-
1
-
-
80052866161
-
Incremental and decremental support vector machine learning
-
T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Cambridge, MA: MIT Press
-
Cauwenberghs, G., & Poggio, T. (2001). Incremental and decremental support vector machine learning. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13 (pp. 409-123). Cambridge, MA: MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 409-1123
-
-
Cauwenberghs, G.1
Poggio, T.2
-
3
-
-
0038895405
-
Training ν-support vector regression: Theory and algorithms
-
Chang, C.-C., & Lin, C.-J. (2002). Training ν-support vector regression: Theory and algorithms. Neural Computation, 14, 1959-1977.
-
(2002)
Neural Computation
, vol.14
, pp. 1959-1977
-
-
Chang, C.-C.1
Lin, C.-J.2
-
4
-
-
84898947911
-
Sparse representation for gaussian process models
-
T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Cambridge, MA: MIT Press
-
Csato, L., & Opper, M. (2001). Sparse representation for gaussian process models. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13 (pp. 444-450). Cambridge, MA: MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 444-450
-
-
Csato, L.1
Opper, M.2
-
5
-
-
33747180475
-
Predicting time series with a local support vector regression machine
-
Fernández, R. (1999). Predicting time series with a local support vector regression machine. In Advanced Course on Artificial Intelligence (ACAI '99). Available on-line at: http://www.iit.demokritos.gr/skel/eetn/acai99/.
-
(1999)
Advanced Course on Artificial Intelligence (ACAI '99)
-
-
Fernández, R.1
-
7
-
-
0013332394
-
Relativistic electron dynamics in the inner magnetosphere - A review
-
Friedel, R.H., Reeves, G. D., & Obara, T. (2002). Relativistic electron dynamics in the inner magnetosphere - a review. Journal of Atmospheric and Solar-Terrestrial Physics, 64, 265-282.
-
(2002)
Journal of Atmospheric and Solar-Terrestrial Physics
, vol.64
, pp. 265-282
-
-
Friedel, R.H.1
Reeves, G.D.2
Obara, T.3
-
8
-
-
84868111801
-
A new approximate maximal margin classification algorithm
-
Gentile, C. (2001). A new approximate maximal margin classification algorithm. Journal of Machine Learning Research, 2, 213-242.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 213-242
-
-
Gentile, C.1
-
9
-
-
0000737575
-
Warm start of the primal-dual method applied in the cutting plane scheme
-
Gondzio, J., (1998). Warm start of the primal-dual method applied in the cutting plane scheme. Mathematical Programming, 83, 125-143.
-
(1998)
Mathematical Programming
, vol.83
, pp. 125-143
-
-
Gondzio, J.1
-
10
-
-
0042659381
-
Reoptimization with the primal-dual interior point method
-
Gondzio, J., & Grothey, A. (2001). Reoptimization with the primal-dual interior point method. SIAM Journal on Optimization, 13, 842-864.
-
(2001)
SIAM Journal on Optimization
, vol.13
, pp. 842-864
-
-
Gondzio, J.1
Grothey, A.2
-
11
-
-
84898991622
-
From margin to sparsity
-
T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Cambridge, MA: MIT Press
-
Graepel, T., Herbrich, R., & Williamson, R. C. (2001). From margin to sparsity. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13 (pp. 210-216). Cambridge, MA: MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 210-216
-
-
Graepel, T.1
Herbrich, R.2
Williamson, R.C.3
-
12
-
-
0003417806
-
-
Software
-
Gunn, S. (1998). Matlab SVM toolbox. Software. Available on-line at: http:// www.isis.ecs.soton.ac.uk/resources/svminfo/.
-
(1998)
Matlab SVM Toolbox
-
-
Gunn, S.1
-
13
-
-
84943226219
-
Learning additive models online with fast evaluating kernels
-
D. P. Helmbold & B. Williamson (Eds.), New York: Springer-Verlag
-
Herbster, M. (2001). Learning additive models online with fast evaluating kernels. In D. P. Helmbold & B. Williamson (Eds.), Proceedings of the 14th Annual Conference on Computational Learning Theory (pp. 444-460). New York: Springer-Verlag.
-
(2001)
Proceedings of the 14th Annual Conference on Computational Learning Theory
, pp. 444-460
-
-
Herbster, M.1
-
14
-
-
0003307180
-
Estimating the generalization performance of an SVM efficiently
-
P. Langley (Ed.), San Mateo: Morgan Kaufmann
-
Joachims, T. (2000). Estimating the generalization performance of an SVM efficiently. In P. Langley (Ed.), Proceedings of the Seventeenth International Conference on Machine Learning (pp. 431-438). San Mateo: Morgan Kaufmann.
-
(2000)
Proceedings of the Seventeenth International Conference on Machine Learning
, pp. 431-438
-
-
Joachims, T.1
-
15
-
-
84898940321
-
Online learning with kernels
-
T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Cambridge, MA: MIT Press
-
Kivinen, J., Smola, A. J., & Williamson, R. C. (2002). Online learning with kernels. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 785-792). Cambridge, MA: MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 785-792
-
-
Kivinen, J.1
Smola, A.J.2
Williamson, R.C.3
-
17
-
-
84898964646
-
The relaxed online maximum margin algorithm
-
S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Cambridge, MA: MIT Press
-
Li, Y., & Long, P. M. (1999). The relaxed online maximum margin algorithm. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12 (pp. 498-504). Cambridge, MA: MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.12
, pp. 498-504
-
-
Li, Y.1
Long, P.M.2
-
18
-
-
0017714604
-
Oscillation and chaos in physiological control systems
-
Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197, 287-289.
-
(1977)
Science
, vol.197
, pp. 287-289
-
-
Mackey, M.C.1
Glass, L.2
-
19
-
-
0141556297
-
-
Tech. Rep. LSI-02-11-R. Catalunya, Spain: Software Department, Universitat Politecnica de Catalunya
-
Martin, M. (2002). On-line support vector machines for function approximation. (Tech. Rep. LSI-02-11-R).Catalunya, Spain: Software Department, Universitat Politecnica de Catalunya.
-
(2002)
On-Line Support Vector Machines for Function Approximation
-
-
Martin, M.1
-
20
-
-
84956628443
-
Predicting time series with support vector machines
-
W. Gerstner (Ed.), Berlin: SpringerVerlag
-
Müller, K.-R., Smola, A. J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., & Vapnik, V. (1997). Predicting time series with support vector machines. In W. Gerstner (Ed.), Artificial Neural Networks - ICANN '97 (pp. 999-1004). Berlin: SpringerVerlag.
-
(1997)
Artificial Neural Networks - ICANN '97
, pp. 999-1004
-
-
Müller, K.-R.1
Smola, A.J.2
Rätsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
21
-
-
84958962423
-
Incremental support vector machine learning: A local approach
-
G. Dorffner, H. Bischof, & K. Hornik (Eds.), Berlin: Springer-Verlag
-
Ralaivola, L., & d'Alche-Buc, F. (2001). Incremental support vector machine learning: A local approach. In G. Dorffner, H. Bischof, & K. Hornik (Eds.), Artificial Neural Networks - ICANN 2001 (pp. 322-330) Berlin: Springer-Verlag.
-
(2001)
Artificial Neural Networks - ICANN 2001
, pp. 322-330
-
-
Ralaivola, L.1
D'Alche-Buc, F.2
-
22
-
-
0004098722
-
-
Tech. Rep. No. CD-99-16. Singapore: National University of Singapore
-
Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. R. K. (1999). Improvements to SMO algorithm for SVM regression. (Tech. Rep. No. CD-99-16). Singapore: National University of Singapore.
-
(1999)
Improvements to SMO Algorithm for SVM Regression
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
24
-
-
0003401675
-
-
NeuroCOLT Tech. Rep. No. NC-TR-98-030. London: Royal Holloway College, University of London.
-
Smola, A. J., & Schölkopf, B. (1998). A tutorial on support vector regression. (NeuroCOLT Tech. Rep. No. NC-TR-98-030). London: Royal Holloway College, University of London.
-
(1998)
A Tutorial on Support Vector Regression
-
-
Smola, A.J.1
Schölkopf, B.2
-
26
-
-
0034288853
-
Out-of-sample tests of forecasting accuracy: An analysis and review
-
Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: An analysis and review. International Journal of Forecasting, 16, 437-450.
-
(2000)
International Journal of Forecasting
, vol.16
, pp. 437-450
-
-
Tashman, L.J.1
-
27
-
-
0001023715
-
Application of support vector machines in financial time series forcasting
-
Tay, F. E. H., & Cao, L. (2001). Application of support vector machines in financial time series forcasting. Omega, 29, 309-317.
-
(2001)
Omega
, vol.29
, pp. 309-317
-
-
Tay, F.E.H.1
Cao, L.2
-
28
-
-
0033293912
-
LOQO: An interior point code for quadratic programming
-
Vanderbei, R. J. (1999). LOQO: An interior point code for quadratic programming. Optimization Methods and Software, 11, 451-484.
-
(1999)
Optimization Methods and Software
, vol.11
, pp. 451-484
-
-
Vanderbei, R.J.1
-
30
-
-
0038928834
-
Bounds on error expectation for support vector machine
-
A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Cambridge, MA: MIT Press
-
Vapnik, V., & Chapelle, O. (1999). Bounds on error expectation for support vector machine. In A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 261-280). Cambridge, MA: MIT Press.
-
(1999)
Advances in Large Margin Classifiers
, pp. 261-280
-
-
Vapnik, V.1
Chapelle, O.2
-
32
-
-
0036354771
-
Warm-start strategies in interior-point methods for linear programming
-
Yildirim, E. A., & Wright, S. J. (2002). Warm-start strategies in interior-point methods for linear programming. SIAM Journal on Optimization, 12, 782-810.
-
(2002)
SIAM Journal on Optimization
, vol.12
, pp. 782-810
-
-
Yildirim, E.A.1
Wright, S.J.2
|