메뉴 건너뛰기




Volumn 75, Issue , 2014, Pages 69-83

The active role of vitamin C in mammalian iron metabolism: Much more than just enhanced iron absorption!

Author keywords

Ascorbate; Dcytb; Ferritin; Free radicals; HIF; Iron; IRP; Transferrin; Vitamin C

Indexed keywords

ASCORBIC ACID; CYTOCHROME B; CYTOCHROME B561; DEHYDROASCORBIC ACID; FERRITIN; FERROPORTIN; GLUCOSE TRANSPORTER; HEPCIDIN; IRON; IRON REGULATORY FACTOR; OXIDOREDUCTASE; SODIUM ASCORBIC ACID COTRANSPORTER; TRANSFERRIN; UNCLASSIFIED DRUG; BASIC HELIX LOOP HELIX TRANSCRIPTION FACTOR; ENDOTHELIAL PAS DOMAIN-CONTAINING PROTEIN 1; HIF1A PROTEIN, HUMAN; HYPOXIA INDUCIBLE FACTOR 1ALPHA;

EID: 84906092681     PISSN: 08915849     EISSN: 18734596     Source Type: Journal    
DOI: 10.1016/j.freeradbiomed.2014.07.007     Document Type: Review
Times cited : (186)

References (234)
  • 1
    • 0035814732 scopus 로고    scopus 로고
    • New insights into the physiology and pharmacology of vitamin C
    • S.J. Padayatty, and M. Levine New insights into the physiology and pharmacology of vitamin C Can. Med. Assoc. J. 164 2001 353 355 (Pubitemid 32164958)
    • (2001) Canadian Medical Association Journal , vol.164 , Issue.3 , pp. 353-355
    • Padayatty, S.J.1    Levine, M.2
  • 2
    • 84875704668 scopus 로고    scopus 로고
    • Vitamin C transport and its role in the central nervous system
    • J.M. May Vitamin C transport and its role in the central nervous system Subcell. Biochem. 56 2012 85 103
    • (2012) Subcell. Biochem. , vol.56 , pp. 85-103
    • May, J.M.1
  • 3
    • 46249124511 scopus 로고    scopus 로고
    • Inflammation in the vascular bed: Importance of vitamin C
    • R. Aguirre, and J.M. May Inflammation in the vascular bed: importance of vitamin C Pharmacol. Ther. 119 2008 96 103
    • (2008) Pharmacol. Ther. , vol.119 , pp. 96-103
    • Aguirre, R.1    May, J.M.2
  • 4
    • 60449102448 scopus 로고    scopus 로고
    • Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2
    • F.E. Harrison, and J.M. May Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2 Free Radic. Biol. Med. 46 2009 719 730
    • (2009) Free Radic. Biol. Med. , vol.46 , pp. 719-730
    • Harrison, F.E.1    May, J.M.2
  • 5
    • 67650945641 scopus 로고    scopus 로고
    • Ascorbate
    • R. Banerjee, D.F. Becker, M.B. Dickman, V.N. Gladyshev, S.W. Ragsdale, Wiley Hoboken
    • H. Asard Ascorbate R. Banerjee, D.F. Becker, M.B. Dickman, V.N. Gladyshev, S.W. Ragsdale, Redox Biochemistry 2007 Wiley Hoboken 22 37
    • (2007) Redox Biochemistry , pp. 22-37
    • Asard, H.1
  • 6
    • 0027251053 scopus 로고
    • The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate
    • DOI 10.1006/abbi.1993.1074
    • G.R. Buettner The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate Arch. Biochem. Biophys. 300 1993 535 543 (Pubitemid 23232908)
    • (1993) Archives of Biochemistry and Biophysics , vol.300 , Issue.2 , pp. 535-543
    • Buettner, G.R.1
  • 7
    • 0029939394 scopus 로고    scopus 로고
    • Catalytic metals, ascorbate and free radicals: Combinations to avoid
    • DOI 10.2307/3579271
    • G.R. Buettner, and B.A. Jurkiewicz Catalytic metals, ascorbate and free radicals: combinations to avoid Radiat. Res. 145 1996 532 541 (Pubitemid 26127160)
    • (1996) Radiation Research , vol.145 , Issue.5 , pp. 532-541
    • Buettner, G.R.1    Jurkiewicz, B.A.2
  • 8
    • 0033042677 scopus 로고    scopus 로고
    • Is ascorbic acid an antioxidant for the plasma membrane?
    • J.M. May Is ascorbic acid an antioxidant for the plasma membrane? FASEB J. 13 1999 995 1006
    • (1999) FASEB J. , vol.13 , pp. 995-1006
    • May, J.M.1
  • 9
    • 0038578532 scopus 로고    scopus 로고
    • Ascorbic acid spares α-tocopherol and decreases lipid peroxidation in neuronal cells
    • DOI 10.1016/S0006-291X(03)00836-2
    • X. Li, J. Huang, and J.M. May Ascorbic acid spares α-tocopherol and decreases lipid peroxidation in neuronal cells Biochem. Biophys. Res. Commun. 305 2003 656 661 (Pubitemid 36579281)
    • (2003) Biochemical and Biophysical Research Communications , vol.305 , Issue.3 , pp. 656-661
    • Li, X.1    Huang, J.2    May, J.M.3
  • 10
    • 0037743427 scopus 로고    scopus 로고
    • Ascorbic acid spares α-tocopherol and prevents lipid peroxidation in cultured H4IIE liver cells
    • DOI 10.1023/A:1024167731074
    • J. Huang, and J.M. May Ascorbic acid spares α-tocopherol and prevents lipid peroxidation in cultured H4IIE liver cells Mol. Cell. Biochem. 247 2003 171 176 (Pubitemid 36798522)
    • (2003) Molecular and Cellular Biochemistry , vol.247 , Issue.1-2 , pp. 171-176
    • Huang, J.1    May, J.M.2
  • 11
    • 0034625391 scopus 로고    scopus 로고
    • Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin
    • DOI 10.1074/jbc.M002248200
    • A. Huang, J.A. Vita, R.C. Venema, and J.F. Keaney Jr. Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin J. Biol. Chem. 275 2000 17399 17406 (Pubitemid 30430776)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.23 , pp. 17399-17406
    • Huang, A.1    Vita, J.A.2    Venema, R.C.3    Keaney Jr., J.F.4
  • 12
    • 0035808310 scopus 로고    scopus 로고
    • L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin
    • DOI 10.1074/jbc.M004392200
    • R. Heller, A. Unbehaun, B. Schellenberg, B. Mayer, G. Werner-Felmayer, and E.R. Werner L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin J. Biol. Chem. 276 2001 40 47 (Pubitemid 32050286)
    • (2001) Journal of Biological Chemistry , vol.276 , Issue.1 , pp. 40-47
    • Heller, R.1    Unbehaun, A.2    Schellenberg, B.3    Mayer, B.4    Werner-Felmayer, G.5    Werner, E.R.6
  • 13
    • 0032518172 scopus 로고    scopus 로고
    • Protection and recycling of α-tocopherol in human erythrocytes by intracellular ascorbic acid
    • DOI 10.1006/abbi.1997.0473
    • J.M. May, Z.-c. Qu, and S. Mendiratta Protection and recycling of α-tocopherol in human erythrocytes by intracellular ascorbic acid Arch. Biochem. Biophys. 349 1998 281 289 (Pubitemid 28368672)
    • (1998) Archives of Biochemistry and Biophysics , vol.349 , Issue.2 , pp. 281-289
    • May, J.M.1    Qu, Z.-C.2    Mendiratta, S.3
  • 14
    • 17744408229 scopus 로고    scopus 로고
    • Retroviruses, ascorbate, and mutations, in the evolution of Homo sapiens
    • DOI 10.1016/S0891-5849(98)00034-3, PII S0891584998000343
    • J.J. Challem, and E.W. Taylor Retroviruses, ascorbate, and mutations, in the evolution of Homo sapiens Free Radic. Biol. Med. 25 1998 130 132 (Pubitemid 28285280)
    • (1998) Free Radical Biology and Medicine , vol.25 , Issue.1 , pp. 130-132
    • Challem, J.J.1    Taylor, E.W.2
  • 15
    • 0028228342 scopus 로고
    • Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-γ-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man
    • M. Nishikimi, R. Fukuyama, S. Minoshima, N. Shimizu, and K. Yagi Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-γ- lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man J. Biol. Chem. 269 1994 13685 13688
    • (1994) J. Biol. Chem. , vol.269 , pp. 13685-13688
    • Nishikimi, M.1    Fukuyama, R.2    Minoshima, S.3    Shimizu, N.4    Yagi, K.5
  • 16
    • 0025885658 scopus 로고
    • Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis
    • M. Nishikimi, and K. Yagi Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis Am. J. Clin. Nutr. 54 1991 1203S 1208S
    • (1991) Am. J. Clin. Nutr. , vol.54
    • Nishikimi, M.1    Yagi, K.2
  • 17
    • 33845717875 scopus 로고    scopus 로고
    • Vitamin C: Biosynthesis, recycling and degradation in mammals
    • DOI 10.1111/j.1742-4658.2006.05607.x
    • C.L. Linster, and E. Van Schaftingen Vitamin C: biosynthesis, recycling and degradation in mammals FEBS J. 274 2007 1 22 (Pubitemid 44963475)
    • (2007) FEBS Journal , vol.274 , Issue.1 , pp. 1-22
    • Linster, C.L.1    Van Schaftingen, E.2
  • 19
    • 84880653572 scopus 로고    scopus 로고
    • Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function
    • A.J. Michels, T.M. Hagen, and B. Frei Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function Annu. Rev. Nutr. 33 2013 45 70
    • (2013) Annu. Rev. Nutr. , vol.33 , pp. 45-70
    • Michels, A.J.1    Hagen, T.M.2    Frei, B.3
  • 20
    • 0032031568 scopus 로고    scopus 로고
    • Absorption, transport, and disposition of ascorbic acid in humans
    • DOI 10.1016/S0955-2863(98)00002-3, PII S0955286398000023
    • S.C. Rumsey, and M. Levine Absorption, transport and disposition of ascorbic acid in humans J. Nutr. Biochem. 9 1998 116 130 (Pubitemid 28143160)
    • (1998) Journal of Nutritional Biochemistry , vol.9 , Issue.3 , pp. 116-130
    • Rumsey, S.C.1    Levine, M.2
  • 22
    • 23944482400 scopus 로고    scopus 로고
    • Regulation of vitamin C transport
    • DOI 10.1146/annurev.nutr.25.050304.092647
    • J.X. Wilson Regulation of vitamin C transport Annu. Rev. Nutr. 25 2005 105 125 (Pubitemid 41208996)
    • (2005) Annual Review of Nutrition , vol.25 , pp. 105-125
    • Wilson, J.X.1
  • 23
    • 84890461711 scopus 로고    scopus 로고
    • Myths, artifacts, and fatal flaws: Identifying limitations and opportunities in vitamin C research
    • A.J. Michels, and B. Frei Myths, artifacts, and fatal flaws: identifying limitations and opportunities in vitamin C research Nutrients 5 2013 5161 5192
    • (2013) Nutrients , vol.5 , pp. 5161-5192
    • Michels, A.J.1    Frei, B.2
  • 25
    • 38049057495 scopus 로고    scopus 로고
    • Mitochondrial recycling of ascorbic acid as a mechanism for regenerating cellular ascorbate
    • J.M. May, L. Li, Z.-c. Qu, and C.E. Cobb Mitochondrial recycling of ascorbic acid as a mechanism for regenerating cellular ascorbate Biofactors 30 2007 35 48
    • (2007) Biofactors , vol.30 , pp. 35-48
    • May, J.M.1    Li, L.2    Qu, Z.-C.3    Cobb, C.E.4
  • 26
    • 0036647216 scopus 로고    scopus 로고
    • Mitochondrial recycling of ascorbic acid from dehydroascorbic acid: Dependence on the electron transport chain
    • DOI 10.1016/S0003-9861(02)00205-9, PII S0003986102002059
    • X. Li, C.E. Cobb, and J.M. May Mitochondrial recycling of ascorbic acid from dehydroascorbic acid: dependence on the electron transport chain Arch. Biochem. Biophys. 403 2002 103 110 (Pubitemid 34848283)
    • (2002) Archives of Biochemistry and Biophysics , vol.403 , Issue.1 , pp. 103-110
    • Li, X.1    Cobb, C.E.2    May, J.M.3
  • 27
    • 33845682100 scopus 로고    scopus 로고
    • Dehydroascorbate reduction in plant mitochondria is coupled to the respiratory electron transfer chain
    • DOI 10.1111/j.1399-3054.2006.00810.x
    • A. Szarka, N. Horemans, Z. Kovács, P. Gróf, M. Mayer, and G. Bánhegyi Dehydroascorbate reduction in plant mitochondria is coupled to the respiratory electron transfer chain Physiol. Plant. 129 2007 225 232 (Pubitemid 44953389)
    • (2007) Physiologia Plantarum , vol.129 , Issue.1 , pp. 225-232
    • Szarka, A.1    Horemans, N.2    Kovacs, Z.3    Grof, P.4    Mayer, M.5    Banhegyi, G.6
  • 28
    • 0030087797 scopus 로고    scopus 로고
    • α-Lipoic acid dependent regeneration of ascorbic acid from dehydroascorbic acid in rat liver mitochondria
    • D.P. Xu, and W.W. Wells α-Lipoic acid dependent regeneration of ascorbic acid from dehydroascorbic acid in rat liver mitochondria J. Bioenerg. Biomembr. 28 1996 77 85
    • (1996) J. Bioenerg. Biomembr. , vol.28 , pp. 77-85
    • Xu, D.P.1    Wells, W.W.2
  • 29
    • 26444505495 scopus 로고    scopus 로고
    • Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury
    • DOI 10.1096/fj.05-4107com
    • K.C. Sagun, J.M. Carcámo, and D.W. Golde Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury FASEB J. 19 2005 1657 1667 (Pubitemid 41429523)
    • (2005) FASEB Journal , vol.19 , Issue.12 , pp. 1657-1667
    • Sagun, K.C.1    Carcamo, J.M.2    Golde, D.W.3
  • 30
    • 84866613772 scopus 로고    scopus 로고
    • Ascorbic acid: Chemistry, biology and the treatment of cancer
    • J. Du, J.J. Cullen, and G.R. Buettner Ascorbic acid: chemistry, biology and the treatment of cancer Biochim. Biophys. Acta 1826 2012 443 457
    • (2012) Biochim. Biophys. Acta , vol.1826 , pp. 443-457
    • Du, J.1    Cullen, J.J.2    Buettner, G.R.3
  • 31
    • 0032126961 scopus 로고    scopus 로고
    • Spontaneous conversion of L-dehydroascorbic acid to L-ascorbic acid and L-erythroascorbic acid
    • DOI 10.1006/abbi.1998.0713
    • C.-H. Jung, and W.W. Wells Spontaneous conversion of L-dehydroascorbic acid to L-ascorbic acid and L-erythroascorbic acid Arch. Biochem. Biophys. 355 1998 9 14 (Pubitemid 28371146)
    • (1998) Archives of Biochemistry and Biophysics , vol.355 , Issue.1 , pp. 9-14
    • Jung, C.-H.1    Wells, W.W.2
  • 32
    • 0032472765 scopus 로고    scopus 로고
    • Bicarbonate promotes a cleavage of lactone ring of dehydroascorbate
    • DOI 10.1016/S0304-4165(97)00106-2, PII S0304416597001062
    • I. Koshiishi, Y. Mamura, and T. Imanari Bicarbonate promotes a cleavage of lactone ring of dehydroascorbate Biochim. Biophys. Acta 1379 1998 257 263 (Pubitemid 28252902)
    • (1998) Biochimica et Biophysica Acta - General Subjects , vol.1379 , Issue.2 , pp. 257-263
    • Koshiishi, I.1    Mamura, Y.2    Imanari, T.3
  • 33
    • 0032538093 scopus 로고    scopus 로고
    • Degradation of dehydroascorbate to 2,3-diketogulonate in blood circulation
    • DOI 10.1016/S0304-4165(98)00073-7, PII S0304416598000737
    • I. Koshiishi, Y. Mamura, J. Liu, and T. Imanari Degradation of dehydroascorbate to 2,3-diketogulonate in blood circulation Biochim. Biophys. Acta 1425 1998 209 214 (Pubitemid 28479727)
    • (1998) Biochimica et Biophysica Acta - General Subjects , vol.1425 , Issue.1 , pp. 209-214
    • Koshiishi, I.1    Mamura, Y.2    Liu, J.3    Imanari, T.4
  • 34
    • 0028805076 scopus 로고
    • Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes
    • J.M. May, Z.-c. Qu, and R.R. Whitesell Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes Biochemistry 34 1995 12721 12728
    • (1995) Biochemistry , vol.34 , pp. 12721-12728
    • May, J.M.1    Qu, Z.-C.2    Whitesell, R.R.3
  • 35
    • 2442561639 scopus 로고    scopus 로고
    • Human erythrocyte recycling of ascorbic acid: Relative contributions from the ascorbate free radical and dehydroascorbic acid
    • DOI 10.1074/jbc.M312548200
    • J.M. May, Z.-c. Qu, and C.E. Cobb Human erythrocyte recycling of ascorbic acid: relative contributions from the ascorbate free radical and dehydroascorbic acid J. Biol. Chem. 279 2004 14975 14982 (Pubitemid 38618890)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.15 , pp. 14975-14982
    • May, J.M.1    Qu, Z.-C.2    Cobb, C.E.3
  • 36
    • 0028858956 scopus 로고
    • Ascorbic acid enhances iron-induced ferritin translation in human leukemia and hepatoma cells
    • I. Toth, J.T. Rogers, J.A. McPhee, S.M. Elliott, S.L. Abramson, and K.R. Bridges Ascorbic acid enhances iron-induced ferritin translation in human leukemia and hepatoma cells J. Biol. Chem. 270 1995 2846 2852
    • (1995) J. Biol. Chem. , vol.270 , pp. 2846-2852
    • Toth, I.1    Rogers, J.T.2    McPhee, J.A.3    Elliott, S.M.4    Abramson, S.L.5    Bridges, K.R.6
  • 37
    • 0025718970 scopus 로고
    • Ascorbic acid and iron metabolism: Alterations in lysosomal function
    • K.E. Hoffman, K. Yanelli, and K.R. Bridges Ascorbic acid and iron metabolism: alterations in lysosomal function Am. J. Clin. Nutr. 54 1991 1188S 1192S
    • (1991) Am. J. Clin. Nutr. , vol.54
    • Hoffman, K.E.1    Yanelli, K.2    Bridges, K.R.3
  • 39
    • 0343131929 scopus 로고    scopus 로고
    • Differential compartmentalization of brain ascorbate and glutathione between neurons and glia
    • DOI 10.1016/S0306-4522(97)00347-3, PII S0306452297003473
    • M.E. Rice, and I. Russo-Menna Differential compartmentalization of brain ascorbate and glutathione between neurons and glia Neuroscience 82 1998 1213 1223 (Pubitemid 27502062)
    • (1998) Neuroscience , vol.82 , Issue.4 , pp. 1213-1223
    • Rice, M.E.1    Russo-Menna, I.2
  • 40
    • 0034194081 scopus 로고    scopus 로고
    • Ascorbate regulation and its neuroprotective role in the brain
    • DOI 10.1016/S0166-2236(99)01543-X, PII S016622369901543X
    • M.E. Rice Ascorbate regulation and its neuroprotective role in the brain Trends Neurosci. 23 2000 209 216 (Pubitemid 30236180)
    • (2000) Trends in Neurosciences , vol.23 , Issue.5 , pp. 209-216
    • Rice, M.E.1
  • 41
    • 42449122220 scopus 로고    scopus 로고
    • SVCT1 and SVCT2: Key proteins for vitamin C uptake
    • DOI 10.1007/s00726-007-0555-7
    • I. Savini, A. Rossi, C. Pierro, L. Avigliano, and M.V. Catani SVCT1 and SVCT2: key proteins for vitamin C uptake Amino Acids 34 2007 347 355 (Pubitemid 351569766)
    • (2008) Amino Acids , vol.34 , Issue.3 , pp. 347-355
    • Savini, I.1    Rossi, A.2    Pierro, C.3    Avigliano, L.4    Catani, M.V.5
  • 42
    • 81355134502 scopus 로고    scopus 로고
    • The SLC23 family of ascorbate transporters: Ensuring that you get and keep your daily dose of vitamin C
    • J.M. May The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C Br. J. Pharmacol. 164 2011 1793 1801
    • (2011) Br. J. Pharmacol. , vol.164 , pp. 1793-1801
    • May, J.M.1
  • 45
    • 77950460185 scopus 로고    scopus 로고
    • Ascorbic acid depletion enhances expression of the sodium-dependent vitamin C transporters, SVCT1 and SVCT2, and uptake of ascorbic acid in livers of SMP30/GNL knockout mice
    • A. Amano, T. Aigaki, N. Maruyama, and A. Ishigami Ascorbic acid depletion enhances expression of the sodium-dependent vitamin C transporters, SVCT1 and SVCT2, and uptake of ascorbic acid in livers of SMP30/GNL knockout mice Arch. Biochem. Biophys. 496 2010 38 44
    • (2010) Arch. Biochem. Biophys. , vol.496 , pp. 38-44
    • Amano, A.1    Aigaki, T.2    Maruyama, N.3    Ishigami, A.4
  • 46
    • 80555148143 scopus 로고    scopus 로고
    • Differential regulation of the ascorbic acid transporter SVCT2 during development and in response to ascorbic acid depletion
    • M.E. Meredith, F.E. Harrison, and J.M. May Differential regulation of the ascorbic acid transporter SVCT2 during development and in response to ascorbic acid depletion Biochem. Biophys. Res. Commun. 414 2011 737 742
    • (2011) Biochem. Biophys. Res. Commun. , vol.414 , pp. 737-742
    • Meredith, M.E.1    Harrison, F.E.2    May, J.M.3
  • 47
    • 84856692905 scopus 로고    scopus 로고
    • Nitric oxide modulates sodium vitamin C transporter 2 (SVCT-2) protein expression via protein kinase G (PKG) and nuclear factor-kappaB (NF-kappaB)
    • C.C. Portugal, T.G. da Encarnacao, R. Socodato, S.R. Moreira, D. Brudzewsky, A.F. Ambrosio, and R. Paes-de-Carvalho Nitric oxide modulates sodium vitamin C transporter 2 (SVCT-2) protein expression via protein kinase G (PKG) and nuclear factor-kappaB (NF-kappaB) J. Biol. Chem. 287 2012 3860 3872
    • (2012) J. Biol. Chem. , vol.287 , pp. 3860-3872
    • Portugal, C.C.1    Da Encarnacao, T.G.2    Socodato, R.3    Moreira, S.R.4    Brudzewsky, D.5    Ambrosio, A.F.6    Paes-De-Carvalho, R.7
  • 48
    • 77957556759 scopus 로고    scopus 로고
    • Oxidized LDL up-regulates the ascorbic acid transporter SVCT2 in endothelial cells
    • J.M. May, L. Li, and Z.C. Qu Oxidized LDL up-regulates the ascorbic acid transporter SVCT2 in endothelial cells Mol. Cell. Biochem. 343 2010 217 222
    • (2010) Mol. Cell. Biochem. , vol.343 , pp. 217-222
    • May, J.M.1    Li, L.2    Qu, Z.C.3
  • 50
    • 0030953863 scopus 로고    scopus 로고
    • Efficient transport and accumulation of vitamin C in HL-60 cells depleted of glutathione
    • DOI 10.1074/jbc.272.15.9915
    • V.H. Guaiquil, C.M. Farber, D.W. Golde, and J.C. Vera Efficient transport and accumulation of vitamin C in HL-60 cells depleted of glutathione J. Biol. Chem. 272 1997 9915 9921 (Pubitemid 27171661)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.15 , pp. 9915-9921
    • Guaiquil, V.H.1    Farber, C.M.2    Golde, D.W.3    Vera, J.C.4
  • 52
    • 0028122226 scopus 로고
    • Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid
    • J.C. Vera, C.I. Rivas, R.H. Zhang, C.M. Farber, and D.W. Golde Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid Blood 84 1994 1628 1634 (Pubitemid 24273034)
    • (1994) Blood , vol.84 , Issue.5 , pp. 1628-1634
    • Vera, J.C.1    Rivas, C.I.2    Zhang, R.H.3    Farber, C.M.4    Golde, D.W.5
  • 53
    • 0032546432 scopus 로고    scopus 로고
    • 13C NMR studies of vitamin C transport and its redox cycling in human erythrocytes
    • DOI 10.1021/bi970765s
    • 13C NMR studies of vitamin C transport and its redox cycling in human erythrocytes Biochemistry 37 1998 7578 7588 (Pubitemid 28235242)
    • (1998) Biochemistry , vol.37 , Issue.20 , pp. 7578-7588
    • Himmelreich, U.1    Drew, K.N.2    Serianni, A.S.3    Kuchel, P.W.4
  • 54
    • 0032521135 scopus 로고    scopus 로고
    • Erythrocyte ascorbate recycling: Antioxidant effects in blood
    • DOI 10.1016/S0891-5849(97)00351-1, PII S0891584997003511
    • S. Mendiratta, Z.-c. Qu, and J.M. May Erythrocyte ascorbate recycling: antioxidant effects in blood Free Radic. Biol. Med. 24 1998 789 797 (Pubitemid 28169566)
    • (1998) Free Radical Biology and Medicine , vol.24 , Issue.5 , pp. 789-797
    • Mendiratta, S.1    Qu, Z.-C.2    May, J.M.3
  • 55
    • 40849102818 scopus 로고    scopus 로고
    • Erythrocyte Glut1 Triggers Dehydroascorbic Acid Uptake in Mammals Unable to Synthesize Vitamin C
    • DOI 10.1016/j.cell.2008.01.042, PII S0092867408002043
    • A. Montel-Hagen, S. Kinet, N. Manel, C. Mongellaz, R. Prohaska, J.-L. Battini, J. Delaunay, M. Sitbon, and N. Taylor Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C Cell 132 2008 1039 1048 (Pubitemid 351391954)
    • (2008) Cell , vol.132 , Issue.6 , pp. 1039-1048
    • Montel-Hagen, A.1    Kinet, S.2    Manel, N.3    Mongellaz, C.4    Prohaska, R.5    Battini, J.-L.6    Delaunay, J.7    Sitbon, M.8    Taylor, N.9
  • 56
    • 40749104613 scopus 로고    scopus 로고
    • Some Vertebrates Go with the GLO
    • DOI 10.1016/j.cell.2008.03.005, PII S0092867408003358
    • M.-B. Troadec, and J. Kaplan Some vertebrates go with the GLO Cell 132 2008 921 922 (Pubitemid 351381751)
    • (2008) Cell , vol.132 , Issue.6 , pp. 921-922
    • Troadec, M.-B.1    Kaplan, J.2
  • 57
    • 64249109519 scopus 로고    scopus 로고
    • Altered GLUT1 substrate selectivity in human erythropoiesis?
    • A. Carruthers, and R.J. Naftalin Altered GLUT1 substrate selectivity in human erythropoiesis? Cell 137 2009 200 201
    • (2009) Cell , vol.137 , pp. 200-201
    • Carruthers, A.1    Naftalin, R.J.2
  • 60
    • 0030839797 scopus 로고    scopus 로고
    • Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid
    • DOI 10.1074/jbc.272.30.18982
    • S.C. Rumsey, O. Kwon, G.W. Xu, C.F. Burant, I. Simpson, and M. Levine Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid J. Biol. Chem. 272 1997 18982 18989 (Pubitemid 27318253)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.30 , pp. 18982-18989
    • Rumsey, S.C.1    Kwon, O.2    Xu, G.W.3    Burant, C.F.4    Simpson, I.5    Levine, M.6
  • 61
    • 84877741258 scopus 로고    scopus 로고
    • Mammalian iron homeostasis in health and disease: Uptake, storage, transport, and molecular mechanisms of action
    • A. Lawen, and D.J.R. Lane Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action Antioxid. Redox Signaling 18 2013 2473 2507
    • (2013) Antioxid. Redox Signaling , vol.18 , pp. 2473-2507
    • Lawen, A.1    Lane, D.J.R.2
  • 63
    • 59449109182 scopus 로고    scopus 로고
    • Iron homeostasis: Recently identified proteins provide insight into novel control mechanisms
    • A.S. Zhang, and C.A. Enns Iron homeostasis: recently identified proteins provide insight into novel control mechanisms J. Biol. Chem. 284 2009 711 715
    • (2009) J. Biol. Chem. , vol.284 , pp. 711-715
    • Zhang, A.S.1    Enns, C.A.2
  • 64
    • 77953807027 scopus 로고    scopus 로고
    • The ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor
    • S.C. Andrews The ferritin-like superfamily: evolution of the biological iron storeman from a rubrerythrin-like ancestor Biochim. Biophys. Acta 1800 2010 691 705
    • (2010) Biochim. Biophys. Acta , vol.1800 , pp. 691-705
    • Andrews, S.C.1
  • 65
    • 18544384019 scopus 로고
    • Oxidation of tartaric acid in presence of iron
    • H.J.H. Fenton Oxidation of tartaric acid in presence of iron J. Chem. Soc. Trans. 65 1894 899 910
    • (1894) J. Chem. Soc. Trans. , vol.65 , pp. 899-910
    • Fenton, H.J.H.1
  • 66
    • 0000162325 scopus 로고
    • The catalytic decomposition of hydrogen peroxide by iron salts
    • F. Haber, and J. Weiss The catalytic decomposition of hydrogen peroxide by iron salts Proc. R. Soc. Ser. A 147 1934 332 351
    • (1934) Proc. R. Soc. Ser. A , vol.147 , pp. 332-351
    • Haber, F.1    Weiss, J.2
  • 67
    • 0029758487 scopus 로고    scopus 로고
    • Molecular control of vertebrate iron metabolism: MRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress
    • DOI 10.1073/pnas.93.16.8175
    • M.W. Hentze, and L.C. Kuhn Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress Proc. Natl. Acad. Sci. USA 93 1996 8175 8182 (Pubitemid 26269529)
    • (1996) Proceedings of the National Academy of Sciences of the United States of America , vol.93 , Issue.16 , pp. 8175-8182
    • Hentze, M.W.1    Kuhn, L.C.2
  • 68
    • 0031567095 scopus 로고    scopus 로고
    • The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells
    • DOI 10.1016/S0304-4157(96)00014-7, PII S0304415796000147
    • D.R. Richardson, and P. Ponka The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells Biochim. Biophys. Acta 1331 1997 1 40 (Pubitemid 27168147)
    • (1997) Biochimica et Biophysica Acta - Reviews on Biomembranes , vol.1331 , Issue.1 , pp. 1-40
    • Richardson, D.R.1    Ponka, P.2
  • 69
    • 0018164919 scopus 로고
    • Non-specific serum iron in thalassaemia: An abnormal serum iron fraction of potential toxicity
    • C. Hershko, G. Graham, G.W. Bates, and E.A. Rachmilewitz Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity Br. J. Haematol. 40 1978 255 263 (Pubitemid 9040657)
    • (1978) British Journal of Haematology , vol.40 , Issue.2 , pp. 255-263
    • Hershko, C.1    Graham, G.2    Bates, G.W.3    Rachmilewitz, E.A.4
  • 70
    • 0033677772 scopus 로고    scopus 로고
    • The importance of non-transferrin bound iron in disorders of iron metabolism
    • W. Breuer, C. Hershko, and Z.I. Cabantchik The importance of non-transferrin bound iron in disorders of iron metabolism Transfus. Sci. 23 2000 185 192
    • (2000) Transfus. Sci. , vol.23 , pp. 185-192
    • Breuer, W.1    Hershko, C.2    Cabantchik, Z.I.3
  • 71
    • 0024564712 scopus 로고
    • Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy
    • M. Grootveld, J.D. Bell, B. Halliwell, O.I. Aruoma, A. Bomford, and P.J. Sadler Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis: characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy J. Biol. Chem. 264 1989 4417 4422 (Pubitemid 19081342)
    • (1989) Journal of Biological Chemistry , vol.264 , Issue.8 , pp. 4417-4422
    • Grootveld, M.1    Bell, J.D.2    Halliwell, B.3    Aruoma, O.I.4    Bomford, A.5    Sadler, P.J.6
  • 72
    • 0035006006 scopus 로고    scopus 로고
    • Ironing out disease: Inherited disorders of iron homeostasis
    • G.J. Anderson Ironing out disease: inherited disorders of iron homeostasis IUBMB Life 51 2001 11 17 (Pubitemid 32521197)
    • (2001) IUBMB Life , vol.51 , Issue.1 , pp. 11-17
    • Anderson, G.J.1
  • 73
    • 0030058299 scopus 로고    scopus 로고
    • Molecular mechanisms of iron uptake in eukaryotes
    • D.M. De Silva, C.C. Askwith, and J. Kaplan Molecular mechanisms of iron uptake in eukaryotes Physiol. Rev. 76 1996 31 47 (Pubitemid 26048277)
    • (1996) Physiological Reviews , vol.76 , Issue.1 , pp. 31-47
    • De Silva, D.M.1    Askwith, C.C.2    Kaplan, J.3
  • 74
    • 0027512915 scopus 로고
    • Characterization of transferrin-independent iron transport in K562 cells. Unique properties provide evidence for multiple pathways of iron uptake
    • R.S. Inman, and M. Wessling-Resnick Characterization of transferrin-independent iron transport in K562 cells: unique properties provide evidence for multiple pathways of iron uptake J. Biol. Chem. 268 1993 8521 8528 (Pubitemid 23118631)
    • (1993) Journal of Biological Chemistry , vol.268 , Issue.12 , pp. 8521-8528
    • Inman, R.S.1    Wessling-Resnick, M.2
  • 75
    • 0028170059 scopus 로고
    • The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity
    • I. Jordan, and J. Kaplan The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity Biochem. J. 302 1994 875 879
    • (1994) Biochem. J. , vol.302 , pp. 875-879
    • Jordan, I.1    Kaplan, J.2
  • 76
    • 45149113881 scopus 로고    scopus 로고
    • Non-transferrin iron reduction and uptake are regulated by transmembrane ascorbate cycling in K562 cells
    • D.J.R. Lane, and A. Lawen Non-transferrin iron reduction and uptake are regulated by transmembrane ascorbate cycling in K562 cells J. Biol. Chem. 283 2008 12701 12708
    • (2008) J. Biol. Chem. , vol.283 , pp. 12701-12708
    • Lane, D.J.R.1    Lawen, A.2
  • 77
    • 70349102092 scopus 로고    scopus 로고
    • Transplasma membrane electron transport comes in two flavors
    • D.J.R. Lane, and A. Lawen Transplasma membrane electron transport comes in two flavors Biofactors 34 2009 191 200
    • (2009) Biofactors , vol.34 , pp. 191-200
    • Lane, D.J.R.1    Lawen, A.2
  • 78
    • 67650995439 scopus 로고    scopus 로고
    • Ascorbate and plasma membrane electron transport - Enzymes vs efflux
    • D.J.R. Lane, and A. Lawen Ascorbate and plasma membrane electron transport - enzymes vs efflux Free Radic. Biol. Med. 47 2009 485 495
    • (2009) Free Radic. Biol. Med. , vol.47 , pp. 485-495
    • Lane, D.J.R.1    Lawen, A.2
  • 80
  • 81
    • 44449124500 scopus 로고    scopus 로고
    • Iron responses in hepatic, intestinal and macrophage/monocyte cell lines under different culture conditions
    • S. Jacolot, C. Ferec, and C. Mura Iron responses in hepatic, intestinal and macrophage/monocyte cell lines under different culture conditions Blood Cells Mol. Dis. 41 2008 100 108
    • (2008) Blood Cells Mol. Dis. , vol.41 , pp. 100-108
    • Jacolot, S.1    Ferec, C.2    Mura, C.3
  • 83
    • 53549084581 scopus 로고    scopus 로고
    • Ascorbic acid uptake affects ferritin, Dcytb and Nramp2 expression in Caco-2 cells
    • N.M. Scheers, and A.S. Sandberg Ascorbic acid uptake affects ferritin, Dcytb and Nramp2 expression in Caco-2 cells Eur. J. Nutr. 47 2008 401 408
    • (2008) Eur. J. Nutr. , vol.47 , pp. 401-408
    • Scheers, N.M.1    Sandberg, A.S.2
  • 84
    • 58749094789 scopus 로고    scopus 로고
    • Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency
    • Y.M. Shah, T. Matsubara, S. Ito, S.H. Yim, and F.J. Gonzalez Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency Cell Metab. 9 2009 152 164
    • (2009) Cell Metab. , vol.9 , pp. 152-164
    • Shah, Y.M.1    Matsubara, T.2    Ito, S.3    Yim, S.H.4    Gonzalez, F.J.5
  • 85
    • 44449108683 scopus 로고    scopus 로고
    • Duodenal cytochrome B expression stimulates iron uptake by human intestinal epithelial cells
    • G.O. Latunde-Dada, R.J. Simpson, and A.T. McKie Duodenal cytochrome b expression stimulates iron uptake by human intestinal epithelial cells J. Nutr. 138 2008 991 995 (Pubitemid 351769119)
    • (2008) Journal of Nutrition , vol.138 , Issue.6 , pp. 991-995
    • Latunde-Dada, G.O.1    Simpson, R.J.2    McKie, A.T.3
  • 86
    • 33746773041 scopus 로고    scopus 로고
    • 561 are ascorbate-dependent ferrireductases
    • DOI 10.1111/j.1742-4658.2006.05381.x
    • D. Su, and H. Asard Three mammalian cytochromes b561 are ascorbate-dependent ferrireductases FEBS J. 273 2006 3722 3734 (Pubitemid 44166653)
    • (2006) FEBS Journal , vol.273 , Issue.16 , pp. 3722-3734
    • Su, D.1    Asard, H.2
  • 87
    • 0025885657 scopus 로고
    • Cytochrome b561, ascorbic acid, and transmembrane electron transfer
    • P.J. Fleming, and U.M. Kent Cytochrome b561, ascorbic acid, and transmembrane electron transfer Am. J. Clin. Nutr. 54 1991 1173S 1178S
    • (1991) Am. J. Clin. Nutr. , vol.54
    • Fleming, P.J.1    Kent, U.M.2
  • 88
    • 0000395131 scopus 로고
    • Studies on the respiratory enzymes of the adrenal gland. I. The medulla
    • M.J. Spiro, and E.G. Ball Studies on the respiratory enzymes of the adrenal gland. I. The medulla J. Biol. Chem. 236 1961 225 230
    • (1961) J. Biol. Chem. , vol.236 , pp. 225-230
    • Spiro, M.J.1    Ball, E.G.2
  • 89
    • 0015214389 scopus 로고
    • Cytochrome b-561 of the bovine adrenal chromaffin granules: A high potential b-type cytochrome
    • T. Flatmark, and O. Terland Cytochrome b-561 of the bovine adrenal chromaffin granules: a high potential b-type cytochrome Biochim. Biophys. Acta 253 1971 487 491
    • (1971) Biochim. Biophys. Acta , vol.253 , pp. 487-491
    • Flatmark, T.1    Terland, O.2
  • 90
    • 0019320964 scopus 로고
    • Oxidoreductase activities of chromaffin granule ghosts isolated from the bovine adrenal medulla
    • O. Terland, and T. Flatmark Oxidoreductase activities of chromaffin granule ghosts isolated from the bovine adrenal medulla Biochim. Biophys. Acta 597 1980 318 330
    • (1980) Biochim. Biophys. Acta , vol.597 , pp. 318-330
    • Terland, O.1    Flatmark, T.2
  • 91
    • 0013854424 scopus 로고
    • Cytochrome 559 in the microsomes of the adrenal medulla
    • Y. Ichikawa, and T. Yamano Cytochrome 559 in the microsomes of the adrenal medulla Biochem. Biophys. Res. Commun. 20 1965 263 268
    • (1965) Biochem. Biophys. Res. Commun. , vol.20 , pp. 263-268
    • Ichikawa, Y.1    Yamano, T.2
  • 93
    • 0022931515 scopus 로고
    • 561 spectral changes associated with electron transfer in chromaffin-vesicle ghosts
    • P.M. Kelley, and D. Njus Cytochrome b561 spectral changes associated with electron transfer in chromaffin-vesicle ghosts J. Biol. Chem. 261 1986 6429 6432 (Pubitemid 17204153)
    • (1986) Journal of Biological Chemistry , vol.261 , Issue.14 , pp. 6429-6432
    • Kelley, P.M.1    Njus, D.2
  • 94
    • 0023001148 scopus 로고
    • Electron transfer across the chromaffin granule membrane. Use of EPR to demonstrate reduction of intravesicular ascorbate radical by the extravesicular mitochondrial NADH:ascorbate radical oxidoreductase
    • L.M. Wakefield, A.E. Cass, and G.K. Radda Electron transfer across the chromaffin granule membrane: use of EPR to demonstrate reduction of intravesicular ascorbate radical by the extravesicular mitochondrial NADH:ascorbate radical oxidoreductase J. Biol. Chem. 261 1986 9746 9752 (Pubitemid 17214103)
    • (1986) Journal of Biological Chemistry , vol.261 , Issue.21 , pp. 9746-9752
    • Wakefield, L.M.1    Cass, A.E.G.2    Radda, G.K.3
  • 96
    • 0025739644 scopus 로고
    • 561: Concerted electron and proton transfer
    • V. Jalukar, P.M. Kelley, and D. Njus Reaction of ascorbic acid with cytochrome b561: concerted electron and proton transfer J. Biol. Chem. 266 1991 6878 6882 (Pubitemid 21906305)
    • (1991) Journal of Biological Chemistry , vol.266 , Issue.11 , pp. 6878-6882
    • Jalukar, V.1    Kelley, P.M.2    Njus, D.3
  • 97
    • 27844441716 scopus 로고    scopus 로고
    • Cytochrome b561 protein family: Expanding roles and versatile transmembrane electron transfer abilities as predicted by a new classification system and protein sequence motif analyses
    • DOI 10.1016/j.bbapap.2005.08.015, PII S1570963905002827
    • M. Tsubaki, F. Takeuchi, and N. Nakanishi Cytochrome b561 protein family: expanding roles and versatile transmembrane electron transfer abilities as predicted by a new classification system and protein sequence motif analyses Biochim. Biophys. Acta 1753 2005 174 190 (Pubitemid 41643151)
    • (2005) Biochimica et Biophysica Acta - Proteins and Proteomics , vol.1753 , Issue.2 , pp. 174-190
    • Tsubaki, M.1    Takeuchi, F.2    Nakanishi, N.3
  • 98
    • 38849180048 scopus 로고    scopus 로고
    • 561: A unique machinery for the biological transmembrane electron transfer
    • DOI 10.1093/jb/mvm181
    • N. Nakanishi, F. Takeuchi, and M. Tsubaki Histidine cycle mechanism for the concerted proton/electron transfer from ascorbate to the cytosolic haem b centre of cytochrome b561: a unique machinery for the biological transmembrane electron transfer J. Biochem. 142 2007 553 560 (Pubitemid 351197699)
    • (2007) Journal of Biochemistry , vol.142 , Issue.5 , pp. 553-560
    • Nakanishi, N.1    Takeuchi, F.2    Tsubaki, M.3
  • 99
    • 33750620918 scopus 로고    scopus 로고
    • An ascorbate-reducible cytochrome b561 is localized in macrophage lysosomes
    • DOI 10.1016/j.bbagen.2006.07.019, PII S0304416506002108
    • D.-l. Zhang, D. Su, A. Bérczi, A. Vargas, and H. Asard An ascorbate-reducible cytochrome b561 is localized in macrophage lysosomes Biochim. Biophys. Acta 1760 2006 1903 1913 (Pubitemid 44692367)
    • (2006) Biochimica et Biophysica Acta - General Subjects , vol.1760 , Issue.12 , pp. 1903-1913
    • Zhang, D.-l.1    Su, D.2    Berczi, A.3    Vargas, A.4    Asard, H.5
  • 102
    • 38849115722 scopus 로고    scopus 로고
    • 561, in the reduction of ferric ions
    • DOI 10.1093/jb/mvm185
    • A. Mizutani, R. Sanuki, K. Kakimoto, S. Kojo, and S. Taketani Involvement of 101F6, a homologue of cytochrome b561, in the reduction of ferric ions J. Biochem. 142 2007 699 705 (Pubitemid 351197704)
    • (2007) Journal of Biochemistry , vol.142 , Issue.6 , pp. 699-705
    • Mizutani, A.1    Sanuki, R.2    Kakimoto, K.3    Kojo, S.4    Taketani, S.5
  • 103
    • 84878317421 scopus 로고    scopus 로고
    • Electron transfer reactions of candidate tumor suppressor 101F6 protein, a cytochrome b561 homologue, with ascorbate and monodehydroascorbate radical
    • M.C. Recuenco, M.M. Rahman, F. Takeuchi, K. Kobayashi, and M. Tsubaki Electron transfer reactions of candidate tumor suppressor 101F6 protein, a cytochrome b561 homologue, with ascorbate and monodehydroascorbate radical Biochemistry 52 2013 3660 3668
    • (2013) Biochemistry , vol.52 , pp. 3660-3668
    • Recuenco, M.C.1    Rahman, M.M.2    Takeuchi, F.3    Kobayashi, K.4    Tsubaki, M.5
  • 104
    • 44449159838 scopus 로고    scopus 로고
    • Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro
    • S. Wyman, R.J. Simpson, A.T. McKie, and P.A. Sharp Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro FEBS Lett. 582 2008 1901 1906
    • (2008) FEBS Lett. , vol.582 , pp. 1901-1906
    • Wyman, S.1    Simpson, R.J.2    McKie, A.T.3    Sharp, P.A.4
  • 106
    • 84883404388 scopus 로고    scopus 로고
    • Cytochromes b561: Ascorbate-mediated trans-membrane electron transport
    • H. Asard, R. Barbaro, P. Trost, and A. Berczi Cytochromes b561: ascorbate-mediated trans-membrane electron transport Antioxid. Redox Signaling 19 2013 1026 1035
    • (2013) Antioxid. Redox Signaling , vol.19 , pp. 1026-1035
    • Asard, H.1    Barbaro, R.2    Trost, P.3    Berczi, A.4
  • 107
    • 84878271081 scopus 로고    scopus 로고
    • Dihydrolipoic acid reduces cytochrome b561 proteins
    • A. Berczi, L. Zimanyi, and H. Asard Dihydrolipoic acid reduces cytochrome b561 proteins Eur. Biophys. J. 42 2013 159 168
    • (2013) Eur. Biophys. J. , vol.42 , pp. 159-168
    • Berczi, A.1    Zimanyi, L.2    Asard, H.3
  • 108
    • 59149096376 scopus 로고    scopus 로고
    • The role of Dcytb in iron metabolism: An update
    • A.T. McKie The role of Dcytb in iron metabolism: an update Biochem. Soc. Trans. 36 2008 1239 1241
    • (2008) Biochem. Soc. Trans. , vol.36 , pp. 1239-1241
    • McKie, A.T.1
  • 109
    • 33845979527 scopus 로고    scopus 로고
    • 561 that may be involved in extracellular ascorbate recycling
    • DOI 10.1074/jbc.M606543200
    • D. Su, J.M. May, M.J. Koury, and H. Asard Human erythrocyte membranes contain a cytochrome b561 that may be involved in extracellular ascorbate recycling J. Biol. Chem. 281 2006 39852 39859 (Pubitemid 46041788)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.52 , pp. 39852-39859
    • Su, D.1    May, J.M.2    Koury, M.J.3    Asard, H.4
  • 111
    • 58249136810 scopus 로고    scopus 로고
    • Differing expression of genes involved in non-transferrin iron transport across plasma membrane in various cell types under iron deficiency and excess
    • K. Balusikova, J. Neubauerova, M. Dostalikova-Cimburova, J. Horak, and J. Kovar Differing expression of genes involved in non-transferrin iron transport across plasma membrane in various cell types under iron deficiency and excess Mol. Cell. Biochem. 321 2009 123 133
    • (2009) Mol. Cell. Biochem. , vol.321 , pp. 123-133
    • Balusikova, K.1    Neubauerova, J.2    Dostalikova-Cimburova, M.3    Horak, J.4    Kovar, J.5
  • 112
    • 0038711587 scopus 로고    scopus 로고
    • Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system
    • DOI 10.1074/jbc.M301988200
    • S.Y. Jeong, and S. David Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system J. Biol. Chem. 278 2003 27144 27148 (Pubitemid 36876870)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.29 , pp. 27144-27148
    • Jeong, S.Y.1    David, S.2
  • 116
    • 39949083571 scopus 로고    scopus 로고
    • Functional characterization of human duodenal cytochrome b (Cybrd1): Redox properties in relation to iron and ascorbate metabolism
    • J.S. Oakhill, S.J. Marritt, E.G. Gareta, R. Cammack, and A.T. McKie Functional characterization of human duodenal cytochrome b (Cybrd1): redox properties in relation to iron and ascorbate metabolism Biochim. Biophys. Acta 1777 2008 260 268
    • (2008) Biochim. Biophys. Acta , vol.1777 , pp. 260-268
    • Oakhill, J.S.1    Marritt, S.J.2    Gareta, E.G.3    Cammack, R.4    McKie, A.T.5
  • 118
    • 0036628732 scopus 로고    scopus 로고
    • Uptake, recycling, and antioxidant actions of α-lipoic acid in endothelial cells
    • DOI 10.1016/S0891-5849(02)00862-6, PII S0891584902008626
    • W. Jones, X. Li, Z.-c. Qu, L. Perriott, R.R. Whitesell, and J.M. May Uptake, recycling, and antioxidant actions of α-lipoic acid in endothelial cells Free Radic. Biol. Med. 33 2002 83 93 (Pubitemid 34681010)
    • (2002) Free Radical Biology and Medicine , vol.33 , Issue.1 , pp. 83-93
    • Jones, W.1    Li, X.2    Qu, Z.-C.3    Perriott, L.4    Whitesell, R.R.5    May, J.M.6
  • 119
    • 78649734938 scopus 로고    scopus 로고
    • Two routes of iron accumulation in astrocytes: Ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron
    • D.J.R. Lane, S.R. Robinson, H. Czerwinska, G.M. Bishop, and A. Lawen Two routes of iron accumulation in astrocytes: ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron Biochem. J. 432 2010 123 132
    • (2010) Biochem. J. , vol.432 , pp. 123-132
    • Lane, D.J.R.1    Robinson, S.R.2    Czerwinska, H.3    Bishop, G.M.4    Lawen, A.5
  • 120
    • 84880031116 scopus 로고    scopus 로고
    • Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism
    • D.J.R. Lane, S. Chikhani, V. Richardson, and D.R. Richardson Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism Biochim. Biophys. Acta 1833 2013 1527 1541
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 1527-1541
    • Lane, D.J.R.1    Chikhani, S.2    Richardson, V.3    Richardson, D.R.4
  • 121
    • 0033151523 scopus 로고    scopus 로고
    • Role of ascorbic acid in transferrin-independent reduction and uptake of iron by U-937 cells
    • DOI 10.1016/S0006-2952(99)00040-4, PII S0006295299000404
    • J.M. May, Z.-c. Qu, and S. Mendiratta Role of ascorbic acid in transferrin-independent reduction and uptake of iron by U-937 cells Biochem. Pharmacol. 57 1999 1275 1282 (Pubitemid 29185149)
    • (1999) Biochemical Pharmacology , vol.57 , Issue.11 , pp. 1275-1282
    • May, J.M.1    Qu, Z.-C.2    Mendiratta, S.3
  • 123
    • 84865714279 scopus 로고    scopus 로고
    • Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1
    • A.C. Illing, A. Shawki, C.L. Cunningham, and B. Mackenzie Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1 J. Biol. Chem. 287 2012 30485 30496
    • (2012) J. Biol. Chem. , vol.287 , pp. 30485-30496
    • Illing, A.C.1    Shawki, A.2    Cunningham, C.L.3    Mackenzie, B.4
  • 124
    • 34147189116 scopus 로고    scopus 로고
    • Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1)
    • DOI 10.1042/BJ20061290
    • B. Mackenzie, H. Takanaga, N. Hubert, A. Rolfs, and M.A. Hediger Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1) Biochem. J. 403 2007 59 69 (Pubitemid 46569867)
    • (2007) Biochemical Journal , vol.403 , Issue.1 , pp. 59-69
    • Mackenzie, B.1    Takanaga, H.2    Hubert, N.3    Rolfs, A.4    Hediger, M.A.5
  • 126
    • 77954620240 scopus 로고    scopus 로고
    • Cellular pathways for transport and efflux of ascorbate and dehydroascorbate
    • A. Corti, A.F. Casini, and A. Pompella Cellular pathways for transport and efflux of ascorbate and dehydroascorbate Arch. Biochem. Biophys. 500 2010 107 115
    • (2010) Arch. Biochem. Biophys. , vol.500 , pp. 107-115
    • Corti, A.1    Casini, A.F.2    Pompella, A.3
  • 128
    • 0036683707 scopus 로고    scopus 로고
    • Post-translational integration and oligomerization of connexin 26 in plasma membranes and evidence of formation of membrane pores: Implications for the assembly of gap junctions
    • DOI 10.1042/BJ20011572
    • S. Ahmad, and W.H. Evans Post-translational integration and oligomerization of connexin 26 in plasma membranes and evidence of formation of membrane pores: implications for the assembly of gap junctions Biochem. J. 365 2002 693 699 (Pubitemid 34864451)
    • (2002) Biochemical Journal , vol.365 , Issue.3 , pp. 693-699
    • Ahmad, S.1    Evans, W.H.2
  • 129
    • 31444442655 scopus 로고    scopus 로고
    • Vitamin C: New role of the old vitamin in the cardiovascular system?
    • DOI 10.1038/sj.bjp.0706494, PII 0706494
    • C. Kónya, and P. Ferdinandy Vitamin C: new role of the old vitamin in the cardiovascular system? Br. J. Pharmacol. 147 2006 125 127 (Pubitemid 43151559)
    • (2006) British Journal of Pharmacology , vol.147 , Issue.2 , pp. 125-127
    • Konya, C.1    Ferdinandy, P.2
  • 130
    • 0033952388 scopus 로고    scopus 로고
    • Glutamate stimulates ascorbate transport by astrocytes
    • DOI 10.1016/S0006-8993(99)02433-6, PII S0006899399024336
    • J.X. Wilson, C.E. Peters, S.M. Sitar, P. Daoust, and A.W. Gelb Glutamate stimulates ascorbate transport by astrocytes Brain Res. 858 2000 61 66 (Pubitemid 30105782)
    • (2000) Brain Research , vol.858 , Issue.1 , pp. 61-66
    • Wilson, J.X.1    Peters, C.E.2    Sitar, S.M.3    Daoust, P.4    Gelb, A.W.5
  • 131
    • 33746383473 scopus 로고    scopus 로고
    • Ascorbate transport and recycling by SH-SY5Y neuroblastoma cells: Response to glutamate toxicity
    • DOI 10.1007/s11064-006-9077-z
    • J.M. May, L. Li, K. Hayslett, and Z.-c. Qu Ascorbate transport and recycling by SH-SY5Y neuroblastoma cells: response to glutamate toxicity Neurochem. Res. 31 2006 785 794 (Pubitemid 44114812)
    • (2006) Neurochemical Research , vol.31 , Issue.6 , pp. 785-794
    • May, J.M.1    Li, L.2    Hayslett, K.3    Qu, Z.-C.4
  • 133
    • 84874244468 scopus 로고    scopus 로고
    • The glutamate aspartate transporter (GLAST) mediates L-glutamate- stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes
    • D.J.R. Lane, and A. Lawen The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes Cell. Biochem. Biophys. 65 2012 107 119
    • (2012) Cell. Biochem. Biophys. , vol.65 , pp. 107-119
    • Lane, D.J.R.1    Lawen, A.2
  • 134
    • 25144503255 scopus 로고    scopus 로고
    • Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes
    • DOI 10.1016/j.freeradbiomed.2005.05.020, PII S0891584905003035
    • J.X. Wilson, and M. Dragan Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes Free Radic. Biol. Med. 39 2005 990 998 (Pubitemid 41356591)
    • (2005) Free Radical Biology and Medicine , vol.39 , Issue.8 , pp. 990-998
    • Wilson, J.X.1    Dragan, M.2
  • 136
    • 13344278005 scopus 로고    scopus 로고
    • Osmotic swelling stimulates ascorbate efflux from cerebral astrocytes
    • R. Siushansian, S.J. Dixon, and J.X. Wilson Osmotic swelling stimulates ascorbate efflux from cerebral astrocytes J. Neurochem. 66 1996 1227 1233 (Pubitemid 26065922)
    • (1996) Journal of Neurochemistry , vol.66 , Issue.3 , pp. 1227-1233
    • Siushansian, R.1    Jeffrey Dixon, S.2    Wilson, J.X.3
  • 137
    • 0033567402 scopus 로고    scopus 로고
    • Efflux of hepatic ascorbate: A potential contributor to the maintenance of plasma vitamin C
    • DOI 10.1042/0264-6021:3420049
    • J.M. Upston, A. Karjalainen, F.L. Bygrave, and R. Stocker Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C Biochem. J. 342 1999 49 56 (Pubitemid 29410848)
    • (1999) Biochemical Journal , vol.342 , Issue.1 , pp. 49-56
    • Upston, J.M.1    Karjalainen, A.2    Bygrave, F.L.3    Stocker, R.4
  • 139
    • 64249111126 scopus 로고    scopus 로고
    • Ascorbic acid efflux and re-uptake in endothelial cells: Maintenance of intracellular ascorbate
    • J.M. May, and Z.-c. Qu Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate Mol. Cell. Biochem. 325 2009 79 88
    • (2009) Mol. Cell. Biochem. , vol.325 , pp. 79-88
    • May, J.M.1    Qu, Z.-C.2
  • 140
    • 0037318653 scopus 로고    scopus 로고
    • Amazing chloride channels: An overview
    • DOI 10.1046/j.1365-201X.2003.01060.x
    • B. Nilius, and G. Droogmans Amazing chloride channels: an overview Acta Physiol. Scand. 177 2003 119 147 (Pubitemid 36197504)
    • (2003) Acta Physiologica Scandinavica , vol.177 , Issue.2 , pp. 119-147
    • Nilius, B.1    Droogmans, G.2
  • 142
    • 77951890788 scopus 로고    scopus 로고
    • Voltage-dependent anion-selective channel (VDAC) in the plasma membrane
    • V. De Pinto, A. Messina, D.J.R. Lane, and A. Lawen Voltage-dependent anion-selective channel (VDAC) in the plasma membrane FEBS Lett. 584 2010 1793 1799
    • (2010) FEBS Lett. , vol.584 , pp. 1793-1799
    • De Pinto, V.1    Messina, A.2    Lane, D.J.R.3    Lawen, A.4
  • 143
    • 4944246456 scopus 로고    scopus 로고
    • Voltage-dependent anion-selective channel 1 (VDAC1) - A mitochondrial protein, rediscovered as a novel enzyme in the plasma membrane
    • DOI 10.1016/j.biocel.2004.05.013, PII S1357272504002341
    • A. Lawen, J.D. Ly, D.J.R. Lane, K. Zarschler, A. Messina, and V. De Pinto Voltage-dependent anion-selective channel 1 (VDAC1) - a mitochondrial protein, rediscovered as a novel enzyme in the plasma membrane Int. J. Biochem. Cell Biol. 37 2005 277 282 (Pubitemid 39330189)
    • (2005) International Journal of Biochemistry and Cell Biology , vol.37 , Issue.2 , pp. 277-282
    • Lawen, A.1    Ly, J.D.2    Lane, D.J.R.3    Zarschler, K.4    Messina, A.5    Pinto, V.D.6
  • 145
    • 0032909207 scopus 로고    scopus 로고
    • Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse
    • DOI 10.1038/5979
    • C.D. Vulpe, Y.M. Kuo, T.L. Murphy, L. Cowley, C. Askwith, N. Libina, J. Gitschier, and G.J. Anderson Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse Nat. Genet. 21 1999 195 199 (Pubitemid 29070366)
    • (1999) Nature Genetics , vol.21 , Issue.2 , pp. 195-199
    • Vulpe, C.D.1    Kuo, Y.-M.2    Murphy, T.L.3    Cowley, L.4    Askwith, C.5    Libina, N.6    Gitschier, J.7    Anderson, G.I.8
  • 147
    • 0019860059 scopus 로고
    • Transferrin, biochemistry, physiology and clinical significance
    • DOI 10.1016/0098-2997(81)90003-0
    • E.H. Morgan Transferrin, biochemistry, physiology and clinical significance Mol. Aspects Med. 4 1981 1 123 (Pubitemid 11068872)
    • (1981) Molecular Aspects of Medicine , vol.4 , Issue.1 , pp. 1-123
    • Morgan, E.H.1
  • 149
    • 33747641642 scopus 로고    scopus 로고
    • The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding
    • DOI 10.1074/jbc.M604592200
    • J. Wally, P.J. Halbrooks, C. Vonrhein, M.A. Rould, S.J. Everse, A.B. Mason, and S.K. Buchanan The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding J. Biol. Chem. 281 2006 24934 24944 (Pubitemid 44274264)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.34 , pp. 24934-24944
    • Wally, J.1    Halbrooks, P.J.2    Vonrhein, C.3    Rould, M.A.4    Everse, S.J.5    Mason, A.B.6    Buchanan, S.K.7
  • 150
    • 0018850440 scopus 로고
    • Iron transport and storage proteins
    • P. Aisen, and I. Listowsky Iron transport and storage proteins Annu. Rev. Biochem. 49 1980 357 393
    • (1980) Annu. Rev. Biochem. , vol.49 , pp. 357-393
    • Aisen, P.1    Listowsky, I.2
  • 151
    • 0023282177 scopus 로고
    • Identification of the intermolecular disulfide bonds of the human transferrin receptor and its lipid-attachment site
    • S.Q. Jing, and I.S. Trowbridge Identification of the intermolecular disulfide bonds of the human transferrin receptor and its lipid-attachment site EMBO J. 6 1987 327 331
    • (1987) EMBO J. , vol.6 , pp. 327-331
    • Jing, S.Q.1    Trowbridge, I.S.2
  • 154
    • 0029976834 scopus 로고    scopus 로고
    • Immunohistochemical localization of intraneuronal transferrin receptor immunoreactivity in the adult mouse central nervous system
    • DOI 10.1002/(SICI)1096-9861(19961125)375:4<675::AID-CNE8>3.0.CO;2-Z
    • T. Moos Immunohistochemical localization of intraneuronal transferrin receptor immunoreactivity in the adult mouse central nervous system J. Comp. Neurol. 375 1996 675 692 (Pubitemid 26398347)
    • (1996) Journal of Comparative Neurology , vol.375 , Issue.4 , pp. 675-692
    • Moos, T.1
  • 155
    • 0020579367 scopus 로고
    • Characterization of transferrin binding and specificity of the placental transferrin receptor
    • H. Tsunoo, and H.H. Sussman Characterization of transferrin binding and specificity of the placental transferrin receptor Arch. Biochem. Biophys. 225 1983 42 54 (Pubitemid 13044847)
    • (1983) Archives of Biochemistry and Biophysics , vol.225 , Issue.1 , pp. 42-54
    • Tsunoo, H.1    Sussman, H.H.2
  • 156
    • 0020687004 scopus 로고
    • Competitive advantage of diferric transferrin in delivering iron to reticulocytes
    • H.A. Huebers, E. Csiba, E. Huebers, and C.A. Finch Competitive advantage of diferric transferrin in delivering iron to reticulocytes Proc. Natl. Acad. Sci. USA 80 1983 300 304
    • (1983) Proc. Natl. Acad. Sci. USA , vol.80 , pp. 300-304
    • Huebers, H.A.1    Csiba, E.2    Huebers, E.3    Finch, C.A.4
  • 157
    • 69249106881 scopus 로고    scopus 로고
    • Pathways and mechanisms of endocytic recycling
    • B.D. Grant, and J.G. Donaldson Pathways and mechanisms of endocytic recycling Nat. Rev. Mol. Cell Biol. 10 2009 597 608
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 597-608
    • Grant, B.D.1    Donaldson, J.G.2
  • 158
    • 84857359495 scopus 로고    scopus 로고
    • The intracellular trafficking pathway of transferrin
    • K.M. Mayle, A.M. Le, and D.T. Kamei The intracellular trafficking pathway of transferrin Biochim. Biophys. Acta 1820 2012 264 281
    • (2012) Biochim. Biophys. Acta , vol.1820 , pp. 264-281
    • Mayle, K.M.1    Le, A.M.2    Kamei, D.T.3
  • 159
    • 0030610528 scopus 로고    scopus 로고
    • 1 treatment retards transferrin receptor recycling more than bulk membrane recycling
    • DOI 10.1074/jbc.272.21.13929
    • J.F. Presley, S. Mayor, T.E. McGraw, K.W. Dunn, and F.R. Maxfield Bafilomycin A1 treatment retards transferrin receptor recycling more than bulk membrane recycling J. Biol. Chem. 272 1997 13929 13936 (Pubitemid 27224837)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.21 , pp. 13929-13936
    • Presley, J.F.1    Mayor, S.2    McGraw, T.E.3    Dunn, K.W.4    Maxfield, F.R.5
  • 160
    • 47349120492 scopus 로고    scopus 로고
    • +-ATPase in vesicular trafficking: Targeting, regulation and function
    • +-ATPase in vesicular trafficking: targeting, regulation and function Curr. Opin. Cell Biol. 20 2008 415 426
    • (2008) Curr. Opin. Cell Biol. , vol.20 , pp. 415-426
    • Marshansky, V.1    Futai, M.2
  • 161
    • 0019794184 scopus 로고
    • Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells
    • M. Karin, and B. Mintz Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells J. Biol. Chem. 256 1981 3245 3252 (Pubitemid 11076981)
    • (1981) Journal of Biological Chemistry , vol.256 , Issue.7 , pp. 3245-3252
    • Karin, M.1    Mintz, B.2
  • 163
    • 0032530922 scopus 로고    scopus 로고
    • The G185R mutation disrupts function of the iron transporter Nramp2
    • M.A. Su, C.C. Trenor, J.C. Fleming, M.D. Fleming, and N.C. Andrews The G185R mutation disrupts function of the iron transporter Nramp2 Blood 92 1998 2157 2163 (Pubitemid 28446707)
    • (1998) Blood , vol.92 , Issue.6 , pp. 2157-2163
    • Su, M.A.1    Trenor III, C.C.2    Fleming, J.C.3    Fleming, M.D.4    Andrews, N.C.5
  • 164
    • 0025211404 scopus 로고
    • Mobilization of iron from endocytic vesicles: The effects of acidification and reduction
    • M.-T. Nunez, V. Gaete, J.A. Watkins, and J. Glass Mobilization of iron from endocytic vesicles: the effects of acidification and reduction J. Biol. Chem. 265 1990 6688 6692
    • (1990) J. Biol. Chem. , vol.265 , pp. 6688-6692
    • Nunez, M.-T.1    Gaete, V.2    Watkins, J.A.3    Glass, J.4
  • 165
    • 0026773665 scopus 로고
    • Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles
    • J.A. Watkins, J.D. Altazan, P. Elder, C.-Y. Li, M.-T. Nunez, X.-X. Cui, and J. Glass Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles Biochemistry 31 1992 5820 5830
    • (1992) Biochemistry , vol.31 , pp. 5820-5830
    • Watkins, J.A.1    Altazan, J.D.2    Elder, P.3    Li, C.-Y.4    Nunez, M.-T.5    Cui, X.-X.6    Glass, J.7
  • 167
    • 33747179250 scopus 로고    scopus 로고
    • The Steap proteins are metalloreductases
    • DOI 10.1182/blood-2006-02-003681
    • R.S. Ohgami, D.R. Campagna, A. McDonald, and M.D. Fleming The Steap proteins are metalloreductases Blood 108 2006 1388 1394 (Pubitemid 44232042)
    • (2006) Blood , vol.108 , Issue.4 , pp. 1388-1394
    • Ohgami, R.S.1    Campagna, D.R.2    McDonald, A.3    Fleming, M.D.4
  • 168
    • 77957783944 scopus 로고    scopus 로고
    • ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin
    • N. Zhao, J. Gao, C.A. Enns, and M.D. Knutson ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin J. Biol. Chem. 285 2010 32141 33250
    • (2010) J. Biol. Chem. , vol.285 , pp. 32141-33250
    • Zhao, N.1    Gao, J.2    Enns, C.A.3    Knutson, M.D.4
  • 169
    • 0022259291 scopus 로고
    • Release of iron from the two iron-binding sites of transferrin by cultured human cells: Modulation by methylamine
    • DOI 10.1021/bi00335a013
    • A. Bomford, S.P. Young, and R. Williams Release of iron from the two iron-binding sites of transferrin by cultured human cells: modulation by methylamine Biochemistry 24 1985 3472 3478 (Pubitemid 15011948)
    • (1985) Biochemistry , vol.24 , Issue.14 , pp. 3472-3478
    • Bomford, A.1    Young, S.P.2    Williams, R.3
  • 170
    • 71749114853 scopus 로고    scopus 로고
    • Keeping the intracellular vitamin C at a physiologically relevant level in endothelial cell culture
    • H. Frikke-Schmidt, and J. Lykkesfeldt Keeping the intracellular vitamin C at a physiologically relevant level in endothelial cell culture Anal. Biochem. 397 2010 135 137
    • (2010) Anal. Biochem. , vol.397 , pp. 135-137
    • Frikke-Schmidt, H.1    Lykkesfeldt, J.2
  • 171
    • 0029131505 scopus 로고
    • Ascorbic acid enhances ferritin mRNA translation by an IRP/aconitase switch
    • I. Toth, and K.R. Bridges Ascorbic acid enhances ferritin mRNA translation by an IRP/aconitase switch J. Biol. Chem. 270 1995 19540 19544
    • (1995) J. Biol. Chem. , vol.270 , pp. 19540-19544
    • Toth, I.1    Bridges, K.R.2
  • 172
    • 0023162026 scopus 로고
    • Ascorbid acid inhibits lysosomal autophagy of ferritin
    • K.R. Bridges Ascorbic acid inhibits lysosomal autophagy of ferritin J. Biol. Chem. 262 1987 14773 14778 (Pubitemid 17157368)
    • (1987) Journal of Biological Chemistry , vol.262 , Issue.30 , pp. 14773-14778
    • Bridges, K.R.1
  • 174
    • 60649103774 scopus 로고    scopus 로고
    • Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression
    • J. Gao, J. Chen, M. Kramer, H. Tsukamoto, A.S. Zhang, and C.A. Enns Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression Cell Metab. 9 2009 217 227
    • (2009) Cell Metab. , vol.9 , pp. 217-227
    • Gao, J.1    Chen, J.2    Kramer, M.3    Tsukamoto, H.4    Zhang, A.S.5    Enns, C.A.6
  • 176
    • 33947111426 scopus 로고    scopus 로고
    • Transferrin receptor 2: Evidence for ligand-induced stabilization and redirection to a recycling pathway
    • DOI 10.1091/mbc.E06-09-0798
    • M.B. Johnson, J. Chen, N. Murchison, F.A. Green, and C.A. Enns Transferrin receptor 2: evidence for ligand-induced stabilization and redirection to a recycling pathway Mol. Biol. Cell 18 2007 743 754 (Pubitemid 46399482)
    • (2007) Molecular Biology of the Cell , vol.18 , Issue.3 , pp. 743-754
    • Johnson, M.B.1    Chen, J.2    Murchison, N.3    Green, F.A.4    Enns, C.A.5
  • 179
    • 0026623265 scopus 로고
    • Effect of ascorbate in the reduction of transferrin-associated iron in endocytic vesicles
    • A. Escobar, V. Gaete, and M.T. Nunez Effect of ascorbate in the reduction of transferrin-associated iron in endocytic vesicles J. Bioenerg. Biomembr. 24 1992 227 233
    • (1992) J. Bioenerg. Biomembr. , vol.24 , pp. 227-233
    • Escobar, A.1    Gaete, V.2    Nunez, M.T.3
  • 180
    • 84901997021 scopus 로고
    • The anemia of scurvy: Effect of vitamin C diet on blood formation in experimental scurvy of guinea pigs
    • S.R. Mettier, and W.B. Chew The anemia of scurvy: effect of vitamin C diet on blood formation in experimental scurvy of guinea pigs J. Exp. Med. 55 1932 971 980
    • (1932) J. Exp. Med. , vol.55 , pp. 971-980
    • Mettier, S.R.1    Chew, W.B.2
  • 182
    • 0022354070 scopus 로고
    • Intracellular processing of transferrin and iron by isolated rat hepatocytes
    • S.P. Young, S. Roberts, and A. Bomford Intracellular processing of transferrin and iron by isolated rat hepatocytes Biochem. J. 232 1985 819 823 (Pubitemid 16207321)
    • (1985) Biochemical Journal , vol.232 , Issue.3 , pp. 819-823
    • Young, S.P.1    Roberts, S.2    Bomford, A.3
  • 183
    • 77953810574 scopus 로고    scopus 로고
    • Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage
    • P. Arosio, and S. Levi Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage Biochim. Biophys. Acta 1800 2010 783 792
    • (2010) Biochim. Biophys. Acta , vol.1800 , pp. 783-792
    • Arosio, P.1    Levi, S.2
  • 184
    • 67349100157 scopus 로고    scopus 로고
    • Ferritins: A family of molecules for iron storage, antioxidation and more
    • P. Arosio, R. Ingrassia, and P. Cavadini Ferritins: a family of molecules for iron storage, antioxidation and more Biochim. Biophys. Acta 1790 2009 589 599
    • (2009) Biochim. Biophys. Acta , vol.1790 , pp. 589-599
    • Arosio, P.1    Ingrassia, R.2    Cavadini, P.3
  • 185
    • 77955871827 scopus 로고    scopus 로고
    • Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit
    • Y. Zhang, M. Mikhael, D. Xu, Y. Li, S. Soe-Lin, B. Ning, W. Li, G. Nie, Y. Zhao, and P. Ponka Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit Antioxid. Redox Signaling 13 2010 999 1009
    • (2010) Antioxid. Redox Signaling , vol.13 , pp. 999-1009
    • Zhang, Y.1    Mikhael, M.2    Xu, D.3    Li, Y.4    Soe-Lin, S.5    Ning, B.6    Li, W.7    Nie, G.8    Zhao, Y.9    Ponka, P.10
  • 186
    • 79956115511 scopus 로고    scopus 로고
    • Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells
    • T. Asano, M. Komatsu, Y. Yamaguchi-Iwai, F. Ishikawa, N. Mizushima, and K. Iwai Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells Mol. Cell. Biol. 31 2011 2040 2052
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 2040-2052
    • Asano, T.1    Komatsu, M.2    Yamaguchi-Iwai, Y.3    Ishikawa, F.4    Mizushima, N.5    Iwai, K.6
  • 187
    • 73349099034 scopus 로고    scopus 로고
    • Specific iron chelators determine the route of ferritin degradation
    • I. De Domenico, D.M. Ward, and J. Kaplan Specific iron chelators determine the route of ferritin degradation Blood 114 2009 4546 4551
    • (2009) Blood , vol.114 , pp. 4546-4551
    • De Domenico, I.1    Ward, D.M.2    Kaplan, J.3
  • 188
    • 33751103909 scopus 로고    scopus 로고
    • Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome
    • DOI 10.1038/sj.emboj.7601409, PII 7601409
    • I. De Domenico, M.B. Vaughn, L. Li, D. Bagley, G. Musci, D.M. Ward, and J. Kaplan Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome EMBO J. 25 2006 5396 5404 (Pubitemid 44764148)
    • (2006) EMBO Journal , vol.25 , Issue.22 , pp. 5396-5404
    • De Domenico, I.1    Vaughn, M.B.2    Li, L.3    Bagley, D.4    Musci, G.5    Ward, D.M.6    Kaplan, J.7
  • 189
    • 80255137555 scopus 로고    scopus 로고
    • The role of lysosomes in iron metabolism and recycling
    • T. Kurz, J.W. Eaton, and U.T. Brunk The role of lysosomes in iron metabolism and recycling Int. J. Biochem. Cell Biol. 43 2011 1686 1697
    • (2011) Int. J. Biochem. Cell Biol. , vol.43 , pp. 1686-1697
    • Kurz, T.1    Eaton, J.W.2    Brunk, U.T.3
  • 190
    • 33745350055 scopus 로고    scopus 로고
    • Ascorbate-mediated iron release from ferritin in the presence of alloxan
    • DOI 10.1007/s10534-005-1300-x
    • K. Sakurai, A. Nabeyama, and Y. Fujimoto Ascorbate-mediated iron release from ferritin in the presence of alloxan Biometals 19 2006 323 333 (Pubitemid 43946172)
    • (2006) BioMetals , vol.19 , Issue.3 , pp. 323-333
    • Sakurai, K.1    Nabeyama, A.2    Fujimoto, Y.3
  • 191
    • 0023575282 scopus 로고
    • Superoxide ion as a primary reductant in ascorbate-mediated ferritin iron release
    • DOI 10.1016/0891-5849(87)90017-7
    • R.F. Boyer, and C.J. McCleary Superoxide ion as a primary reductant in ascorbate-mediated ferritin iron release Free Radic. Biol. Med. 3 1987 389 395 (Pubitemid 18017386)
    • (1987) Free Radical Biology and Medicine , vol.3 , Issue.6 , pp. 389-395
    • Boyer, R.F.1    McCleary, C.J.2
  • 192
    • 0032563119 scopus 로고    scopus 로고
    • Localized unfolding at the junction of three ferritin subunits: A mechanism for iron release?
    • DOI 10.1074/jbc.273.30.18685
    • H. Takagi, D. Shi, Y. Ha, N.M. Allewell, and E.C. Theil Localized unfolding at the junction of three ferritin subunits: a mechanism for iron release? J. Biol. Chem. 273 1998 18685 18688 (Pubitemid 28366247)
    • (1998) Journal of Biological Chemistry , vol.273 , Issue.30 , pp. 18685-18688
    • Takagi, H.1    Shi, D.2    Ha, Y.3    Allewell, N.M.4    Theil, E.C.5
  • 193
    • 79953309867 scopus 로고    scopus 로고
    • Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry
    • E.C. Theil Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry Curr. Opin. Chem. Biol. 15 2011 304 311
    • (2011) Curr. Opin. Chem. Biol. , vol.15 , pp. 304-311
    • Theil, E.C.1
  • 194
  • 195
    • 33746361251 scopus 로고    scopus 로고
    • The role of iron regulatory proteins in mammalian iron homeostasis and disease
    • DOI 10.1038/nchembio807, PII NCHEMBIO807
    • T.A. Rouault The role of iron regulatory proteins in mammalian iron homeostasis and disease Nat. Chem. Biol. 2 2006 406 414 (Pubitemid 44114917)
    • (2006) Nature Chemical Biology , vol.2 , Issue.8 , pp. 406-414
    • Rouault, T.A.1
  • 196
    • 77954271890 scopus 로고    scopus 로고
    • Iron regulatory proteins: From molecular mechanisms to drug development
    • S. Recalcati, G. Minotti, and G. Cairo Iron regulatory proteins: from molecular mechanisms to drug development Antioxid. Redox Signaling 13 2010 1593 1616
    • (2010) Antioxid. Redox Signaling , vol.13 , pp. 1593-1616
    • Recalcati, S.1    Minotti, G.2    Cairo, G.3
  • 197
    • 33846691564 scopus 로고    scopus 로고
    • Iron uptake and metabolism in the new millennium
    • DOI 10.1016/j.tcb.2006.12.003, PII S0962892406003400
    • L.L. Dunn, Y.S. Rahmanto, and D.R. Richardson Iron uptake and metabolism in the new millennium Trends Cell Biol. 17 2007 93 100 (Pubitemid 46199183)
    • (2007) Trends in Cell Biology , vol.17 , Issue.2 , pp. 93-100
    • Dunn, L.L.1    Rahmanto, Y.S.2    Richardson, D.R.3
  • 198
    • 77954249308 scopus 로고    scopus 로고
    • Two to tango: Regulation of mammalian iron metabolism
    • M.W. Hentze, M.U. Muckenthaler, B. Galy, and C. Camaschella Two to tango: regulation of mammalian iron metabolism Cell 142 2010 24 38
    • (2010) Cell , vol.142 , pp. 24-38
    • Hentze, M.W.1    Muckenthaler, M.U.2    Galy, B.3    Camaschella, C.4
  • 199
    • 39149112760 scopus 로고    scopus 로고
    • The functional duality of iron regulatory protein 1
    • K. Volz The functional duality of iron regulatory protein 1 Curr. Opin. Struct. Biol. 18 2008 106 111
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , pp. 106-111
    • Volz, K.1
  • 203
    • 84863614610 scopus 로고    scopus 로고
    • Hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5) communicates cellular iron and oxygen availability by distinct mechanisms
    • S. Chollangi, J.W. Thompson, J.C. Ruiz, K.H. Gardner, and R.K. Bruick Hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5) communicates cellular iron and oxygen availability by distinct mechanisms J. Biol. Chem. 287 2012 23710 23717
    • (2012) J. Biol. Chem. , vol.287 , pp. 23710-23717
    • Chollangi, S.1    Thompson, J.W.2    Ruiz, J.C.3    Gardner, K.H.4    Bruick, R.K.5
  • 205
    • 0022973969 scopus 로고
    • The effects of ascorbic acid on the intracellular metabolism of iron and ferritin
    • K.R. Bridges, and K.E. Hoffman The effects of ascorbic acid on the intracellular metabolism of iron and ferritin J. Biol. Chem. 261 1986 14273 14277 (Pubitemid 17196337)
    • (1986) Journal of Biological Chemistry , vol.261 , Issue.30 , pp. 14273-14277
    • Bridges, K.R.1    Hoffman, K.E.2
  • 206
    • 84891652468 scopus 로고    scopus 로고
    • Iron transport through ferroportin is induced by intracellular ascorbate and involves IRP2 and HIF2a
    • N. Scheers, and A.S. Sandberg Iron transport through ferroportin is induced by intracellular ascorbate and involves IRP2 and HIF2a Nutrients 6 2014 249 260
    • (2014) Nutrients , vol.6 , pp. 249-260
    • Scheers, N.1    Sandberg, A.S.2
  • 207
    • 0032100224 scopus 로고    scopus 로고
    • The effect of ascorbic acid and ferric ammonium citrate on iron uptake and storage in lens epithelial cells
    • DOI 10.1006/exer.1997.0466
    • M. Goralska, J. Harned, L.N. Fleisher, and M.C. McGahan The effect of ascorbic acid and ferric ammonium citrate on iron uptake and storage in lens epithelial cells Exp. Eye Res. 66 1998 687 697 (Pubitemid 28446304)
    • (1998) Experimental Eye Research , vol.66 , Issue.6 , pp. 687-697
    • Goralska, M.1    Harned, J.2    Fleisher, L.N.3    McGahan, M.C.4
  • 208
    • 1642458415 scopus 로고    scopus 로고
    • Iron-Mediated Degradation of IRP2, an Unexpected Pathway Involving a 2-Oxoglutarate-Dependent Oxygenase Activity
    • DOI 10.1128/MCB.24.3.954-965.2004
    • J. Wang, G. Chen, M. Muckenthaler, B. Galy, M.W. Hentze, and K. Pantopoulos Iron-mediated degradation of IRP2, an unexpected pathway involving a 2-oxoglutarate-dependent oxygenase activity Mol. Cell. Biol. 24 2004 954 965 (Pubitemid 38112161)
    • (2004) Molecular and Cellular Biology , vol.24 , Issue.3 , pp. 954-965
    • Wang, J.1    Chen, G.2    Muckenthaler, M.3    Galy, B.4    Hentze, M.W.5    Pantopoulos, K.6
  • 209
    • 79951577653 scopus 로고    scopus 로고
    • Redox control of iron regulatory protein 2 stability
    • A. Hausmann, J. Lee, and K. Pantopoulos Redox control of iron regulatory protein 2 stability FEBS Lett. 585 2011 687 692
    • (2011) FEBS Lett. , vol.585 , pp. 687-692
    • Hausmann, A.1    Lee, J.2    Pantopoulos, K.3
  • 210
    • 0347624596 scopus 로고    scopus 로고
    • S-Nitrosylation of IRP2 Regulates Its Stability via the Ubiquitin-Proteasome Pathway
    • DOI 10.1128/MCB.24.1.330-337.2004
    • S. Kim, S.S. Wing, and P. Ponka S-nitrosylation of IRP2 regulates its stability via the ubiquitin-proteasome pathway Mol. Cell. Biol. 24 2004 330 337 (Pubitemid 38010058)
    • (2004) Molecular and Cellular Biology , vol.24 , Issue.1 , pp. 330-337
    • Kim, S.1    Wing, S.S.2    Ponka, P.3
  • 211
    • 0033231215 scopus 로고    scopus 로고
    • Role of ceruloplasmin and ascorbate in cellular iron release
    • DOI 10.1016/S0022-2143(99)90166-X
    • D.R. Richardson Role of ceruloplasmin and ascorbate in cellular iron release J. Lab. Clin. Med. 134 1999 454 465 (Pubitemid 29530694)
    • (1999) Journal of Laboratory and Clinical Medicine , vol.134 , Issue.5 , pp. 454-465
    • Richardson, D.R.1
  • 212
  • 213
    • 75149190912 scopus 로고    scopus 로고
    • Iron homeostasis and its interaction with prolyl hydroxylases
    • D.R. Mole Iron homeostasis and its interaction with prolyl hydroxylases Antioxid. Redox Signaling 12 2010 445 458
    • (2010) Antioxid. Redox Signaling , vol.12 , pp. 445-458
    • Mole, D.R.1
  • 215
    • 77950906905 scopus 로고    scopus 로고
    • Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents
    • E. Flashman, S.L. Davies, K.K. Yeoh, and C.J. Schofield Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents Biochem. J. 427 2010 135 142
    • (2010) Biochem. J. , vol.427 , pp. 135-142
    • Flashman, E.1    Davies, S.L.2    Yeoh, K.K.3    Schofield, C.J.4
  • 217
    • 79951679054 scopus 로고    scopus 로고
    • Regulation of iron pathways in response to hypoxia
    • N.L. Chepelev, and W.G. Willmore Regulation of iron pathways in response to hypoxia Free Radic. Biol. Med. 50 2011 645 666
    • (2011) Free Radic. Biol. Med. , vol.50 , pp. 645-666
    • Chepelev, N.L.1    Willmore, W.G.2
  • 218
    • 77953854244 scopus 로고    scopus 로고
    • Hypoxic regulation of erythropoiesis and iron metabolism
    • V.H. Haase Hypoxic regulation of erythropoiesis and iron metabolism Am. J. Physiol. Renal Physiol. 299 2010 F1 F13
    • (2010) Am. J. Physiol. Renal Physiol. , vol.299
    • Haase, V.H.1
  • 219
    • 77955037416 scopus 로고    scopus 로고
    • Low ascorbate levels are associated with increased hypoxia-inducible factor-1 activity and an aggressive tumor phenotype in endometrial cancer
    • C. Kuiper, I.G.M. Molenaar, G.U. Dachs, M.J. Currie, P.H. Sykes, and M.C.M. Vissers Low ascorbate levels are associated with increased hypoxia-inducible factor-1 activity and an aggressive tumor phenotype in endometrial cancer Cancer Res. 70 2010 5749 5758
    • (2010) Cancer Res. , vol.70 , pp. 5749-5758
    • Kuiper, C.1    Molenaar, I.G.M.2    Dachs, G.U.3    Currie, M.J.4    Sykes, P.H.5    Vissers, M.C.M.6
  • 220
    • 33847051180 scopus 로고    scopus 로고
    • Modulation of hypoxia-inducible factor-1 alpha in cultured primary cells by intracellular ascorbate
    • DOI 10.1016/j.freeradbiomed.2006.11.023, PII S0891584906007611
    • M.C. Vissers, S.P. Gunningham, M.J. Morrison, G.U. Dachs, and M.J. Currie Modulation of hypoxia-inducible factor-1α in cultured primary cells by intracellular ascorbate Free Radic. Biol. Med. 42 2007 765 772 (Pubitemid 46274164)
    • (2007) Free Radical Biology and Medicine , vol.42 , Issue.6 , pp. 765-772
    • Vissers, M.C.M.1    Gunningham, S.P.2    Morrison, M.J.3    Dachs, G.U.4    Currie, M.J.5
  • 221
    • 84896740551 scopus 로고    scopus 로고
    • Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response
    • C. Kuiper, G.U. Dachs, M.J. Currie, and M.C.M. Vissers Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response Free Radic. Biol. Med. 69 2014 308 317
    • (2014) Free Radic. Biol. Med. , vol.69 , pp. 308-317
    • Kuiper, C.1    Dachs, G.U.2    Currie, M.J.3    Vissers, M.C.M.4
  • 222
    • 38749106115 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-1α stabilization in nonhypoxic conditions: Role of oxidation and intracellular ascorbate depletion
    • DOI 10.1091/mbc.E07-06-0612
    • E.L. Page, D.A. Chan, A.J. Giaccia, M. Levine, and D.E. Richard Hypoxia-inducible factor-1alpha stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion Mol. Biol. Cell 19 2008 86 94 (Pubitemid 351186135)
    • (2008) Molecular Biology of the Cell , vol.19 , Issue.1 , pp. 86-94
    • Page, E.L.1    Chan, D.A.2    Giaccia, A.J.3    Levine, M.4    Richard, D.E.5
  • 223
    • 34547915996 scopus 로고    scopus 로고
    • Regulated function of the prolyl-4-hydroxylase domain (PHD) oxygen sensor proteins
    • DOI 10.1089/ars.2007.1683
    • K.J. Nytko, P. Spielmann, G. Camenisch, R.H. Wenger, and D.P. Stiehl Regulated function of the prolyl-4-hydroxylase domain (PHD) oxygen sensor proteins Antioxid. Redox Signaling 9 2007 1329 1338 (Pubitemid 47255012)
    • (2007) Antioxidants and Redox Signaling , vol.9 , Issue.9 , pp. 1329-1338
    • Nytko, K.J.1    Spielmann, P.2    Camenisch, G.3    Wenger, R.H.4    Stiehl, D.P.5
  • 224
    • 33847050240 scopus 로고    scopus 로고
    • Non-heme dioxygenases: Cellular sensors and regulators jelly rolled into one?
    • A. Ozer, and R.K. Bruick Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat. Chem. Biol. 3 2007 144 153
    • (2007) Nat. Chem. Biol. , vol.3 , pp. 144-153
    • Ozer, A.1    Bruick, R.K.2
  • 226
    • 84856739946 scopus 로고    scopus 로고
    • Hypoxia-inducible factors in physiology and medicine
    • G.L. Semenza Hypoxia-inducible factors in physiology and medicine Cell 148 2012 399 408
    • (2012) Cell , vol.148 , pp. 399-408
    • Semenza, G.L.1
  • 227
    • 10844282789 scopus 로고    scopus 로고
    • Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo
    • DOI 10.1126/science.1103786
    • E.G. Meyron-Holtz, M.C. Ghosh, and T.A. Rouault Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo Science 306 2004 2087 2090 (Pubitemid 40007659)
    • (2004) Science , vol.306 , Issue.5704 , pp. 2087-2090
    • Meyron-Holtz, E.G.1    Ghosh, M.C.2    Rouault, T.A.3
  • 230
    • 0033618254 scopus 로고    scopus 로고
    • Human cytoplasmic aconitase (iron regulatory protein 1) is converted into its [3Fe-4S] form by hydrogen peroxide in vitro but is not activated for iron-responsive element binding
    • X. Brazzolotto, J. Gaillard, K. Pantopoulos, M.W. Hentze, and J.M. Moulis Human cytoplasmic aconitase (iron regulatory protein 1) is converted into its [3Fe-4S] form by hydrogen peroxide in vitro but is not activated for iron-responsive element binding J. Biol. Chem. 274 1999 21625 21630
    • (1999) J. Biol. Chem. , vol.274 , pp. 21625-21630
    • Brazzolotto, X.1    Gaillard, J.2    Pantopoulos, K.3    Hentze, M.W.4    Moulis, J.M.5
  • 231
    • 0030942257 scopus 로고    scopus 로고
    • Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress
    • DOI 10.1074/jbc.272.15.9802
    • K. Pantopoulos, S. Mueller, A. Atzberger, W. Ansorge, W. Stremmel, and M.W. Hentze Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress J. Biol. Chem. 272 1997 9802 9808 (Pubitemid 27171645)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.15 , pp. 9802-9808
    • Pantopoulos, K.1    Mueller, S.2    Atzberger, A.3    Ansorge, W.4    Stremmel, W.5    Hentze, M.W.6
  • 232
    • 0032812762 scopus 로고    scopus 로고
    • Regulation of the iron regulatory proteins by reactive nitrogen and oxygen species
    • E.S. Hanson, and E.A. Leibold Regulation of the iron regulatory proteins by reactive nitrogen and oxygen species Gene Expression 7 1999 367 376 (Pubitemid 29372080)
    • (1999) Gene Expression , vol.7 , Issue.4-6 , pp. 367-376
    • Hanson, E.S.1    Leibold, E.A.2
  • 233
    • 0038725739 scopus 로고    scopus 로고
    • Iron regulatory proteins as NO signal transducers
    • C. Bouton, and J.C. Drapier Iron regulatory proteins as NO signal transducers Sci. STKE 2003 2003 pe17
    • (2003) Sci. STKE , vol.2003 , pp. 17
    • Bouton, C.1    Drapier, J.C.2
  • 234
    • 79959539376 scopus 로고    scopus 로고
    • Iron regulatory protein 1 outcompetes iron regulatory protein 2 in regulating cellular iron homeostasis in response to nitric oxide
    • A. Styś, B. Galy, R.R. Starzyński, E. Smuda, J.C. Drapier, P. Lipiński, and C. Bouton Iron regulatory protein 1 outcompetes iron regulatory protein 2 in regulating cellular iron homeostasis in response to nitric oxide J. Biol. Chem. 286 2011 22846 22854
    • (2011) J. Biol. Chem. , vol.286 , pp. 22846-22854
    • Styś, A.1    Galy, B.2    Starzyński, R.R.3    Smuda, E.4    Drapier, J.C.5    Lipiński, P.6    Bouton, C.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.