메뉴 건너뛰기




Volumn 143, Issue , 2015, Pages 58-78

Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process

Author keywords

Adaptive sample selection; Adaptive soft sensor; Dual updating; Fed batch chlortetracycline fermentation processes; Just in time learning; Local learning

Indexed keywords

CHLORTETRACYCLINE;

EID: 84924229688     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2015.02.018     Document Type: Article
Times cited : (36)

References (92)
  • 2
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33:795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 3
    • 84872920533 scopus 로고    scopus 로고
    • Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications
    • Kano M., Fujiwara K. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications. J. Chem. Eng. Jpn. 2013, 46:1-17.
    • (2013) J. Chem. Eng. Jpn. , vol.46 , pp. 1-17
    • Kano, M.1    Fujiwara, K.2
  • 4
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
    • Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 2008, 32:12-24.
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 5
    • 84883736569 scopus 로고    scopus 로고
    • Long-term industrial applications ofinferential control based on just-in-timesoft-sensors: economical impact and challenges
    • Kim S., Kano M., Hasebe S., Takinami A., Seki T. Long-term industrial applications ofinferential control based on just-in-timesoft-sensors: economical impact and challenges. Ind. Eng. Chem. Res. 2013, 52:12346-12356.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 12346-12356
    • Kim, S.1    Kano, M.2    Hasebe, S.3    Takinami, A.4    Seki, T.5
  • 7
    • 84857548668 scopus 로고    scopus 로고
    • Methods for plant data-based process modeling in soft-sensor development
    • Sliskovic D., Grbic R., Hocenski Z. Methods for plant data-based process modeling in soft-sensor development. Automatica 2011, 52:306-318.
    • (2011) Automatica , vol.52 , pp. 306-318
    • Sliskovic, D.1    Grbic, R.2    Hocenski, Z.3
  • 9
    • 84892445860 scopus 로고    scopus 로고
    • Mixture semisupervised principal component regression model and soft sensor application
    • Ge Z., Huang B., Song Z. Mixture semisupervised principal component regression model and soft sensor application. AICHE J. 2014, 60:533-545.
    • (2014) AICHE J. , vol.60 , pp. 533-545
    • Ge, Z.1    Huang, B.2    Song, Z.3
  • 10
    • 84889685311 scopus 로고    scopus 로고
    • External analysis-based regression model for robust soft sensing of multimode chemical processes
    • Ge Z., Song Z., Kano M. External analysis-based regression model for robust soft sensing of multimode chemical processes. AICHE J. 2014, 60:136-147.
    • (2014) AICHE J. , vol.60 , pp. 136-147
    • Ge, Z.1    Song, Z.2    Kano, M.3
  • 11
    • 33746991704 scopus 로고    scopus 로고
    • Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based soft sensor for a LDPE plant
    • Sharmin R., Sundararaj U., Shah S., Vande Griend L., Sun Y.-J. Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based soft sensor for a LDPE plant. Chem. Eng. Sci. 2006, 61:6372-6384.
    • (2006) Chem. Eng. Sci. , vol.61 , pp. 6372-6384
    • Sharmin, R.1    Sundararaj, U.2    Shah, S.3    Vande Griend, L.4    Sun, Y.-J.5
  • 13
    • 84887725182 scopus 로고    scopus 로고
    • Ensemble independent component regression models and soft sensing application
    • Ge Z., Song Z. Ensemble independent component regression models and soft sensing application. Chemom. Intell. Lab. Syst. 2014, 130:115-122.
    • (2014) Chemom. Intell. Lab. Syst. , vol.130 , pp. 115-122
    • Ge, Z.1    Song, Z.2
  • 14
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AICHE J. 2009, 55:87-98.
    • (2009) AICHE J. , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 15
    • 84905686213 scopus 로고    scopus 로고
    • Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes
    • Jin H., Chen X., Yang J., Wu L. Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes. Comput. Chem. Eng. 2014, 71:77-93.
    • (2014) Comput. Chem. Eng. , vol.71 , pp. 77-93
    • Jin, H.1    Chen, X.2    Yang, J.3    Wu, L.4
  • 16
    • 84868224530 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes
    • Yu J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes. Ind. Eng. Chem. Res. 2012, 51:13227-13237.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 13227-13237
    • Yu, J.1
  • 17
    • 40449133038 scopus 로고    scopus 로고
    • Nonlinear multivariate quality estimation and prediction based on kernel partial least squares
    • Zhang X., Yan W., Shao H. Nonlinear multivariate quality estimation and prediction based on kernel partial least squares. Ind. Eng. Chem. Res. 2008, 47:1120-1131.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 1120-1131
    • Zhang, X.1    Yan, W.2    Shao, H.3
  • 18
    • 78149468553 scopus 로고    scopus 로고
    • Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
    • Zhang Y., Ma C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS. Chem. Eng. Sci. 2011, 66:64-72.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 64-72
    • Zhang, Y.1    Ma, C.2
  • 19
    • 84906872234 scopus 로고    scopus 로고
    • Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes
    • Yuan X., Ge Z., Song Z. Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes. Ind. Eng. Chem. Res. 2014, 53:13736-13749.
    • (2014) Ind. Eng. Chem. Res. , vol.53 , pp. 13736-13749
    • Yuan, X.1    Ge, Z.2    Song, Z.3
  • 20
    • 84855946000 scopus 로고    scopus 로고
    • Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation
    • Cui L., Xie P., Sun J., Yu T., Yuan J. Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation. Comput. Chem. Eng. 2012, 36:386-391.
    • (2012) Comput. Chem. Eng. , vol.36 , pp. 386-391
    • Cui, L.1    Xie, P.2    Sun, J.3    Yu, T.4    Yuan, J.5
  • 21
    • 57049112694 scopus 로고    scopus 로고
    • ANN-basedsoft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga J., Meleiro L., Kiang C., Maciel Filho R. ANN-basedsoft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput. Chem. Eng. 2009, 33:43-49.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 43-49
    • Gonzaga, J.1    Meleiro, L.2    Kiang, C.3    Maciel Filho, R.4
  • 22
    • 33947266512 scopus 로고    scopus 로고
    • Development of a soft sensor for a batch distillation column using support vector regression techniques
    • Jain P., Rahman I., Kulkarni B. Development of a soft sensor for a batch distillation column using support vector regression techniques. Chem. Eng. Res. Des. 2007, 85:283-287.
    • (2007) Chem. Eng. Res. Des. , vol.85 , pp. 283-287
    • Jain, P.1    Rahman, I.2    Kulkarni, B.3
  • 23
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41:134-144.
    • (2012) Comput. Chem. Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 24
    • 61749095807 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems
    • Jassar S., Liao Z., Zhao L. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems. Build. Environ. 2009, 44:1609-1616.
    • (2009) Build. Environ. , vol.44 , pp. 1609-1616
    • Jassar, S.1    Liao, Z.2    Zhao, L.3
  • 25
    • 61849183105 scopus 로고    scopus 로고
    • Bagging for Gaussian process regression
    • Chen T., Ren J. Bagging for Gaussian process regression. Neurocomputing 2009, 72:1605-1610.
    • (2009) Neurocomputing , vol.72 , pp. 1605-1610
    • Chen, T.1    Ren, J.2
  • 27
    • 84905715987 scopus 로고    scopus 로고
    • Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression
    • Yuan X., Ge Z., Song Z. Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression. Chemom. Intell. Lab. Syst. 2014, 138:97-109.
    • (2014) Chemom. Intell. Lab. Syst. , vol.138 , pp. 97-109
    • Yuan, X.1    Ge, Z.2    Song, Z.3
  • 28
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • Liu J. On-line soft sensor for polyethylene process with multiple production grades. Control. Eng. Pract. 2007, 15:769-778.
    • (2007) Control. Eng. Pract. , vol.15 , pp. 769-778
    • Liu, J.1
  • 29
    • 84874515333 scopus 로고    scopus 로고
    • A Bayesian model averaging based multi-kernelGaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty
    • Yu J., Chen K., Rashid M.M. A Bayesian model averaging based multi-kernelGaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty. Chem. Eng. Sci. 2013, 93:96-109.
    • (2013) Chem. Eng. Sci. , vol.93 , pp. 96-109
    • Yu, J.1    Chen, K.2    Rashid, M.M.3
  • 30
    • 19844382757 scopus 로고    scopus 로고
    • Stage-based process analysis and quality prediction for batch processes
    • Lu N., Gao F. Stage-based process analysis and quality prediction for batch processes. Ind. Eng. Chem. Res. 2005, 44:3547-3555.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 3547-3555
    • Lu, N.1    Gao, F.2
  • 32
    • 84864805251 scopus 로고    scopus 로고
    • Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
    • Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem. Eng. Sci. 2012, 82:22-30.
    • (2012) Chem. Eng. Sci. , vol.82 , pp. 22-30
    • Yu, J.1
  • 33
    • 61349165676 scopus 로고    scopus 로고
    • Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine
    • Li X., Su H., Chu J. Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine. Chin. J. Chem. Eng. 2009, 17:95-99.
    • (2009) Chin. J. Chem. Eng. , vol.17 , pp. 95-99
    • Li, X.1    Su, H.2    Chu, J.3
  • 34
    • 78650945964 scopus 로고    scopus 로고
    • Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
    • Niu D.-p., Wang F.-l., Zhang L.-l., He D.-k., Jia M.-x. Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression. Chemom. Intell. Lab. Syst. 2011, 105:125-130.
    • (2011) Chemom. Intell. Lab. Syst. , vol.105 , pp. 125-130
    • Niu, D.-P.1    Wang, F.-L.2    Zhang, L.-L.3    He, D.-K.4    Jia, M.-X.5
  • 36
    • 84888306466 scopus 로고    scopus 로고
    • Design of inferential sensors in the process industry: a review of Bayesian methods
    • Khatibisepehr S., Huang B., Khare S. Design of inferential sensors in the process industry: a review of Bayesian methods. J. Process Control 2013, 23:1575-1596.
    • (2013) J. Process Control , vol.23 , pp. 1575-1596
    • Khatibisepehr, S.1    Huang, B.2    Khare, S.3
  • 37
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P., Grbić R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2011, 35:1-24.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 38
    • 84879309312 scopus 로고    scopus 로고
    • Classification of the degradation of soft sensor models and discussion on adaptive models
    • Kaneko H., Funatsu K. Classification of the degradation of soft sensor models and discussion on adaptive models. AICHE J. 2013, 59:2339-2347.
    • (2013) AICHE J. , vol.59 , pp. 2339-2347
    • Kaneko, H.1    Funatsu, K.2
  • 39
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: good practice and questionnaire survey
    • Kano M., Ogawa M. The state of the art in chemical process control in Japan: good practice and questionnaire survey. J. Process Control 2010, 20:969-982.
    • (2010) J. Process Control , vol.20 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 40
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Joe Qin S. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22:503-514.
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503-514
    • Joe Qin, S.1
  • 41
    • 59349107270 scopus 로고    scopus 로고
    • A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
    • Ahmed F., Nazir S., Yeo Y.K. A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant. Korean J. Chem. Eng. 2009, 26:14-20.
    • (2009) Korean J. Chem. Eng. , vol.26 , pp. 14-20
    • Ahmed, F.1    Nazir, S.2    Yeo, Y.K.3
  • 42
    • 33645417998 scopus 로고    scopus 로고
    • Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process
    • Mu S., Zeng Y., Liu R., Wu P., Su H., Chu J. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. J. Process Control 2006, 16:557-566.
    • (2006) J. Process Control , vol.16 , pp. 557-566
    • Mu, S.1    Zeng, Y.2    Liu, R.3    Wu, P.4    Su, H.5    Chu, J.6
  • 43
    • 84862208873 scopus 로고    scopus 로고
    • Localized, adaptive recursive partial least squares regression for dynamic system modeling
    • Ni W., Tan S.K., Ng W.J., Brown S.D. Localized, adaptive recursive partial least squares regression for dynamic system modeling. Ind. Eng. Chem. Res. 2012, 51:8025-8039.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 8025-8039
    • Ni, W.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4
  • 44
    • 84861071787 scopus 로고    scopus 로고
    • Moving-windowGPR for nonlinear dynamic system modeling with dual updating and dual preprocessing
    • Ni W., Tan S.K., Ng W.J., Brown S.D. Moving-windowGPR for nonlinear dynamic system modeling with dual updating and dual preprocessing. Ind. Eng. Chem. Res. 2012, 51:6416-6428.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 6416-6428
    • Ni, W.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4
  • 45
    • 84896913551 scopus 로고    scopus 로고
    • A localized adaptive soft sensor for dynamic system modeling
    • Ni W., Brown S.D., Man R. A localized adaptive soft sensor for dynamic system modeling. Chem. Eng. Sci. 2014, 111:350-363.
    • (2014) Chem. Eng. Sci. , vol.111 , pp. 350-363
    • Ni, W.1    Brown, S.D.2    Man, R.3
  • 46
    • 84883140452 scopus 로고    scopus 로고
    • Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size
    • Kaneko H., Funatsu K. Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate hyperparameter settings and window size. Comput. Chem. Eng. 2013, 58:288-297.
    • (2013) Comput. Chem. Eng. , vol.58 , pp. 288-297
    • Kaneko, H.1    Funatsu, K.2
  • 47
    • 84892441284 scopus 로고    scopus 로고
    • Application of online support vector regression for soft sensors
    • Kaneko H., Funatsu K. Application of online support vector regression for soft sensors. AICHE J. 2014, 60:600-612.
    • (2014) AICHE J. , vol.60 , pp. 600-612
    • Kaneko, H.1    Funatsu, K.2
  • 48
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang X., Kruger U., Irwin G.W. Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res. 2005, 44:5691-5702.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 49
    • 79959784751 scopus 로고    scopus 로고
    • Maintenance-free soft sensor models with time difference of process variables
    • Kaneko H., Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom. Intell. Lab. Syst. 2011, 107:312-317.
    • (2011) Chemom. Intell. Lab. Syst. , vol.107 , pp. 312-317
    • Kaneko, H.1    Funatsu, K.2
  • 50
    • 84874624320 scopus 로고    scopus 로고
    • Development and industrial application of soft sensors with on-line Bayesian model updating strategy
    • Deng J., Xie L., Chen L., Khatibisepehr S., Huang B., Xu F., Espejo A. Development and industrial application of soft sensors with on-line Bayesian model updating strategy. J. Process Control 2013, 23:317-325.
    • (2013) J. Process Control , vol.23 , pp. 317-325
    • Deng, J.1    Xie, L.2    Chen, L.3    Khatibisepehr, S.4    Huang, B.5    Xu, F.6    Espejo, A.7
  • 51
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AICHE J. 2011, 57:1288-1301.
    • (2011) AICHE J. , vol.57 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 52
    • 27144556425 scopus 로고    scopus 로고
    • Incremental online learning in high dimensions
    • Vijayakumar S., D'souza A., Schaal S. Incremental online learning in high dimensions. Neural Comput. 2005, 17:2602-2634.
    • (2005) Neural Comput. , vol.17 , pp. 2602-2634
    • Vijayakumar, S.1    D'souza, A.2    Schaal, S.3
  • 53
    • 84880339799 scopus 로고    scopus 로고
    • Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
    • Grbić R., Slišković D., Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput. Chem. Eng. 2013, 58:84-97.
    • (2013) Comput. Chem. Eng. , vol.58 , pp. 84-97
    • Grbić, R.1    Slišković, D.2    Kadlec, P.3
  • 54
    • 84903588321 scopus 로고    scopus 로고
    • Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants
    • Kaneko H., Funatsu K. Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants. Chemom. Intell. Lab. Syst. 2014, 135:57-66.
    • (2014) Chemom. Intell. Lab. Syst. , vol.135 , pp. 57-66
    • Kaneko, H.1    Funatsu, K.2
  • 55
    • 80055094175 scopus 로고    scopus 로고
    • A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
    • Kaneko H., Funatsu K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom. Intell. Lab. Syst. 2011, 109:197-206.
    • (2011) Chemom. Intell. Lab. Syst. , vol.109 , pp. 197-206
    • Kaneko, H.1    Funatsu, K.2
  • 56
    • 0031073475 scopus 로고    scopus 로고
    • Locally weighted learning for control
    • Springer, Netherlands, D.W. Aha (Ed.)
    • Atkeson C.G., Moore A.W., Schaal S. Locally weighted learning for control. Lazy Learning 1997, 75-113. Springer, Netherlands. D.W. Aha (Ed.).
    • (1997) Lazy Learning , pp. 75-113
    • Atkeson, C.G.1    Moore, A.W.2    Schaal, S.3
  • 57
    • 0032625723 scopus 로고    scopus 로고
    • Lazy learning for local modelling and control design
    • Bontempi G., Birattari M., Bersini H. Lazy learning for local modelling and control design. Int. J. Control. 1999, 72:643-658.
    • (1999) Int. J. Control. , vol.72 , pp. 643-658
    • Bontempi, G.1    Birattari, M.2    Bersini, H.3
  • 58
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C., Chiu M.-S. A new data-based methodology for nonlinear process modeling. Chem. Eng. Sci. 2004, 59:2801-2810.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.-S.2
  • 59
    • 14844303316 scopus 로고    scopus 로고
    • Nonlinear process monitoring using JITL-PCA
    • Cheng C., Chiu M.-S. Nonlinear process monitoring using JITL-PCA. Chemom. Intell. Lab. Syst. 2005, 76:1-13.
    • (2005) Chemom. Intell. Lab. Syst. , vol.76 , pp. 1-13
    • Cheng, C.1    Chiu, M.-S.2
  • 60
    • 84904335114 scopus 로고    scopus 로고
    • Batch process monitoring based on just-in-time learning and multiple-subspace principal component analysis
    • Lv Z., Yan X., Jiang Q. Batch process monitoring based on just-in-time learning and multiple-subspace principal component analysis. Chemom. Intell. Lab. Syst. 2014, 137:128-139.
    • (2014) Chemom. Intell. Lab. Syst. , vol.137 , pp. 128-139
    • Lv, Z.1    Yan, X.2    Jiang, Q.3
  • 61
    • 84924240378 scopus 로고    scopus 로고
    • State of the art in the development of adaptive soft sensors based on just-in-time models
    • Saptoro A. State of the art in the development of adaptive soft sensors based on just-in-time models. Proc. Chem. 2014, 9:226-234.
    • (2014) Proc. Chem. , vol.9 , pp. 226-234
    • Saptoro, A.1
  • 62
    • 0036639869 scopus 로고    scopus 로고
    • Scalable techniques from nonparametric statistics for real time robot learning
    • Schaal S., Atkeson C.G., Vijayakumar S. Scalable techniques from nonparametric statistics for real time robot learning. Appl. Intell. 2002, 17:49-60.
    • (2002) Appl. Intell. , vol.17 , pp. 49-60
    • Schaal, S.1    Atkeson, C.G.2    Vijayakumar, S.3
  • 63
    • 84891520527 scopus 로고    scopus 로고
    • Novel just-in-timelearning-based soft sensor utilizing non-Gaussian information
    • Xie L., Zeng J., Gao C. Novel just-in-timelearning-based soft sensor utilizing non-Gaussian information. IEEE Trans. Control Syst. Technol. 2014, 22:360-368.
    • (2014) IEEE Trans. Control Syst. Technol. , vol.22 , pp. 360-368
    • Xie, L.1    Zeng, J.2    Gao, C.3
  • 64
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space
    • Rosipal R., Trejo L.J. Kernel partial least squares regression in reproducing kernel Hilbert space. J. Mach. Learn. Res. 2002, 2:97-123.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 65
    • 0026578543 scopus 로고
    • Nonlinear partial least squares modelling II. Spline inner relation
    • Wold S. Nonlinear partial least squares modelling II. Spline inner relation. Chemom. Intell. Lab. Syst. 1992, 14:71-84.
    • (1992) Chemom. Intell. Lab. Syst. , vol.14 , pp. 71-84
    • Wold, S.1
  • 67
    • 78650524009 scopus 로고    scopus 로고
    • A comparative study of just-in-time-learning based methods for online soft sensor modeling
    • Ge Z., Song Z. A comparative study of just-in-time-learning based methods for online soft sensor modeling. Chemom. Intell. Lab. Syst. 2010, 104:306-317.
    • (2010) Chemom. Intell. Lab. Syst. , vol.104 , pp. 306-317
    • Ge, Z.1    Song, Z.2
  • 68
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AICHE J. 2009, 55:1754-1765.
    • (2009) AICHE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 69
    • 77951091017 scopus 로고    scopus 로고
    • Development of correlation-based clustering method and its application to software sensing
    • Fujiwara K., Kano M., Hasebe S. Development of correlation-based clustering method and its application to software sensing. Chemom. Intell. Lab. Syst. 2010, 101:130-138.
    • (2010) Chemom. Intell. Lab. Syst. , vol.101 , pp. 130-138
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 70
    • 84857190023 scopus 로고    scopus 로고
    • Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design
    • Fujiwara K., Kano M., Hasebe S. Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design. Control. Eng. Pract. 2012, 20:371-378.
    • (2012) Control. Eng. Pract. , vol.20 , pp. 371-378
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 71
    • 81755166220 scopus 로고    scopus 로고
    • Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection
    • Kim S., Kano M., Nakagawa H., Hasebe S. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. Int. J. Pharm. 2011, 421:269-274.
    • (2011) Int. J. Pharm. , vol.421 , pp. 269-274
    • Kim, S.1    Kano, M.2    Nakagawa, H.3    Hasebe, S.4
  • 72
    • 79951722848 scopus 로고    scopus 로고
    • Optimum quality design system for steel products through locally weighted regression model
    • Shigemori H., Kano M., Hasebe S. Optimum quality design system for steel products through locally weighted regression model. J. Process Control 2011, 21:293-301.
    • (2011) J. Process Control , vol.21 , pp. 293-301
    • Shigemori, H.1    Kano, M.2    Hasebe, S.3
  • 73
    • 84876727380 scopus 로고    scopus 로고
    • Development of soft-sensor using locally weighted PLS with adaptive similarity measure
    • Kim S., Okajima R., Kano M., Hasebe S. Development of soft-sensor using locally weighted PLS with adaptive similarity measure. Chemom. Intell. Lab. Syst. 2013, 124:43-49.
    • (2013) Chemom. Intell. Lab. Syst. , vol.124 , pp. 43-49
    • Kim, S.1    Okajima, R.2    Kano, M.3    Hasebe, S.4
  • 74
    • 15944390632 scopus 로고    scopus 로고
    • Weighted support vector machine for quality estimation in the polymerization process
    • Lee D.E., Song J.-H., Song S.-O., Yoon E.S. Weighted support vector machine for quality estimation in the polymerization process. Ind. Eng. Chem. Res. 2005, 44:2101-2105.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 2101-2105
    • Lee, D.E.1    Song, J.-H.2    Song, S.-O.3    Yoon, E.S.4
  • 75
    • 80052809967 scopus 로고    scopus 로고
    • Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes
    • Chen K., Ji J., Wang H., Liu Y., Song Z. Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes. Chem. Eng. Res. Des. 2011, 89:2117-2124.
    • (2011) Chem. Eng. Res. Des. , vol.89 , pp. 2117-2124
    • Chen, K.1    Ji, J.2    Wang, H.3    Liu, Y.4    Song, Z.5
  • 76
    • 0003000612 scopus 로고
    • Nonlinear estimation by iterative least squares procedures
    • John Wiley and Sons, New York, F.N. David (Ed.)
    • Wold H. Nonlinear estimation by iterative least squares procedures. Research Papers in Statistics 1966, 411-444. John Wiley and Sons, New York. F.N. David (Ed.).
    • (1966) Research Papers in Statistics , pp. 411-444
    • Wold, H.1
  • 77
    • 11144325691 scopus 로고
    • Partial least-squares regression: a tutorial
    • Geladi P., Kowalski B.R. Partial least-squares regression: a tutorial. Anal. Chim. Acta 1986, 185:1-17.
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 78
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Ge Z., Song Z., Gao F. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52:3543-3562.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 3543-3562
    • Ge, Z.1    Song, Z.2    Gao, F.3
  • 82
    • 0035895091 scopus 로고    scopus 로고
    • A 'Model-on-Demand' identification methodology for non-linear process systems
    • Braun M.W., Rivera D.E., Stenman A. A 'Model-on-Demand' identification methodology for non-linear process systems. Int. J. Control. 2001, 74:1708-1717.
    • (2001) Int. J. Control. , vol.74 , pp. 1708-1717
    • Braun, M.W.1    Rivera, D.E.2    Stenman, A.3
  • 83
    • 84889677253 scopus 로고    scopus 로고
    • Database monitoring index for adaptive soft sensors and the application to industrial process
    • Kaneko H., Funatsu K. Database monitoring index for adaptive soft sensors and the application to industrial process. AICHE J. 2014, 60:160-169.
    • (2014) AICHE J. , vol.60 , pp. 160-169
    • Kaneko, H.1    Funatsu, K.2
  • 84
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • François D., Rossi F., Wertz V., Verleysen M. Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 2007, 70:1276-1288.
    • (2007) Neurocomputing , vol.70 , pp. 1276-1288
    • François, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 85
    • 84880017523 scopus 로고    scopus 로고
    • A non-Gaussian pattern matching based dynamic process monitoring approach and its application to cryogenic air separation process
    • Chen J., Yu J., Mori J., Rashid M.M., Hu G., Yu H., Flores-Cerrillo J., Megan L. A non-Gaussian pattern matching based dynamic process monitoring approach and its application to cryogenic air separation process. Comput. Chem. Eng. 2013, 58:40-53.
    • (2013) Comput. Chem. Eng. , vol.58 , pp. 40-53
    • Chen, J.1    Yu, J.2    Mori, J.3    Rashid, M.M.4    Hu, G.5    Yu, H.6    Flores-Cerrillo, J.7    Megan, L.8
  • 86
    • 84865495534 scopus 로고    scopus 로고
    • Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach
    • Rashid M.M., Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach. Ind. Eng. Chem. Res. 2012, 51:10910-10920.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 10910-10920
    • Rashid, M.M.1    Yu, J.2
  • 87
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • Rashid M.M., Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemom. Intell. Lab. Syst. 2012, 115:44-58.
    • (2012) Chemom. Intell. Lab. Syst. , vol.115 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 89
    • 0028299952 scopus 로고
    • New approach for distance measurement in locally weighted regression
    • Wang Z., Isaksson T., Kowalski B.R. New approach for distance measurement in locally weighted regression. Anal. Chem. 1994, 66:249-260.
    • (1994) Anal. Chem. , vol.66 , pp. 249-260
    • Wang, Z.1    Isaksson, T.2    Kowalski, B.R.3
  • 91
    • 84899843065 scopus 로고    scopus 로고
    • A unified recursive just-in-time approach with industrial near infrared spectroscopy application
    • Chen M., Khare S., Huang B. A unified recursive just-in-time approach with industrial near infrared spectroscopy application. Chemom. Intell. Lab. Syst. 2014, 135:133-140.
    • (2014) Chemom. Intell. Lab. Syst. , vol.135 , pp. 133-140
    • Chen, M.1    Khare, S.2    Huang, B.3
  • 92
    • 84919445476 scopus 로고    scopus 로고
    • Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process
    • Jin H., Chen X., Yang J., Wu L., Wang L. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process. ISA Trans. 2014, 53:1822-1837.
    • (2014) ISA Trans. , vol.53 , pp. 1822-1837
    • Jin, H.1    Chen, X.2    Yang, J.3    Wu, L.4    Wang, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.