-
1
-
-
50949102412
-
Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network
-
Muckenthaler M.U., Galy B., Hentze M.W. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu. Rev. Nutr. 2008, 28:197-213.
-
(2008)
Annu. Rev. Nutr.
, vol.28
, pp. 197-213
-
-
Muckenthaler, M.U.1
Galy, B.2
Hentze, M.W.3
-
2
-
-
84877741258
-
Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action
-
Lawen A., Lane D.J.R. Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid. Redox Signal. 2013, 18:2473-2507.
-
(2013)
Antioxid. Redox Signal.
, vol.18
, pp. 2473-2507
-
-
Lawen, A.1
Lane, D.J.R.2
-
3
-
-
77954627973
-
Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol
-
Richardson D.R., Lane D.J.R., Becker E.M., Huang M.L., Whitnall M., Rahmanto Y.S., Sheftel A.D., Ponka P. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:10775-10782.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 10775-10782
-
-
Richardson, D.R.1
Lane, D.J.R.2
Becker, E.M.3
Huang, M.L.4
Whitnall, M.5
Rahmanto, Y.S.6
Sheftel, A.D.7
Ponka, P.8
-
4
-
-
84881484318
-
Out of balance-systemic iron homeostasis in iron-related disorders
-
Steinbicker A.U., Muckenthaler M.U. Out of balance-systemic iron homeostasis in iron-related disorders. Nutrients 2013, 5:3034-3061.
-
(2013)
Nutrients
, vol.5
, pp. 3034-3061
-
-
Steinbicker, A.U.1
Muckenthaler, M.U.2
-
5
-
-
77953810574
-
Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage
-
Arosio P., Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim. Biophys. Acta 2010, 1800:783-792.
-
(2010)
Biochim. Biophys. Acta
, vol.1800
, pp. 783-792
-
-
Arosio, P.1
Levi, S.2
-
6
-
-
68949128587
-
Function and biogenesis of iron-sulphur proteins
-
Lill R. Function and biogenesis of iron-sulphur proteins. Nature 2009, 460:831-838.
-
(2009)
Nature
, vol.460
, pp. 831-838
-
-
Lill, R.1
-
7
-
-
84858015433
-
Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease
-
Rouault T.A. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis. Model. Mech. 2012, 5:155-164.
-
(2012)
Dis. Model. Mech.
, vol.5
, pp. 155-164
-
-
Rouault, T.A.1
-
8
-
-
84904741541
-
Special delivery: distributing iron in the cytosol of mammalian cells
-
Philpott C.C., Ryu M.S. Special delivery: distributing iron in the cytosol of mammalian cells. Front. Pharmacol. 2014, 5:173.
-
(2014)
Front. Pharmacol.
, vol.5
, pp. 173
-
-
Philpott, C.C.1
Ryu, M.S.2
-
9
-
-
84859956110
-
Coming into view: eukaryotic iron chaperones and intracellular iron delivery
-
Philpott C.C. Coming into view: eukaryotic iron chaperones and intracellular iron delivery. J. Biol. Chem. 2012, 287:13518-13523.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 13518-13523
-
-
Philpott, C.C.1
-
10
-
-
0029758487
-
Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress
-
Hentze M.W., Kuhn L.C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 1996, 93:8175-8182.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 8175-8182
-
-
Hentze, M.W.1
Kuhn, L.C.2
-
11
-
-
0031567095
-
The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells
-
Richardson D.R., Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta 1997, 1331:1-40.
-
(1997)
Biochim. Biophys. Acta
, vol.1331
, pp. 1-40
-
-
Richardson, D.R.1
Ponka, P.2
-
12
-
-
77954249308
-
Two to tango: regulation of mammalian iron metabolism
-
Hentze M.W., Muckenthaler M.U., Galy B., Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell 2010, 142:24-38.
-
(2010)
Cell
, vol.142
, pp. 24-38
-
-
Hentze, M.W.1
Muckenthaler, M.U.2
Galy, B.3
Camaschella, C.4
-
13
-
-
0035793856
-
An iron-regulated ferric reductase associated with the absorption of dietary iron
-
McKie A.T., Barrow D., Latunde-Dada G.O., Rolfs A., Sager G., Mudaly E., Mudaly M., Richardson C., Barlow D., Bomford A., Peters T.J., Raja K.B., Shirali S., Hediger M.A., Farzaneh F., Simpson R.J. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 2001, 291:1755-1759.
-
(2001)
Science
, vol.291
, pp. 1755-1759
-
-
McKie, A.T.1
Barrow, D.2
Latunde-Dada, G.O.3
Rolfs, A.4
Sager, G.5
Mudaly, E.6
Mudaly, M.7
Richardson, C.8
Barlow, D.9
Bomford, A.10
Peters, T.J.11
Raja, K.B.12
Shirali, S.13
Hediger, M.A.14
Farzaneh, F.15
Simpson, R.J.16
-
14
-
-
84906092681
-
The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption!
-
Lane D.J., Richardson D.R. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption!. Free Radic. Biol. Med. 2014, 75C:69-83.
-
(2014)
Free Radic. Biol. Med.
, vol.75 C
, pp. 69-83
-
-
Lane, D.J.1
Richardson, D.R.2
-
15
-
-
45149113881
-
Non-transferrin iron reduction and uptake are regulated by transmembrane ascorbate cycling in K562 cells
-
Lane D.J.R., Lawen A. Non-transferrin iron reduction and uptake are regulated by transmembrane ascorbate cycling in K562 cells. J. Biol. Chem. 2008, 283:12701-12708.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 12701-12708
-
-
Lane, D.J.R.1
Lawen, A.2
-
16
-
-
84874244468
-
The glutamate aspartate transporter (GLAST) mediates l-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes
-
Lane D.J.R., Lawen A. The glutamate aspartate transporter (GLAST) mediates l-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes. Cell Biochem. Biophys. 2012, 65:107-119.
-
(2012)
Cell Biochem. Biophys.
, vol.65
, pp. 107-119
-
-
Lane, D.J.R.1
Lawen, A.2
-
17
-
-
78649734938
-
Two routes of iron accumulation in astrocytes: ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron
-
Lane D.J.R., Robinson S.R., Czerwinska H., Bishop G.M., Lawen A. Two routes of iron accumulation in astrocytes: ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron. Biochem. J. 2010, 432:123-132.
-
(2010)
Biochem. J.
, vol.432
, pp. 123-132
-
-
Lane, D.J.R.1
Robinson, S.R.2
Czerwinska, H.3
Bishop, G.M.4
Lawen, A.5
-
18
-
-
0030755366
-
Cloning and characterization of a mammalian proton-coupled metal-ion transporter
-
Gunshin H., Mackenzie B., Berger U.V., Gunshin Y., Romero M.F., Boron W.F., Nussberger S., Gollan J.L., Hediger M.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997, 388:482-488.
-
(1997)
Nature
, vol.388
, pp. 482-488
-
-
Gunshin, H.1
Mackenzie, B.2
Berger, U.V.3
Gunshin, Y.4
Romero, M.F.5
Boron, W.F.6
Nussberger, S.7
Gollan, J.L.8
Hediger, M.A.9
-
19
-
-
84864923612
-
Physiologic implications of metal-ion transport by ZIP14 and ZIP8
-
Jenkitkasemwong S., Wang C.Y., Mackenzie B., Knutson M.D. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals 2012, 25:643-655.
-
(2012)
Biometals
, vol.25
, pp. 643-655
-
-
Jenkitkasemwong, S.1
Wang, C.Y.2
Mackenzie, B.3
Knutson, M.D.4
-
20
-
-
27644455133
-
Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells
-
Ohgami R.S., Campagna D.R., Greer E.L., Antiochos B., McDonald A., Chen J., Sharp J.J., Fujiwara Y., Barker J.E., Fleming M.D. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet. 2005, 37:1264-1269.
-
(2005)
Nat. Genet.
, vol.37
, pp. 1264-1269
-
-
Ohgami, R.S.1
Campagna, D.R.2
Greer, E.L.3
Antiochos, B.4
McDonald, A.5
Chen, J.6
Sharp, J.J.7
Fujiwara, Y.8
Barker, J.E.9
Fleming, M.D.10
-
21
-
-
84880031116
-
Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism
-
Lane D.J.R., Chikhani S., Richardson V., Richardson D.R. Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism. Biochim. Biophys. Acta 2013, 1833:1527-1541.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 1527-1541
-
-
Lane, D.J.R.1
Chikhani, S.2
Richardson, V.3
Richardson, D.R.4
-
22
-
-
0026623265
-
Effect of ascorbate in the reduction of transferrin-associated iron in endocytic vesicles
-
Escobar A., Gaete V., Nunez M.T. Effect of ascorbate in the reduction of transferrin-associated iron in endocytic vesicles. J. Bioenerg. Biomembr. 1992, 24:227-233.
-
(1992)
J. Bioenerg. Biomembr.
, vol.24
, pp. 227-233
-
-
Escobar, A.1
Gaete, V.2
Nunez, M.T.3
-
23
-
-
0030608152
-
The ferritins: molecular properties, iron storage function and cellular regulation
-
Harrison P.M., Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1996, 1275:161-203.
-
(1996)
Biochim. Biophys. Acta
, vol.1275
, pp. 161-203
-
-
Harrison, P.M.1
Arosio, P.2
-
24
-
-
0033617958
-
Mineralization in ferritin: an efficient means of iron storage
-
Chasteen N.D., Harrison P.M. Mineralization in ferritin: an efficient means of iron storage. J. Struct. Biol. 1999, 126:182-194.
-
(1999)
J. Struct. Biol.
, vol.126
, pp. 182-194
-
-
Chasteen, N.D.1
Harrison, P.M.2
-
25
-
-
73349099034
-
Specific iron chelators determine the route of ferritin degradation
-
De Domenico I., Ward D.M., Kaplan J. Specific iron chelators determine the route of ferritin degradation. Blood 2009, 114:4546-4551.
-
(2009)
Blood
, vol.114
, pp. 4546-4551
-
-
De Domenico, I.1
Ward, D.M.2
Kaplan, J.3
-
26
-
-
84899746695
-
Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
-
Mancias J.D., Wang X., Gygi S.P., Harper J.W., Kimmelman A.C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014, 509:105-109.
-
(2014)
Nature
, vol.509
, pp. 105-109
-
-
Mancias, J.D.1
Wang, X.2
Gygi, S.P.3
Harper, J.W.4
Kimmelman, A.C.5
-
27
-
-
41049114693
-
Lysosomes in iron metabolism, ageing and apoptosis
-
Kurz T., Terman A., Gustafsson B., Brunk U.T. Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell Biol. 2008, 129:389-406.
-
(2008)
Histochem. Cell Biol.
, vol.129
, pp. 389-406
-
-
Kurz, T.1
Terman, A.2
Gustafsson, B.3
Brunk, U.T.4
-
28
-
-
84907835250
-
Lysosome-related organelles as mediators of metal homeostasis
-
Blaby-Haas C.E., Merchant S.S. Lysosome-related organelles as mediators of metal homeostasis. J. Biol. Chem. 2014, 289:28129-28136.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 28129-28136
-
-
Blaby-Haas, C.E.1
Merchant, S.S.2
-
29
-
-
34347375300
-
Direct interorganellar transfer of iron from endosome to mitochondrion
-
Sheftel A.D., Zhang A.S., Brown C., Shirihai O.S., Ponka P. Direct interorganellar transfer of iron from endosome to mitochondrion. Blood 2007, 110:125-132.
-
(2007)
Blood
, vol.110
, pp. 125-132
-
-
Sheftel, A.D.1
Zhang, A.S.2
Brown, C.3
Shirihai, O.S.4
Ponka, P.5
-
30
-
-
0032557816
-
Iron transport in K562 cells: a kinetic study using native gel electrophoresis and 59Fe autoradiography
-
Vyoral D., Petrak J. Iron transport in K562 cells: a kinetic study using native gel electrophoresis and 59Fe autoradiography. Biochim. Biophys. Acta 1998, 1403:179-188.
-
(1998)
Biochim. Biophys. Acta
, vol.1403
, pp. 179-188
-
-
Vyoral, D.1
Petrak, J.2
-
31
-
-
84879057526
-
Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin
-
Leidgens S., Bullough K.Z., Shi H., Li F., Shakoury-Elizeh M., Yabe T., Subramanian P., Hsu E., Natarajan N., Nandal A., Stemmler T.L., Philpott C.C. Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J. Biol. Chem. 2013, 288:17791-17802.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 17791-17802
-
-
Leidgens, S.1
Bullough, K.Z.2
Shi, H.3
Li, F.4
Shakoury-Elizeh, M.5
Yabe, T.6
Subramanian, P.7
Hsu, E.8
Natarajan, N.9
Nandal, A.10
Stemmler, T.L.11
Philpott, C.C.12
-
32
-
-
84901840956
-
Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase
-
Frey A.G., Nandal A., Park J.H., Smith P.M., Yabe T., Ryu M.S., Ghosh M.C., Lee J., Rouault T.A., Park M.H., Philpott C.C. Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase. Proc. Natl. Acad. Sci. U. S. A. 2014, 111:8031-8036.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 8031-8036
-
-
Frey, A.G.1
Nandal, A.2
Park, J.H.3
Smith, P.M.4
Yabe, T.5
Ryu, M.S.6
Ghosh, M.C.7
Lee, J.8
Rouault, T.A.9
Park, M.H.10
Philpott, C.C.11
-
33
-
-
84904693203
-
Chaperone protein involved in transmembrane transport of iron
-
Yanatori I., Yasui Y., Tabuchi M., Kishi F. Chaperone protein involved in transmembrane transport of iron. Biochem. J. 2014, 462:25-37.
-
(2014)
Biochem. J.
, vol.462
, pp. 25-37
-
-
Yanatori, I.1
Yasui, Y.2
Tabuchi, M.3
Kishi, F.4
-
34
-
-
60549099333
-
Poly(C)-binding proteins as transcriptional regulators of gene expression
-
Choi H.S., Hwang C.K., Song K.Y., Law P.Y., Wei L.N., Loh H.H. Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochem. Biophys. Res. Commun. 2009, 380:431-436.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.380
, pp. 431-436
-
-
Choi, H.S.1
Hwang, C.K.2
Song, K.Y.3
Law, P.Y.4
Wei, L.N.5
Loh, H.H.6
-
35
-
-
45849123222
-
A cytosolic iron chaperone that delivers iron to ferritin
-
Shi H., Bencze K.Z., Stemmler T.L., Philpott C.C. A cytosolic iron chaperone that delivers iron to ferritin. Science 2008, 320:1207-1210.
-
(2008)
Science
, vol.320
, pp. 1207-1210
-
-
Shi, H.1
Bencze, K.Z.2
Stemmler, T.L.3
Philpott, C.C.4
-
36
-
-
79953318380
-
Iron chaperones for mitochondrial Fe-S cluster biosynthesis and ferritin iron storage
-
Subramanian P., Rodrigues A.V., Ghimire-Rijal S., Stemmler T.L. Iron chaperones for mitochondrial Fe-S cluster biosynthesis and ferritin iron storage. Curr. Opin. Chem. Biol. 2011, 15:312-318.
-
(2011)
Curr. Opin. Chem. Biol.
, vol.15
, pp. 312-318
-
-
Subramanian, P.1
Rodrigues, A.V.2
Ghimire-Rijal, S.3
Stemmler, T.L.4
-
37
-
-
80455143216
-
Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2
-
Nandal A., Ruiz J.C., Subramanian P., Ghimire-Rijal S., Sinnamon R.A., Stemmler T.L., Bruick R.K., Philpott C.C. Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab. 2011, 14:647-657.
-
(2011)
Cell Metab.
, vol.14
, pp. 647-657
-
-
Nandal, A.1
Ruiz, J.C.2
Subramanian, P.3
Ghimire-Rijal, S.4
Sinnamon, R.A.5
Stemmler, T.L.6
Bruick, R.K.7
Philpott, C.C.8
-
38
-
-
33746361251
-
The role of iron regulatory proteins in mammalian iron homeostasis and disease
-
Rouault T.A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2006, 2:406-414.
-
(2006)
Nat. Chem. Biol.
, vol.2
, pp. 406-414
-
-
Rouault, T.A.1
-
39
-
-
0028982262
-
Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome
-
Guo B., Phillips J.D., Yu Y., Leibold E.A. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J. Biol. Chem. 1995, 270:21645-21651.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 21645-21651
-
-
Guo, B.1
Phillips, J.D.2
Yu, Y.3
Leibold, E.A.4
-
40
-
-
70350576223
-
An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis
-
Salahudeen A.A., Thompson J.W., Ruiz J.C., Ma H.W., Kinch L.N., Li Q., Grishin N.V., Bruick R.K. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 2009, 326:722-726.
-
(2009)
Science
, vol.326
, pp. 722-726
-
-
Salahudeen, A.A.1
Thompson, J.W.2
Ruiz, J.C.3
Ma, H.W.4
Kinch, L.N.5
Li, Q.6
Grishin, N.V.7
Bruick, R.K.8
-
41
-
-
70350613915
-
Control of iron homeostasis by an iron-regulated ubiquitin ligase
-
Vashisht A.A., Zumbrennen K.B., Huang X., Powers D.N., Durazo A., Sun D., Bhaskaran N., Persson A., Uhlen M., Sangfelt O., Spruck C., Leibold E.A., Wohlschlegel J.A. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 2009, 326:718-721.
-
(2009)
Science
, vol.326
, pp. 718-721
-
-
Vashisht, A.A.1
Zumbrennen, K.B.2
Huang, X.3
Powers, D.N.4
Durazo, A.5
Sun, D.6
Bhaskaran, N.7
Persson, A.8
Uhlen, M.9
Sangfelt, O.10
Spruck, C.11
Leibold, E.A.12
Wohlschlegel, J.A.13
-
43
-
-
75149190912
-
Iron homeostasis and its interaction with prolyl hydroxylases
-
Mole D.R. Iron homeostasis and its interaction with prolyl hydroxylases. Antioxid. Redox Signal. 2010, 12:445-458.
-
(2010)
Antioxid. Redox Signal.
, vol.12
, pp. 445-458
-
-
Mole, D.R.1
-
44
-
-
58749094789
-
-
Shah Y.M., Matsubara T., Ito S., Yim S.H., Gonzalez F.J. Cell Metab. 2009, 9:152-164.
-
(2009)
Cell Metab.
, vol.9
, pp. 152-164
-
-
Shah, Y.M.1
Matsubara, T.2
Ito, S.3
Yim, S.H.4
Gonzalez, F.J.5
-
45
-
-
61349203895
-
The power plant of the cell is also a smithy: the emerging role of mitochondria in cellular iron homeostasis
-
Sheftel A.D., Lill R. The power plant of the cell is also a smithy: the emerging role of mitochondria in cellular iron homeostasis. Ann. Med. 2009, 41:82-99.
-
(2009)
Ann. Med.
, vol.41
, pp. 82-99
-
-
Sheftel, A.D.1
Lill, R.2
-
46
-
-
84864296714
-
The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism
-
Lill R., Hoffmann B., Molik S., Pierik A.J., Rietzschel N., Stehling O., Uzarska M.A., Webert H., Wilbrecht C., Muhlenhoff U. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim. Biophys. Acta 2012, 1823:1491-1508.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 1491-1508
-
-
Lill, R.1
Hoffmann, B.2
Molik, S.3
Pierik, A.J.4
Rietzschel, N.5
Stehling, O.6
Uzarska, M.A.7
Webert, H.8
Wilbrecht, C.9
Muhlenhoff, U.10
-
47
-
-
47249094614
-
Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases
-
Lill R., Mühlenhoff U. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77:669-700.
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 669-700
-
-
Lill, R.1
Mühlenhoff, U.2
-
48
-
-
80155135813
-
Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease
-
Huang M.L., Lane D.J.R., Richardson D.R. Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease. Antioxid. Redox Signal. 2011, 15:3003-3019.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 3003-3019
-
-
Huang, M.L.1
Lane, D.J.R.2
Richardson, D.R.3
-
50
-
-
84900993197
-
Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1)
-
Wolff N.A., Ghio A.J., Garrick L.M., Garrick M.D., Zhao L., Fenton R.A., Thevenod F. Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J. 2014, 28:2134-2145.
-
(2014)
FASEB J.
, vol.28
, pp. 2134-2145
-
-
Wolff, N.A.1
Ghio, A.J.2
Garrick, L.M.3
Garrick, M.D.4
Zhao, L.5
Fenton, R.A.6
Thevenod, F.7
-
51
-
-
0037025331
-
Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain
-
Foury F., Roganti T. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J. Biol. Chem. 2002, 277:24475-24483.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 24475-24483
-
-
Foury, F.1
Roganti, T.2
-
52
-
-
17044451174
-
A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions
-
Muhlenhoff U., Stadler J.A., Richhardt N., Seubert A., Eickhorst T., Schweyen R.J., Lill R., Wiesenberger G. A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J. Biol. Chem. 2003, 278:40612-40620.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 40612-40620
-
-
Muhlenhoff, U.1
Stadler, J.A.2
Richhardt, N.3
Seubert, A.4
Eickhorst, T.5
Schweyen, R.J.6
Lill, R.7
Wiesenberger, G.8
-
53
-
-
59449083869
-
Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2
-
Paradkar P.N., Zumbrennen K.B., Paw B.H., Ward D.M., Kaplan J. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol. Cell. Biol. 2009, 29:1007-1016.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 1007-1016
-
-
Paradkar, P.N.1
Zumbrennen, K.B.2
Paw, B.H.3
Ward, D.M.4
Kaplan, J.5
-
54
-
-
33644748145
-
Mitoferrin is essential for erythroid iron assimilation
-
Shaw G.C., Cope J.J., Li L., Corson K., Hersey C., Ackermann G.E., Gwynn B., Lambert A.J., Wingert R.A., Traver D., Trede N.S., Barut B.A., Zhou Y., Minet E., Donovan A., Brownlie A., Balzan R., Weiss M.J., Peters L.L., Kaplan J., Zon L.I., Paw B.H. Mitoferrin is essential for erythroid iron assimilation. Nature 2006, 440:96-100.
-
(2006)
Nature
, vol.440
, pp. 96-100
-
-
Shaw, G.C.1
Cope, J.J.2
Li, L.3
Corson, K.4
Hersey, C.5
Ackermann, G.E.6
Gwynn, B.7
Lambert, A.J.8
Wingert, R.A.9
Traver, D.10
Trede, N.S.11
Barut, B.A.12
Zhou, Y.13
Minet, E.14
Donovan, A.15
Brownlie, A.16
Balzan, R.17
Weiss, M.J.18
Peters, L.L.19
Kaplan, J.20
Zon, L.I.21
Paw, B.H.22
more..
-
55
-
-
70349479539
-
Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria
-
Chen W., Paradkar P.N., Li L., Pierce E.L., Langer N.B., Takahashi-Makise N., Hyde B.B., Shirihai O.S., Ward D.M., Kaplan J., Paw B.H. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:16263-16268.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 16263-16268
-
-
Chen, W.1
Paradkar, P.N.2
Li, L.3
Pierce, E.L.4
Langer, N.B.5
Takahashi-Makise, N.6
Hyde, B.B.7
Shirihai, O.S.8
Ward, D.M.9
Kaplan, J.10
Paw, B.H.11
-
56
-
-
77956044833
-
Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis
-
Chen W., Dailey H.A., Paw B.H. Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis. Blood 2010, 116:628-630.
-
(2010)
Blood
, vol.116
, pp. 628-630
-
-
Chen, W.1
Dailey, H.A.2
Paw, B.H.3
-
57
-
-
0031028178
-
Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells
-
Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood 1997, 89:1-25.
-
(1997)
Blood
, vol.89
, pp. 1-25
-
-
Ponka, P.1
-
58
-
-
84865298912
-
Mitochondrial ABC transporters function: the role of ABCB10 (ABC-me) as a novel player in cellular handling of reactive oxygen species
-
Liesa M., Qiu W., Shirihai O.S. Mitochondrial ABC transporters function: the role of ABCB10 (ABC-me) as a novel player in cellular handling of reactive oxygen species. Biochim. Biophys. Acta 2012, 1823:1945-1957.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 1945-1957
-
-
Liesa, M.1
Qiu, W.2
Shirihai, O.S.3
-
59
-
-
84894288903
-
Abcb10 role in heme biosynthesis in vivo: Abcb10 knockout in mice causes anemia with protoporphyrin IX and iron accumulation
-
Yamamoto M., Arimura H., Fukushige T., Minami K., Nishizawa Y., Tanimoto A., Kanekura T., Nakagawa M., Akiyama S., Furukawa T. Abcb10 role in heme biosynthesis in vivo: Abcb10 knockout in mice causes anemia with protoporphyrin IX and iron accumulation. Mol. Cell. Biol. 2014, 34:1077-1084.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 1077-1084
-
-
Yamamoto, M.1
Arimura, H.2
Fukushige, T.3
Minami, K.4
Nishizawa, Y.5
Tanimoto, A.6
Kanekura, T.7
Nakagawa, M.8
Akiyama, S.9
Furukawa, T.10
-
60
-
-
56149121299
-
Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury
-
Uchiyama A., Kim J.S., Kon K., Jaeschke H., Ikejima K., Watanabe S., Lemasters J.J. Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology 2008, 48:1644-1654.
-
(2008)
Hepatology
, vol.48
, pp. 1644-1654
-
-
Uchiyama, A.1
Kim, J.S.2
Kon, K.3
Jaeschke, H.4
Ikejima, K.5
Watanabe, S.6
Lemasters, J.J.7
-
61
-
-
84872069315
-
Mitoferrin-2-dependent mitochondrial iron uptake sensitizes human head and neck squamous carcinoma cells to photodynamic therapy
-
Hung H.I., Schwartz J.M., Maldonado E.N., Lemasters J.J., Nieminen A.L. Mitoferrin-2-dependent mitochondrial iron uptake sensitizes human head and neck squamous carcinoma cells to photodynamic therapy. J. Biol. Chem. 2013, 288:677-686.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 677-686
-
-
Hung, H.I.1
Schwartz, J.M.2
Maldonado, E.N.3
Lemasters, J.J.4
Nieminen, A.L.5
-
62
-
-
35548967459
-
Mitochondrial ferritin expression in adult mouse tissues
-
Santambrogio P., Biasiotto G., Sanvito F., Olivieri S., Arosio P., Levi S. Mitochondrial ferritin expression in adult mouse tissues. J. Histochem. Cytochem. 2007, 55:1129-1137.
-
(2007)
J. Histochem. Cytochem.
, vol.55
, pp. 1129-1137
-
-
Santambrogio, P.1
Biasiotto, G.2
Sanvito, F.3
Olivieri, S.4
Arosio, P.5
Levi, S.6
-
63
-
-
0037372442
-
Mitochondrial ferritin expression in erythroid cells from patients with sideroblastic anemia
-
Cazzola M., Invernizzi R., Bergamaschi G., Levi S., Corsi B., Travaglino E., Rolandi V., Biasiotto G., Drysdale J., Arosio P. Mitochondrial ferritin expression in erythroid cells from patients with sideroblastic anemia. Blood 2003, 101:1996-2000.
-
(2003)
Blood
, vol.101
, pp. 1996-2000
-
-
Cazzola, M.1
Invernizzi, R.2
Bergamaschi, G.3
Levi, S.4
Corsi, B.5
Travaglino, E.6
Rolandi, V.7
Biasiotto, G.8
Drysdale, J.9
Arosio, P.10
-
64
-
-
84904734621
-
-
Chiabrando D., Vinchi F., Fiorito V., Mercurio S., Tolosano E. Front. Pharmacol. 2014, 5:61.
-
(2014)
Front. Pharmacol.
, vol.5
, pp. 61
-
-
Chiabrando, D.1
Vinchi, F.2
Fiorito, V.3
Mercurio, S.4
Tolosano, E.5
-
65
-
-
84896296228
-
Iron regulatory protein-1 protects against mitoferrin-1-deficient porphyria
-
Chung J., Anderson S.A., Gwynn B., Deck K.M., Chen M.J., Langer N.B., Shaw G.C., Huston N.C., Boyer L.F., Datta S., Paradkar P.N., Li L., Wei Z., Lambert A.J., Sahr K., Wittig J.G., Chen W., Lu W., Galy B., Schlaeger T.M., Hentze M.W., Ward D.M., Kaplan J., Eisenstein R.S., Peters L.L., Paw B.H. Iron regulatory protein-1 protects against mitoferrin-1-deficient porphyria. J. Biol. Chem. 2014, 289:7835-7843.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 7835-7843
-
-
Chung, J.1
Anderson, S.A.2
Gwynn, B.3
Deck, K.M.4
Chen, M.J.5
Langer, N.B.6
Shaw, G.C.7
Huston, N.C.8
Boyer, L.F.9
Datta, S.10
Paradkar, P.N.11
Li, L.12
Wei, Z.13
Lambert, A.J.14
Sahr, K.15
Wittig, J.G.16
Chen, W.17
Lu, W.18
Galy, B.19
Schlaeger, T.M.20
Hentze, M.W.21
Ward, D.M.22
Kaplan, J.23
Eisenstein, R.S.24
Peters, L.L.25
Paw, B.H.26
more..
-
66
-
-
70349504414
-
Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant
-
Huang M.L.-H., Becker E.M., Whitnall M., Rahmanto Y.S., Ponka P., Richardson D.R. Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:16381-16386.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 16381-16386
-
-
Huang, M.L.-H.1
Becker, E.M.2
Whitnall, M.3
Rahmanto, Y.S.4
Ponka, P.5
Richardson, D.R.6
-
67
-
-
84939946161
-
Assembly of Fe/S proteins in bacterial systems: Biochemistry of the bacterial ISC system
-
Blanc B., Gerez C., Ollagnier de Choudens S. Assembly of Fe/S proteins in bacterial systems: Biochemistry of the bacterial ISC system 2014, Biochim. Biophys, Acta. 10.1016/j.bbamcr.2014.12.009.
-
(2014)
Biochim. Biophys, Acta
-
-
Blanc, B.1
Gerez, C.2
Ollagnier de Choudens, S.3
-
68
-
-
20744446399
-
Structure, function, and formation of biological iron-sulfur clusters
-
Johnson D.C., Dean D.R., Smith A.D., Johnson M.K. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 2005, 74:247-281.
-
(2005)
Annu. Rev. Biochem.
, vol.74
, pp. 247-281
-
-
Johnson, D.C.1
Dean, D.R.2
Smith, A.D.3
Johnson, M.K.4
-
69
-
-
47249142777
-
Iron-sulfur cluster biogenesis and human disease
-
Rouault T.A., Tong W.H. Iron-sulfur cluster biogenesis and human disease. Trends Genet. 2008, 24:398-407.
-
(2008)
Trends Genet.
, vol.24
, pp. 398-407
-
-
Rouault, T.A.1
Tong, W.H.2
-
70
-
-
78651451160
-
Key players and their role during mitochondrial iron-sulfur cluster biosynthesis
-
Rawat S., Stemmler T.L. Key players and their role during mitochondrial iron-sulfur cluster biosynthesis. Chemistry 2011, 17:746-753.
-
(2011)
Chemistry
, vol.17
, pp. 746-753
-
-
Rawat, S.1
Stemmler, T.L.2
-
71
-
-
77953669993
-
Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease
-
Ye H., Rouault T.A. Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 2010, 49:4945-4956.
-
(2010)
Biochemistry
, vol.49
, pp. 4945-4956
-
-
Ye, H.1
Rouault, T.A.2
-
72
-
-
30444433568
-
The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria
-
Adam A.C., Bornhovd C., Prokisch H., Neupert W., Hell K. The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria. EMBO J. 2006, 25:174-183.
-
(2006)
EMBO J.
, vol.25
, pp. 174-183
-
-
Adam, A.C.1
Bornhovd, C.2
Prokisch, H.3
Neupert, W.4
Hell, K.5
-
73
-
-
84869029429
-
Persulfide formation on mitochondrial cysteine desulfurase: enzyme activation by a eukaryote-specific interacting protein and Fe-S cluster synthesis
-
Pandey A., Golla R., Yoon H., Dancis A., Pain D. Persulfide formation on mitochondrial cysteine desulfurase: enzyme activation by a eukaryote-specific interacting protein and Fe-S cluster synthesis. Biochem. J. 2012, 448:171-187.
-
(2012)
Biochem. J.
, vol.448
, pp. 171-187
-
-
Pandey, A.1
Golla, R.2
Yoon, H.3
Dancis, A.4
Pain, D.5
-
74
-
-
77951749014
-
Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions
-
Shi R., Proteau A., Villarroya M., Moukadiri I., Zhang L., Trempe J.F., Matte A., Armengod M.E., Cygler M. Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. PLoS Biol. 2010, 8:e1000354.
-
(2010)
PLoS Biol.
, vol.8
, pp. e1000354
-
-
Shi, R.1
Proteau, A.2
Villarroya, M.3
Moukadiri, I.4
Zhang, L.5
Trempe, J.F.6
Matte, A.7
Armengod, M.E.8
Cygler, M.9
-
75
-
-
33644623262
-
Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis
-
Tong W.H., Rouault T.A. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab. 2006, 3:199-210.
-
(2006)
Cell Metab.
, vol.3
, pp. 199-210
-
-
Tong, W.H.1
Rouault, T.A.2
-
76
-
-
84855766784
-
Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis
-
Shi Y., Ghosh M., Kovtunovych G., Crooks D.R., Rouault T.A. Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis. Biochim. Biophys. Acta. 2012, 1823:484-492.
-
(2012)
Biochim. Biophys. Acta.
, vol.1823
, pp. 484-492
-
-
Shi, Y.1
Ghosh, M.2
Kovtunovych, G.3
Crooks, D.R.4
Rouault, T.A.5
-
77
-
-
77955405138
-
Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis
-
Sheftel A.D., Stehling O., Pierik A.J., Elsasser H.P., Muhlenhoff U., Webert H., Hobler A., Hannemann F., Bernhardt R., Lill R. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11775-11780.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 11775-11780
-
-
Sheftel, A.D.1
Stehling, O.2
Pierik, A.J.3
Elsasser, H.P.4
Muhlenhoff, U.5
Webert, H.6
Hobler, A.7
Hannemann, F.8
Bernhardt, R.9
Lill, R.10
-
78
-
-
77956248535
-
Frataxin and mitochondrial FeS cluster biogenesis
-
Stemmler T.L., Lesuisse E., Pain D., Dancis A. Frataxin and mitochondrial FeS cluster biogenesis. J. Biol. Chem. 2010, 285:26737-26743.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 26737-26743
-
-
Stemmler, T.L.1
Lesuisse, E.2
Pain, D.3
Dancis, A.4
-
79
-
-
33947272031
-
Acidic residues of yeast frataxin have an essential role in Fe-S cluster assembly
-
Foury F., Pastore A., Trincal M. Acidic residues of yeast frataxin have an essential role in Fe-S cluster assembly. EMBO Rep. 2007, 8:194-199.
-
(2007)
EMBO Rep.
, vol.8
, pp. 194-199
-
-
Foury, F.1
Pastore, A.2
Trincal, M.3
-
80
-
-
84880346984
-
Frataxin: a protein in search for a function
-
Pastore A., Puccio H. Frataxin: a protein in search for a function. J. Neurochem. 2013, 126:43-52.
-
(2013)
J. Neurochem.
, vol.126
, pp. 43-52
-
-
Pastore, A.1
Puccio, H.2
-
81
-
-
84891379841
-
Frataxin directly stimulates mitochondrial cysteine desulfurase by exposing substrate-binding sites, and a mutant Fe-S cluster scaffold protein with frataxin-bypassing ability acts similarly
-
Pandey A., Gordon D.M., Pain J., Stemmler T.L., Dancis A., Pain D. Frataxin directly stimulates mitochondrial cysteine desulfurase by exposing substrate-binding sites, and a mutant Fe-S cluster scaffold protein with frataxin-bypassing ability acts similarly. J. Biol. Chem. 2013, 288:36773-36786.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 36773-36786
-
-
Pandey, A.1
Gordon, D.M.2
Pain, J.3
Stemmler, T.L.4
Dancis, A.5
Pain, D.6
-
82
-
-
80051779168
-
Structure-function analysis of Friedreich's ataxia mutants reveals determinants of frataxin binding and activation of the Fe-S assembly complex
-
Bridwell-Rabb J., Winn A.M., Barondeau D.P. Structure-function analysis of Friedreich's ataxia mutants reveals determinants of frataxin binding and activation of the Fe-S assembly complex. Biochemistry 2011, 50:7265-7274.
-
(2011)
Biochemistry
, vol.50
, pp. 7265-7274
-
-
Bridwell-Rabb, J.1
Winn, A.M.2
Barondeau, D.P.3
-
83
-
-
79954430645
-
Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange
-
Qi W., Cowan J.A. Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange. Chem. Commun. (Camb.) 2011, 47:4989-4991.
-
(2011)
Chem. Commun. (Camb.)
, vol.47
, pp. 4989-4991
-
-
Qi, W.1
Cowan, J.A.2
-
84
-
-
84899477188
-
Maturation of cytosolic and nuclear iron-sulfur proteins
-
Netz D.J., Mascarenhas J., Stehling O., Pierik A.J., Lill R. Maturation of cytosolic and nuclear iron-sulfur proteins. Trends Cell Biol. 2014, 24:303-312.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 303-312
-
-
Netz, D.J.1
Mascarenhas, J.2
Stehling, O.3
Pierik, A.J.4
Lill, R.5
-
85
-
-
77956235790
-
Cytosolic iron-sulfur cluster assembly (CIA) system: factors, mechanism, and relevance to cellular iron regulation
-
Sharma A.K., Pallesen L.J., Spang R.J., Walden W.E. Cytosolic iron-sulfur cluster assembly (CIA) system: factors, mechanism, and relevance to cellular iron regulation. J. Biol. Chem. 2010, 285:26745-26751.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 26745-26751
-
-
Sharma, A.K.1
Pallesen, L.J.2
Spang, R.J.3
Walden, W.E.4
-
86
-
-
21244445718
-
A disulfide relay system in the intermembrane space of mitochondria that mediates protein import
-
Mesecke N., Terziyska N., Kozany C., Baumann F., Neupert W., Hell K., Herrmann J.M. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 2005, 121:1059-1069.
-
(2005)
Cell
, vol.121
, pp. 1059-1069
-
-
Mesecke, N.1
Terziyska, N.2
Kozany, C.3
Baumann, F.4
Neupert, W.5
Hell, K.6
Herrmann, J.M.7
-
87
-
-
84896278245
-
A structural model for glutathione-complexed iron-sulfur cluster as a substrate for ABCB7-type transporters
-
Qi W., Li J., Cowan J.A. A structural model for glutathione-complexed iron-sulfur cluster as a substrate for ABCB7-type transporters. Chem. Commun. (Camb) 2014, 50:3795-3798.
-
(2014)
Chem. Commun. (Camb)
, vol.50
, pp. 3795-3798
-
-
Qi, W.1
Li, J.2
Cowan, J.A.3
-
88
-
-
51349089178
-
Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis
-
Zhang Y., Lyver E.R., Nakamaru-Ogiso E., Yoon H., Amutha B., Lee D.W., Bi E., Ohnishi T., Daldal F., Pain D., Dancis A. Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol. Cell Biol. 2008, 28:5569-5582.
-
(2008)
Mol. Cell Biol.
, vol.28
, pp. 5569-5582
-
-
Zhang, Y.1
Lyver, E.R.2
Nakamaru-Ogiso, E.3
Yoon, H.4
Amutha, B.5
Lee, D.W.6
Bi, E.7
Ohnishi, T.8
Daldal, F.9
Pain, D.10
Dancis, A.11
-
89
-
-
77956921790
-
Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis
-
Netz D.J., Stumpfig M., Dore C., Muhlenhoff U., Pierik A.J., Lill R. Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat. Chem. Biol. 2010, 6:758-765.
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 758-765
-
-
Netz, D.J.1
Stumpfig, M.2
Dore, C.3
Muhlenhoff, U.4
Pierik, A.J.5
Lill, R.6
-
90
-
-
84930051032
-
Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery
-
Maio N., Rouault T.A. Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery. Biochim. Biophys. Acta 2014, 10.1016/j.bbamcr.2014.09.009.
-
(2014)
Biochim. Biophys. Acta
-
-
Maio, N.1
Rouault, T.A.2
-
91
-
-
85045835706
-
Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins
-
Stehling O., Mascarenhas J., Vashisht A.A., Sheftel A.D., Niggemeyer B., Rosser R., Pierik A.J., Wohlschlegel J.A., Lill R. Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Cell Metab. 2013, 18:187-198.
-
(2013)
Cell Metab.
, vol.18
, pp. 187-198
-
-
Stehling, O.1
Mascarenhas, J.2
Vashisht, A.A.3
Sheftel, A.D.4
Niggemeyer, B.5
Rosser, R.6
Pierik, A.J.7
Wohlschlegel, J.A.8
Lill, R.9
-
92
-
-
84897388919
-
Fixing frataxin: "ironing out" the metabolic defect in Friedreich's ataxia
-
Anzovino A., Lane D.J., Huang M.L., Richardson D.R. Fixing frataxin: "ironing out" the metabolic defect in Friedreich's ataxia. Br. J. Pharmacol. 2013, 171:2174-2190.
-
(2013)
Br. J. Pharmacol.
, vol.171
, pp. 2174-2190
-
-
Anzovino, A.1
Lane, D.J.2
Huang, M.L.3
Richardson, D.R.4
-
93
-
-
84873628363
-
Identification of nonferritin mitochondrial iron deposits in a mouse model of Friedreich ataxia
-
Whitnall M., Suryo Rahmanto Y., Huang M.L., Saletta F., Lok H.C., Gutierrez L., Lazaro F.J., Fleming A.J., St Pierre T.G., Mikhael M.R., Ponka P., Richardson D.R. Identification of nonferritin mitochondrial iron deposits in a mouse model of Friedreich ataxia. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:20590-20595.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 20590-20595
-
-
Whitnall, M.1
Suryo Rahmanto, Y.2
Huang, M.L.3
Saletta, F.4
Lok, H.C.5
Gutierrez, L.6
Lazaro, F.J.7
Fleming, A.J.8
St Pierre, T.G.9
Mikhael, M.R.10
Ponka, P.11
Richardson, D.R.12
-
94
-
-
9844222853
-
Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes
-
Campuzano V., Montermini L., Lutz Y., Cova L., Hindelang C., Jiralerspong S., Trottier Y., Kish S.J., Faucheux B., Trouillas P., Authier F.J., Durr A., Mandel J.L., Vescovi A., Pandolfo M., Koenig M. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet. 1997, 6:1771-1780.
-
(1997)
Hum. Mol. Genet.
, vol.6
, pp. 1771-1780
-
-
Campuzano, V.1
Montermini, L.2
Lutz, Y.3
Cova, L.4
Hindelang, C.5
Jiralerspong, S.6
Trottier, Y.7
Kish, S.J.8
Faucheux, B.9
Trouillas, P.10
Authier, F.J.11
Durr, A.12
Mandel, J.L.13
Vescovi, A.14
Pandolfo, M.15
Koenig, M.16
-
95
-
-
0030813487
-
Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin
-
Koutnikova H., Campuzano V., Foury F., Dolle P., Cazzalini O., Koenig M. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat. Genet. 1997, 16:345-351.
-
(1997)
Nat. Genet.
, vol.16
, pp. 345-351
-
-
Koutnikova, H.1
Campuzano, V.2
Foury, F.3
Dolle, P.4
Cazzalini, O.5
Koenig, M.6
-
96
-
-
0034192352
-
Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation
-
Cossee M., Puccio H., Gansmuller A., Koutnikova H., Dierich A., LeMeur M., Fischbeck K., Dolle P., Koenig M. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum. Mol. Genet. 2000, 9:1219-1226.
-
(2000)
Hum. Mol. Genet.
, vol.9
, pp. 1219-1226
-
-
Cossee, M.1
Puccio, H.2
Gansmuller, A.3
Koutnikova, H.4
Dierich, A.5
LeMeur, M.6
Fischbeck, K.7
Dolle, P.8
Koenig, M.9
-
97
-
-
84880077900
-
Biochemistry of cardiomyopathy in the mitochondrial disease Friedreich's ataxia
-
Lane D.J.R., Huang M.L., Ting S., Sivagurunathan S., Richardson D.R. Biochemistry of cardiomyopathy in the mitochondrial disease Friedreich's ataxia. Biochem. J. 2013, 453:321-336.
-
(2013)
Biochem. J.
, vol.453
, pp. 321-336
-
-
Lane, D.J.R.1
Huang, M.L.2
Ting, S.3
Sivagurunathan, S.4
Richardson, D.R.5
-
98
-
-
62549093116
-
The pathogenesis of Friedreich ataxia and the structure and function of frataxin
-
Pandolfo M., Pastore A. The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J. Neurol. 2009, 256(Suppl. 1):9-17.
-
(2009)
J. Neurol.
, vol.256
, pp. 9-17
-
-
Pandolfo, M.1
Pastore, A.2
-
99
-
-
0037613459
-
Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins
-
Yoon T., Cowan J.A. Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J. Am. Chem. Soc. 2003, 125:6078-6084.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 6078-6084
-
-
Yoon, T.1
Cowan, J.A.2
-
100
-
-
2942744572
-
Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis
-
Yoon T., Cowan J.A. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J. Biol. Chem. 2004, 279:25943-25946.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 25943-25946
-
-
Yoon, T.1
Cowan, J.A.2
-
101
-
-
45549107531
-
Binding of yeast frataxin to the scaffold for Fe-S cluster biogenesis, Isu
-
Wang T., Craig E.A. Binding of yeast frataxin to the scaffold for Fe-S cluster biogenesis, Isu. J. Biol. Chem. 2008, 283:12674-12679.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 12674-12679
-
-
Wang, T.1
Craig, E.A.2
-
102
-
-
34247882804
-
Human frataxin: iron and ferrochelatase binding surface
-
Bencze K.Z., Yoon T., Millan-Pacheco C., Bradley P.B., Pastor N., Cowan J.A., Stemmler T.L. Human frataxin: iron and ferrochelatase binding surface. Chem. Commun. (Camb.) 2007, 1798-1800.
-
(2007)
Chem. Commun. (Camb.)
, pp. 1798-1800
-
-
Bencze, K.Z.1
Yoon, T.2
Millan-Pacheco, C.3
Bradley, P.B.4
Pastor, N.5
Cowan, J.A.6
Stemmler, T.L.7
-
103
-
-
64049116040
-
Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS
-
Adinolfi S., Iannuzzi C., Prischi F., Pastore C., Iametti S., Martin S.R., Bonomi F., Pastore A. Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS. Nat. Struct. Mol. Biol. 2009, 16:390-396.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 390-396
-
-
Adinolfi, S.1
Iannuzzi, C.2
Prischi, F.3
Pastore, C.4
Iametti, S.5
Martin, S.R.6
Bonomi, F.7
Pastore, A.8
-
104
-
-
84880288137
-
Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly
-
Prischi F., Konarev P.V., Iannuzzi C., Pastore C., Adinolfi S., Martin S.R., Svergun D.I., Pastore A. Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Nat. Commun. 2010, 1:95.
-
(2010)
Nat. Commun.
, vol.1
, pp. 95
-
-
Prischi, F.1
Konarev, P.V.2
Iannuzzi, C.3
Pastore, C.4
Adinolfi, S.5
Martin, S.R.6
Svergun, D.I.7
Pastore, A.8
-
105
-
-
79960634008
-
The role of CyaY in iron sulfur cluster assembly on the E. coli IscU scaffold protein
-
Iannuzzi C., Adinolfi S., Howes B.D., Garcia-Serres R., Clemancey M., Latour J.M., Smulevich G., Pastore A. The role of CyaY in iron sulfur cluster assembly on the E. coli IscU scaffold protein. PLoS One 2011, 6:e21992.
-
(2011)
PLoS One
, vol.6
, pp. e21992
-
-
Iannuzzi, C.1
Adinolfi, S.2
Howes, B.D.3
Garcia-Serres, R.4
Clemancey, M.5
Latour, J.M.6
Smulevich, G.7
Pastore, A.8
-
106
-
-
78649644673
-
Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron-sulfur cluster assembly
-
Gakh O., Bedekovics T., Duncan S.F., Smith D.Y.T., Berkholz D.S., Isaya G. Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron-sulfur cluster assembly. J. Biol. Chem. 2010, 285:38486-38501.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 38486-38501
-
-
Gakh, O.1
Bedekovics, T.2
Duncan, S.F.3
Smith, D.Y.T.4
Berkholz, D.S.5
Isaya, G.6
-
107
-
-
78049305276
-
Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex
-
Tsai C.L., Barondeau D.P. Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry 2010, 49:9132-9139.
-
(2010)
Biochemistry
, vol.49
, pp. 9132-9139
-
-
Tsai, C.L.1
Barondeau, D.P.2
-
108
-
-
84905674436
-
Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry
-
Bridwell-Rabb J., Fox N.G., Tsai C.L., Winn A.M., Barondeau D.P. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry. Biochemistry 2014, 53:4904-4913.
-
(2014)
Biochemistry
, vol.53
, pp. 4904-4913
-
-
Bridwell-Rabb, J.1
Fox, N.G.2
Tsai, C.L.3
Winn, A.M.4
Barondeau, D.P.5
-
109
-
-
84923107253
-
Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols
-
Parent A., Elduque X., Cornu D., Belot L., Le Caer J.P., Grandas A., Toledano M.B., D'Autreaux B. Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols. Nat. Commun. 2015, 6:5686.
-
(2015)
Nat. Commun.
, vol.6
, pp. 5686
-
-
Parent, A.1
Elduque, X.2
Cornu, D.3
Belot, L.4
Le Caer, J.P.5
Grandas, A.6
Toledano, M.B.7
D'Autreaux, B.8
-
110
-
-
84859178535
-
Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis
-
Bridwell-Rabb J., Iannuzzi C., Pastore A., Barondeau D.P. Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis. Biochemistry 2012, 51:2506-2514.
-
(2012)
Biochemistry
, vol.51
, pp. 2506-2514
-
-
Bridwell-Rabb, J.1
Iannuzzi, C.2
Pastore, A.3
Barondeau, D.P.4
-
111
-
-
0037093206
-
Erythroid differentiation and protoporphyrin IX down-regulate frataxin expression in Friend cells: characterization of frataxin expression compared to molecules involved in iron metabolism and hemoglobinization
-
Becker E.M., Greer J.M., Ponka P., Richardson D.R. Erythroid differentiation and protoporphyrin IX down-regulate frataxin expression in Friend cells: characterization of frataxin expression compared to molecules involved in iron metabolism and hemoglobinization. Blood 2002, 99:3813-3822.
-
(2002)
Blood
, vol.99
, pp. 3813-3822
-
-
Becker, E.M.1
Greer, J.M.2
Ponka, P.3
Richardson, D.R.4
-
112
-
-
29644442275
-
Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells
-
Schoenfeld R.A., Napoli E., Wong A., Zhan S., Reutenauer L., Morin D., Buckpitt A.R., Taroni F., Lonnerdal B., Ristow M., Puccio H., Cortopassi G.A. Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum. Mol. Genet. 2005, 14:3787-3799.
-
(2005)
Hum. Mol. Genet.
, vol.14
, pp. 3787-3799
-
-
Schoenfeld, R.A.1
Napoli, E.2
Wong, A.3
Zhan, S.4
Reutenauer, L.5
Morin, D.6
Buckpitt, A.R.7
Taroni, F.8
Lonnerdal, B.9
Ristow, M.10
Puccio, H.11
Cortopassi, G.A.12
-
113
-
-
34247124148
-
Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation
-
Vickery L.E., Cupp-Vickery J.R. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation. Crit. Rev. Biochem. Mol. Biol. 2007, 42:95-111.
-
(2007)
Crit. Rev. Biochem. Mol. Biol.
, vol.42
, pp. 95-111
-
-
Vickery, L.E.1
Cupp-Vickery, J.R.2
-
114
-
-
33747170368
-
Evolution of mitochondrial chaperones utilized in Fe-S cluster biogenesis
-
Schilke B., Williams B., Knieszner H., Pukszta S., D'Silva P., Craig E.A., Marszalek J. Evolution of mitochondrial chaperones utilized in Fe-S cluster biogenesis. Curr. Biol. 2006, 16:1660-1665.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1660-1665
-
-
Schilke, B.1
Williams, B.2
Knieszner, H.3
Pukszta, S.4
D'Silva, P.5
Craig, E.A.6
Marszalek, J.7
-
115
-
-
84858212583
-
HSC20 interacts with frataxin and is involved in iron-sulfur cluster biogenesis and iron homeostasis
-
Shan Y., Cortopassi G. HSC20 interacts with frataxin and is involved in iron-sulfur cluster biogenesis and iron homeostasis. Hum. Mol. Genet. 2012, 21:1457-1469.
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 1457-1469
-
-
Shan, Y.1
Cortopassi, G.2
-
116
-
-
84895735383
-
Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery
-
Maio N., Singh A., Uhrigshardt H., Saxena N., Tong W.H., Rouault T.A. Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell Metab. 2014, 19:445-457.
-
(2014)
Cell Metab.
, vol.19
, pp. 445-457
-
-
Maio, N.1
Singh, A.2
Uhrigshardt, H.3
Saxena, N.4
Tong, W.H.5
Rouault, T.A.6
-
117
-
-
84893202765
-
Mortalin - a multipotent chaperone regulating cellular processes ranging from viral infection to neurodegeneration
-
Flachbartova Z., Kovacech B. Mortalin - a multipotent chaperone regulating cellular processes ranging from viral infection to neurodegeneration. Acta Virol. 2013, 57:3-15.
-
(2013)
Acta Virol.
, vol.57
, pp. 3-15
-
-
Flachbartova, Z.1
Kovacech, B.2
-
118
-
-
0141533145
-
Identification of a novel candidate gene in the iron-sulfur pathway implicated in ataxia-susceptibility: human gene encoding HscB, a J-type co-chaperone
-
Sun G., Gargus J.J., Ta D.T., Vickery L.E. Identification of a novel candidate gene in the iron-sulfur pathway implicated in ataxia-susceptibility: human gene encoding HscB, a J-type co-chaperone. J. Hum. Genet. 2003, 48:415-419.
-
(2003)
J. Hum. Genet.
, vol.48
, pp. 415-419
-
-
Sun, G.1
Gargus, J.J.2
Ta, D.T.3
Vickery, L.E.4
-
119
-
-
77956513437
-
Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron-sulfur cluster biogenesis
-
Uhrigshardt H., Singh A., Kovtunovych G., Ghosh M., Rouault T.A. Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron-sulfur cluster biogenesis. Hum. Mol. Genet. 2010, 19:3816-3834.
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 3816-3834
-
-
Uhrigshardt, H.1
Singh, A.2
Kovtunovych, G.3
Ghosh, M.4
Rouault, T.A.5
-
120
-
-
33646847503
-
The diverse roles of J-proteins, the obligate Hsp70 co-chaperone
-
Craig E.A., Huang P., Aron R., Andrew A. The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev. Physiol. Biochem. Pharmacol. 2006, 156:1-21.
-
(2006)
Rev. Physiol. Biochem. Pharmacol.
, vol.156
, pp. 1-21
-
-
Craig, E.A.1
Huang, P.2
Aron, R.3
Andrew, A.4
-
121
-
-
84884600998
-
The superfamily of mitochondrial Complex1_LYR motif-containing (LYRM) proteins
-
Angerer H. The superfamily of mitochondrial Complex1_LYR motif-containing (LYRM) proteins. Biochem. Soc. Trans. 2013, 41:1335-1341.
-
(2013)
Biochem. Soc. Trans.
, vol.41
, pp. 1335-1341
-
-
Angerer, H.1
-
122
-
-
68049086933
-
Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis
-
Shi Y., Ghosh M.C., Tong W.H., Rouault T.A. Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis. Hum. Mol. Genet. 2009, 18:3014-3025.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 3014-3025
-
-
Shi, Y.1
Ghosh, M.C.2
Tong, W.H.3
Rouault, T.A.4
-
123
-
-
84905860097
-
The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase
-
Na U., Yu W., Cox J., Bricker D.K., Brockmann K., Rutter J., Thummel C.S., Winge D.R. The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase. Cell Metab. 2014, 20:253-266.
-
(2014)
Cell Metab.
, vol.20
, pp. 253-266
-
-
Na, U.1
Yu, W.2
Cox, J.3
Bricker, D.K.4
Brockmann, K.5
Rutter, J.6
Thummel, C.S.7
Winge, D.R.8
-
124
-
-
80053601731
-
The LYR protein Mzm1 functions in the insertion of the Rieske Fe/S protein in yeast mitochondria
-
Atkinson A., Smith P., Fox J.L., Cui T.Z., Khalimonchuk O., Winge D.R. The LYR protein Mzm1 functions in the insertion of the Rieske Fe/S protein in yeast mitochondria. Mol. Cell. Biol. 2011, 31:3988-3996.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 3988-3996
-
-
Atkinson, A.1
Smith, P.2
Fox, J.L.3
Cui, T.Z.4
Khalimonchuk, O.5
Winge, D.R.6
-
125
-
-
80053898097
-
Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes
-
Cameron J.M., Janer A., Levandovskiy V., Mackay N., Rouault T.A., Tong W.H., Ogilvie I., Shoubridge E.A., Robinson B.H. Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am. J. Hum. Genet. 2011, 89:486-495.
-
(2011)
Am. J. Hum. Genet.
, vol.89
, pp. 486-495
-
-
Cameron, J.M.1
Janer, A.2
Levandovskiy, V.3
Mackay, N.4
Rouault, T.A.5
Tong, W.H.6
Ogilvie, I.7
Shoubridge, E.A.8
Robinson, B.H.9
-
126
-
-
84859400502
-
The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation
-
Sheftel A.D., Wilbrecht C., Stehling O., Niggemeyer B., Elsasser H.P., Muhlenhoff U., Lill R. The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol. Biol. Cell 2012, 23:1157-1166.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 1157-1166
-
-
Sheftel, A.D.1
Wilbrecht, C.2
Stehling, O.3
Niggemeyer, B.4
Elsasser, H.P.5
Muhlenhoff, U.6
Lill, R.7
-
127
-
-
84861850380
-
Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis
-
Li H., Outten C.E. Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis. Biochemistry 2012, 51:4377-4389.
-
(2012)
Biochemistry
, vol.51
, pp. 4377-4389
-
-
Li, H.1
Outten, C.E.2
-
128
-
-
77951843593
-
Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts
-
Ye H., Jeong S.Y., Ghosh M.C., Kovtunovych G., Silvestri L., Ortillo D., Uchida N., Tisdale J., Camaschella C., Rouault T.A. Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J. Clin. Invest. 2010, 120:1749-1761.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 1749-1761
-
-
Ye, H.1
Jeong, S.Y.2
Ghosh, M.C.3
Kovtunovych, G.4
Silvestri, L.5
Ortillo, D.6
Uchida, N.7
Tisdale, J.8
Camaschella, C.9
Rouault, T.A.10
-
129
-
-
41149169596
-
Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance
-
Mochel F., Knight M.A., Tong W.H., Hernandez D., Ayyad K., Taivassalo T., Andersen P.M., Singleton A., Rouault T.A., Fischbeck K.H., Haller R.G. Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am. J. Hum. Genet. 2008, 82:652-660.
-
(2008)
Am. J. Hum. Genet.
, vol.82
, pp. 652-660
-
-
Mochel, F.1
Knight, M.A.2
Tong, W.H.3
Hernandez, D.4
Ayyad, K.5
Taivassalo, T.6
Andersen, P.M.7
Singleton, A.8
Rouault, T.A.9
Fischbeck, K.H.10
Haller, R.G.11
-
130
-
-
79952814526
-
Friedreich's ataxia: pathology, pathogenesis, and molecular genetics
-
Koeppen A.H. Friedreich's ataxia: pathology, pathogenesis, and molecular genetics. J. Neurol. Sci. 2011, 303:1-12.
-
(2011)
J. Neurol. Sci.
, vol.303
, pp. 1-12
-
-
Koeppen, A.H.1
-
131
-
-
47749130452
-
The MCK mouse heart model of Friedreich's ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation
-
Whitnall M., Rahmanto Y.S., Sutak R., Xu X., Becker E.M., Mikhael M.R., Ponka P., Richardson D.R. The MCK mouse heart model of Friedreich's ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:9757-9762.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 9757-9762
-
-
Whitnall, M.1
Rahmanto, Y.S.2
Sutak, R.3
Xu, X.4
Becker, E.M.5
Mikhael, M.R.6
Ponka, P.7
Richardson, D.R.8
-
132
-
-
0035138072
-
Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits
-
Puccio H., Simon D., Cossee M., Criqui-Filipe P., Tiziano F., Melki J., Hindelang C., Matyas R., Rustin P., Koenig M. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet. 2001, 27:181-186.
-
(2001)
Nat. Genet.
, vol.27
, pp. 181-186
-
-
Puccio, H.1
Simon, D.2
Cossee, M.3
Criqui-Filipe, P.4
Tiziano, F.5
Melki, J.6
Hindelang, C.7
Matyas, R.8
Rustin, P.9
Koenig, M.10
-
133
-
-
64249161639
-
Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia
-
Paupe V., Dassa E.P., Goncalves S., Auchere F., Lonn M., Holmgren A., Rustin P. Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia. PLoS One 2009, 4:e4253.
-
(2009)
PLoS One
, vol.4
, pp. e4253
-
-
Paupe, V.1
Dassa, E.P.2
Goncalves, S.3
Auchere, F.4
Lonn, M.5
Holmgren, A.6
Rustin, P.7
-
134
-
-
84876314544
-
Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model
-
Shan Y., Schoenfeld R.A., Hayashi G., Napoli E., Akiyama T., Iodi Carstens M., Carstens E.E., Pook M.A., Cortopassi G.A. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model. Antioxid. Redox Signal. 2013, 19:1481-1493.
-
(2013)
Antioxid. Redox Signal.
, vol.19
, pp. 1481-1493
-
-
Shan, Y.1
Schoenfeld, R.A.2
Hayashi, G.3
Napoli, E.4
Akiyama, T.5
Iodi Carstens, M.6
Carstens, E.E.7
Pook, M.A.8
Cortopassi, G.A.9
-
135
-
-
84876310656
-
Frataxin deficiency leads to reduced expression and impaired translocation of NF-E2-related factor (Nrf2) in cultured motor neurons
-
D'Oria V., Petrini S., Travaglini L., Priori C., Piermarini E., Petrillo S., Carletti B., Bertini E., Piemonte F. Frataxin deficiency leads to reduced expression and impaired translocation of NF-E2-related factor (Nrf2) in cultured motor neurons. Int. J. Mol. Sci. 2013, 14:7853-7865.
-
(2013)
Int. J. Mol. Sci.
, vol.14
, pp. 7853-7865
-
-
D'Oria, V.1
Petrini, S.2
Travaglini, L.3
Priori, C.4
Piermarini, E.5
Petrillo, S.6
Carletti, B.7
Bertini, E.8
Piemonte, F.9
-
136
-
-
20444381360
-
Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury
-
Zhu H., Itoh K., Yamamoto M., Zweier J.L., Li Y. Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett. 2005, 579:3029-3036.
-
(2005)
FEBS Lett.
, vol.579
, pp. 3029-3036
-
-
Zhu, H.1
Itoh, K.2
Yamamoto, M.3
Zweier, J.L.4
Li, Y.5
-
137
-
-
84874111758
-
The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation
-
Bryan H.K., Olayanju A., Goldring C.E., Park B.K. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem. Pharmacol. 2013, 85:705-717.
-
(2013)
Biochem. Pharmacol.
, vol.85
, pp. 705-717
-
-
Bryan, H.K.1
Olayanju, A.2
Goldring, C.E.3
Park, B.K.4
-
138
-
-
21944452087
-
Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalytic subunit transcription indirectly via NF-kappaB and AP-1
-
Yang H., Magilnick N., Lee C., Kalmaz D., Ou X., Chan J.Y., Lu S.C. Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalytic subunit transcription indirectly via NF-kappaB and AP-1. Mol. Cell. Biol. 2005, 25:5933-5946.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 5933-5946
-
-
Yang, H.1
Magilnick, N.2
Lee, C.3
Kalmaz, D.4
Ou, X.5
Chan, J.Y.6
Lu, S.C.7
-
139
-
-
0033565665
-
The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins
-
Kispal G., Csere P., Prohl C., Lill R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 1999, 18:3981-3989.
-
(1999)
EMBO J.
, vol.18
, pp. 3981-3989
-
-
Kispal, G.1
Csere, P.2
Prohl, C.3
Lill, R.4
-
140
-
-
34147158934
-
Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis
-
Pondarre C., Campagna D.R., Antiochos B., Sikorski L., Mulhern H., Fleming M.D. Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis. Blood 2007, 109:3567-3569.
-
(2007)
Blood
, vol.109
, pp. 3567-3569
-
-
Pondarre, C.1
Campagna, D.R.2
Antiochos, B.3
Sikorski, L.4
Mulhern, H.5
Fleming, M.D.6
-
141
-
-
0037944100
-
Involvement of ABC7 in the biosynthesis of heme in erythroid cells: interaction of ABC7 with ferrochelatase
-
Taketani S., Kakimoto K., Ueta H., Masaki R., Furukawa T. Involvement of ABC7 in the biosynthesis of heme in erythroid cells: interaction of ABC7 with ferrochelatase. Blood 2003, 101:3274-3280.
-
(2003)
Blood
, vol.101
, pp. 3274-3280
-
-
Taketani, S.1
Kakimoto, K.2
Ueta, H.3
Masaki, R.4
Furukawa, T.5
-
142
-
-
77956044833
-
Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis
-
(blood -2009-2012-259614)
-
Chen W., Dailey H.A., Paw B.H. Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis. Blood 2010, (blood -2009-2012-259614).
-
(2010)
Blood
-
-
Chen, W.1
Dailey, H.A.2
Paw, B.H.3
-
143
-
-
70349479539
-
Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria
-
Chen W., Paradkar P.N., Li L., Pierce E.L., Langer N.B., Takahashi-Makise N., Hyde B.B., Shirihai O.S., Ward D.M., Kaplan J., Paw B.H. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc. Natl. Acad. Sci. 2009, 106:16263-16268.
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, pp. 16263-16268
-
-
Chen, W.1
Paradkar, P.N.2
Li, L.3
Pierce, E.L.4
Langer, N.B.5
Takahashi-Makise, N.6
Hyde, B.B.7
Shirihai, O.S.8
Ward, D.M.9
Kaplan, J.10
Paw, B.H.11
-
145
-
-
10744223491
-
Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis
-
Meyron-Holtz E.G., Ghosh M.C., Iwai K., LaVaute T., Brazzolotto X., Berger U.V., Land W., Ollivierre-Wilson H., Grinberg A., Love P., Rouault T.A. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 2004, 23:386-395.
-
(2004)
EMBO J.
, vol.23
, pp. 386-395
-
-
Meyron-Holtz, E.G.1
Ghosh, M.C.2
Iwai, K.3
LaVaute, T.4
Brazzolotto, X.5
Berger, U.V.6
Land, W.7
Ollivierre-Wilson, H.8
Grinberg, A.9
Love, P.10
Rouault, T.A.11
-
146
-
-
34548307253
-
Excess capacity of the iron regulatory protein system
-
Wang W., Di X., D'Agostino R.B., Torti S.V., Torti F.M. Excess capacity of the iron regulatory protein system. J. Biol. Chem. 2007, 282:24650-24659.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24650-24659
-
-
Wang, W.1
Di, X.2
D'Agostino, R.B.3
Torti, S.V.4
Torti, F.M.5
-
147
-
-
77952480112
-
Molecular control of the cytosolic aconitase/IRP1 switch by extramitochondrial frataxin
-
Condo I., Malisan F., Guccini I., Serio D., Rufini A., Testi R. Molecular control of the cytosolic aconitase/IRP1 switch by extramitochondrial frataxin. Hum. Mol. Genet. 2010, 19:1221-1229.
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 1221-1229
-
-
Condo, I.1
Malisan, F.2
Guccini, I.3
Serio, D.4
Rufini, A.5
Testi, R.6
-
148
-
-
84895748764
-
The lure of a LYR: the logistics of iron sulfur cluster delivery
-
Lane D.J., Merlot A.M., Richardson D.R. The lure of a LYR: the logistics of iron sulfur cluster delivery. Cell Metab. 2014, 19:348-350.
-
(2014)
Cell Metab.
, vol.19
, pp. 348-350
-
-
Lane, D.J.1
Merlot, A.M.2
Richardson, D.R.3
-
149
-
-
84922861201
-
Iron regulatory protein 1 sustains mitochondrial iron loading and function in frataxin deficiency
-
Martelli A., Schmucker S., Reutenauer L., Mathieu J.R., Peyssonnaux C., Karim Z., Puy H., Galy B., Hentze M.W., Puccio H. Iron regulatory protein 1 sustains mitochondrial iron loading and function in frataxin deficiency. Cell Metab. 2015, 21:311-322.
-
(2015)
Cell Metab.
, vol.21
, pp. 311-322
-
-
Martelli, A.1
Schmucker, S.2
Reutenauer, L.3
Mathieu, J.R.4
Peyssonnaux, C.5
Karim, Z.6
Puy, H.7
Galy, B.8
Hentze, M.W.9
Puccio, H.10
|