.
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 2801-2810
-
-
Cheng, C.1
Chiu, M.-S.2
-
59
-
-
14844303316
-
Nonlinear process monitoring using JITL-PCA
-
Cheng C., Chiu M.-S. Nonlinear process monitoring using JITL-PCA. Chemom. Intell. Lab. Syst. 2005, 76:1-13.
-
(2005)
Chemom. Intell. Lab. Syst.
, vol.76
, pp. 1-13
-
-
Cheng, C.1
Chiu, M.-S.2
-
60
-
-
84904335114
-
Batch process monitoring based on just-in-time learning and multiple-subspace principal component analysis
-
Lv Z., Yan X., Jiang Q. Batch process monitoring based on just-in-time learning and multiple-subspace principal component analysis. Chemom. Intell. Lab. Syst. 2014, 137:128-139.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.137
, pp. 128-139
-
-
Lv, Z.1
Yan, X.2
Jiang, Q.3
-
61
-
-
84924240378
-
State of the art in the development of adaptive soft sensors based on just-in-time models
-
Saptoro A. State of the art in the development of adaptive soft sensors based on just-in-time models. Proc. Chem. 2014, 9:226-234.
-
(2014)
Proc. Chem.
, vol.9
, pp. 226-234
-
-
Saptoro, A.1
-
62
-
-
0036639869
-
Scalable techniques from nonparametric statistics for real time robot learning
-
Schaal S., Atkeson C.G., Vijayakumar S. Scalable techniques from nonparametric statistics for real time robot learning. Appl. Intell. 2002, 17:49-60.
-
(2002)
Appl. Intell.
, vol.17
, pp. 49-60
-
-
Schaal, S.1
Atkeson, C.G.2
Vijayakumar, S.3
-
63
-
-
84891520527
-
Novel just-in-timelearning-based soft sensor utilizing non-Gaussian information
-
Xie L., Zeng J., Gao C. Novel just-in-timelearning-based soft sensor utilizing non-Gaussian information. IEEE Trans. Control Syst. Technol. 2014, 22:360-368.
-
(2014)
IEEE Trans. Control Syst. Technol.
, vol.22
, pp. 360-368
-
-
Xie, L.1
Zeng, J.2
Gao, C.3
-
64
-
-
0038259120
-
Kernel partial least squares regression in reproducing kernel Hilbert space
-
Rosipal R., Trejo L.J. Kernel partial least squares regression in reproducing kernel Hilbert space. J. Mach. Learn. Res. 2002, 2:97-123.
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 97-123
-
-
Rosipal, R.1
Trejo, L.J.2
-
65
-
-
0026578543
-
Nonlinear partial least squares modelling II. Spline inner relation
-
Wold S. Nonlinear partial least squares modelling II. Spline inner relation. Chemom. Intell. Lab. Syst. 1992, 14:71-84.
-
(1992)
Chemom. Intell. Lab. Syst.
, vol.14
, pp. 71-84
-
-
Wold, S.1
-
67
-
-
78650524009
-
A comparative study of just-in-time-learning based methods for online soft sensor modeling
-
Ge Z., Song Z. A comparative study of just-in-time-learning based methods for online soft sensor modeling. Chemom. Intell. Lab. Syst. 2010, 104:306-317.
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.104
, pp. 306-317
-
-
Ge, Z.1
Song, Z.2
-
68
-
-
68049143320
-
Soft-sensor development using correlation-based just-in-time modeling
-
Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AICHE J. 2009, 55:1754-1765.
-
(2009)
AICHE J.
, vol.55
, pp. 1754-1765
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
-
69
-
-
77951091017
-
Development of correlation-based clustering method and its application to software sensing
-
Fujiwara K., Kano M., Hasebe S. Development of correlation-based clustering method and its application to software sensing. Chemom. Intell. Lab. Syst. 2010, 101:130-138.
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.101
, pp. 130-138
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
-
70
-
-
84857190023
-
Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design
-
Fujiwara K., Kano M., Hasebe S. Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design. Control. Eng. Pract. 2012, 20:371-378.
-
(2012)
Control. Eng. Pract.
, vol.20
, pp. 371-378
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
-
71
-
-
81755166220
-
Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection
-
Kim S., Kano M., Nakagawa H., Hasebe S. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. Int. J. Pharm. 2011, 421:269-274.
-
(2011)
Int. J. Pharm.
, vol.421
, pp. 269-274
-
-
Kim, S.1
Kano, M.2
Nakagawa, H.3
Hasebe, S.4
-
72
-
-
79951722848
-
Optimum quality design system for steel products through locally weighted regression model
-
Shigemori H., Kano M., Hasebe S. Optimum quality design system for steel products through locally weighted regression model. J. Process Control 2011, 21:293-301.
-
(2011)
J. Process Control
, vol.21
, pp. 293-301
-
-
Shigemori, H.1
Kano, M.2
Hasebe, S.3
-
73
-
-
84876727380
-
Development of soft-sensor using locally weighted PLS with adaptive similarity measure
-
Kim S., Okajima R., Kano M., Hasebe S. Development of soft-sensor using locally weighted PLS with adaptive similarity measure. Chemom. Intell. Lab. Syst. 2013, 124:43-49.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.124
, pp. 43-49
-
-
Kim, S.1
Okajima, R.2
Kano, M.3
Hasebe, S.4
-
74
-
-
15944390632
-
Weighted support vector machine for quality estimation in the polymerization process
-
Lee D.E., Song J.-H., Song S.-O., Yoon E.S. Weighted support vector machine for quality estimation in the polymerization process. Ind. Eng. Chem. Res. 2005, 44:2101-2105.
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 2101-2105
-
-
Lee, D.E.1
Song, J.-H.2
Song, S.-O.3
Yoon, E.S.4
-
75
-
-
80052809967
-
Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes
-
Chen K., Ji J., Wang H., Liu Y., Song Z. Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes. Chem. Eng. Res. Des. 2011, 89:2117-2124.
-
(2011)
Chem. Eng. Res. Des.
, vol.89
, pp. 2117-2124
-
-
Chen, K.1
Ji, J.2
Wang, H.3
Liu, Y.4
Song, Z.5
-
76
-
-
0003000612
-
Nonlinear estimation by iterative least squares procedures
-
John Wiley and Sons, New York, F.N. David (Ed.)
-
Wold H. Nonlinear estimation by iterative least squares procedures. Research Papers in Statistics 1966, 411-444. John Wiley and Sons, New York. F.N. David (Ed.).
-
(1966)
Research Papers in Statistics
, pp. 411-444
-
-
Wold, H.1
-
77
-
-
11144325691
-
Partial least-squares regression: a tutorial
-
Geladi P., Kowalski B.R. Partial least-squares regression: a tutorial. Anal. Chim. Acta 1986, 185:1-17.
-
(1986)
Anal. Chim. Acta
, vol.185
, pp. 1-17
-
-
Geladi, P.1
Kowalski, B.R.2
-
78
-
-
84875001041
-
Review of recent research on data-based process monitoring
-
Ge Z., Song Z., Gao F. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52:3543-3562.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 3543-3562
-
-
Ge, Z.1
Song, Z.2
Gao, F.3
-
79
-
-
0003180233
-
Just-in-time learning and estimation
-
Springer, Berlin, S. Bittanti, G. Picci (Eds.)
-
Cybenko G. Just-in-time learning and estimation. Identification, Adaptation, Learning: The Science of Learning Models From Data 1996, 423-434. Springer, Berlin. S. Bittanti, G. Picci (Eds.).
-
(1996)
Identification, Adaptation, Learning: The Science of Learning Models From Data
, pp. 423-434
-
-
Cybenko, G.1
-
82
-
-
0035895091
-
A 'Model-on-Demand' identification methodology for non-linear process systems
-
Braun M.W., Rivera D.E., Stenman A. A 'Model-on-Demand' identification methodology for non-linear process systems. Int. J. Control. 2001, 74:1708-1717.
-
(2001)
Int. J. Control.
, vol.74
, pp. 1708-1717
-
-
Braun, M.W.1
Rivera, D.E.2
Stenman, A.3
-
83
-
-
84889677253
-
Database monitoring index for adaptive soft sensors and the application to industrial process
-
Kaneko H., Funatsu K. Database monitoring index for adaptive soft sensors and the application to industrial process. AICHE J. 2014, 60:160-169.
-
(2014)
AICHE J.
, vol.60
, pp. 160-169
-
-
Kaneko, H.1
Funatsu, K.2
-
84
-
-
33847674996
-
Resampling methods for parameter-free and robust feature selection with mutual information
-
François D., Rossi F., Wertz V., Verleysen M. Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 2007, 70:1276-1288.
-
(2007)
Neurocomputing
, vol.70
, pp. 1276-1288
-
-
François, D.1
Rossi, F.2
Wertz, V.3
Verleysen, M.4
-
85
-
-
84880017523
-
A non-Gaussian pattern matching based dynamic process monitoring approach and its application to cryogenic air separation process
-
Chen J., Yu J., Mori J., Rashid M.M., Hu G., Yu H., Flores-Cerrillo J., Megan L. A non-Gaussian pattern matching based dynamic process monitoring approach and its application to cryogenic air separation process. Comput. Chem. Eng. 2013, 58:40-53.
-
(2013)
Comput. Chem. Eng.
, vol.58
, pp. 40-53
-
-
Chen, J.1
Yu, J.2
Mori, J.3
Rashid, M.M.4
Hu, G.5
Yu, H.6
Flores-Cerrillo, J.7
Megan, L.8
-
86
-
-
84865495534
-
Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach
-
Rashid M.M., Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach. Ind. Eng. Chem. Res. 2012, 51:10910-10920.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 10910-10920
-
-
Rashid, M.M.1
Yu, J.2
-
87
-
-
84861191986
-
A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
-
Rashid M.M., Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemom. Intell. Lab. Syst. 2012, 115:44-58.
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.115
, pp. 44-58
-
-
Rashid, M.M.1
Yu, J.2
-
89
-
-
0028299952
-
New approach for distance measurement in locally weighted regression
-
Wang Z., Isaksson T., Kowalski B.R. New approach for distance measurement in locally weighted regression. Anal. Chem. 1994, 66:249-260.
-
(1994)
Anal. Chem.
, vol.66
, pp. 249-260
-
-
Wang, Z.1
Isaksson, T.2
Kowalski, B.R.3
-
91
-
-
84899843065
-
A unified recursive just-in-time approach with industrial near infrared spectroscopy application
-
Chen M., Khare S., Huang B. A unified recursive just-in-time approach with industrial near infrared spectroscopy application. Chemom. Intell. Lab. Syst. 2014, 135:133-140.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.135
, pp. 133-140
-
-
Chen, M.1
Khare, S.2
Huang, B.3
-
92
-
-
84919445476
-
Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process
-
Jin H., Chen X., Yang J., Wu L., Wang L. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process. ISA Trans. 2014, 53:1822-1837.
-
(2014)
ISA Trans.
, vol.53
, pp. 1822-1837
-
-
Jin, H.1
Chen, X.2
Yang, J.3
Wu, L.4
Wang, L.5
|