메뉴 건너뛰기




Volumn 28, Issue 12, 2012, Pages 598-605

Genetic insights on sleep schedules: This time, it's PERsonal

Author keywords

Casein kinase 1 delta; Circadian rhythm; Familial advanced sleep phase disorder; Period homolog 2; Phosphorylation; Post translational regulation

Indexed keywords

CLOCK HOMOLOG; CRYPTOCHROME 1; CRYPTOCHROME 2; MESSENGER RNA; NPAS2 PROTEIN; PERIOD HOMOLOG 2; SIRTUIN 1; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR ARNTL; UNCLASSIFIED DRUG; WDR5 PROTEIN;

EID: 84869080927     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2012.08.002     Document Type: Review
Times cited : (24)

References (78)
  • 1
    • 79959404050 scopus 로고    scopus 로고
    • Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod
    • Hut R., Beersma D.G.M. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2011, 366:2141-2154.
    • (2011) Philos. Trans. R. Soc. Lond. B: Biol. Sci. , vol.366 , pp. 2141-2154
    • Hut, R.1    Beersma, D.G.M.2
  • 4
    • 36048981153 scopus 로고    scopus 로고
    • Epidemiology of the human circadian clock
    • Roenneberg T., et al. Epidemiology of the human circadian clock. Sleep Med. Rev. 2007, 11:429-438.
    • (2007) Sleep Med. Rev. , vol.11 , pp. 429-438
    • Roenneberg, T.1
  • 5
    • 79960770017 scopus 로고    scopus 로고
    • Genetics of sleep and sleep disorders
    • Sehgal A., Mignot E. Genetics of sleep and sleep disorders. Cell 2011, 146:194-207.
    • (2011) Cell , vol.146 , pp. 194-207
    • Sehgal, A.1    Mignot, E.2
  • 6
    • 80052899282 scopus 로고    scopus 로고
    • The genetics of the human circadian clock
    • Zhang L., et al. The genetics of the human circadian clock. Adv. Genet. 2011, 74:231-247.
    • (2011) Adv. Genet. , vol.74 , pp. 231-247
    • Zhang, L.1
  • 7
    • 0142244105 scopus 로고    scopus 로고
    • Two pedigrees of familial advanced sleep phase syndrome in Japan
    • Satoh K., et al. Two pedigrees of familial advanced sleep phase syndrome in Japan. Sleep 2003, 26:416-417.
    • (2003) Sleep , vol.26 , pp. 416-417
    • Satoh, K.1
  • 8
    • 0034945096 scopus 로고    scopus 로고
    • Familial advanced sleep phase syndrome
    • Reid K.J., et al. Familial advanced sleep phase syndrome. Arch. Neurol. 2001, 58:1089-1094.
    • (2001) Arch. Neurol. , vol.58 , pp. 1089-1094
    • Reid, K.J.1
  • 9
    • 0032872087 scopus 로고    scopus 로고
    • Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans
    • Jones C.R., et al. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat. Med. 1999, 5:1062-1065.
    • (1999) Nat. Med. , vol.5 , pp. 1062-1065
    • Jones, C.R.1
  • 10
    • 15844420887 scopus 로고    scopus 로고
    • Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome
    • Xu Y., et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434:640-644.
    • (2005) Nature , vol.434 , pp. 640-644
    • Xu, Y.1
  • 11
    • 78649370503 scopus 로고    scopus 로고
    • Therapeutics for circadian rhythm sleep disorders
    • Dodson E.R., Zee P.C. Therapeutics for circadian rhythm sleep disorders. Sleep Med. Clin. 2010, 5:701-715.
    • (2010) Sleep Med. Clin. , vol.5 , pp. 701-715
    • Dodson, E.R.1    Zee, P.C.2
  • 12
    • 84862675384 scopus 로고    scopus 로고
    • Central and peripheral circadian clocks in mammals
    • Mohawk J., et al. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 2012, 35:445-462.
    • (2012) Annu. Rev. Neurosci. , vol.35 , pp. 445-462
    • Mohawk, J.1
  • 13
    • 84858172824 scopus 로고    scopus 로고
    • (Re)inventing the circadian feedback loop
    • Brown S.A., et al. (Re)inventing the circadian feedback loop. Dev. Cell 2012, 22:477-487.
    • (2012) Dev. Cell , vol.22 , pp. 477-487
    • Brown, S.A.1
  • 14
    • 13944254430 scopus 로고    scopus 로고
    • System-level identification of transcriptional circuits underlying mammalian circadian clocks
    • Ueda H.R., et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 2005, 37:187-192.
    • (2005) Nat. Genet. , vol.37 , pp. 187-192
    • Ueda, H.R.1
  • 15
    • 70449093653 scopus 로고    scopus 로고
    • Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
    • Chen R., et al. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol. Cell 2009, 36:417-430.
    • (2009) Mol. Cell , vol.36 , pp. 417-430
    • Chen, R.1
  • 17
    • 76749139528 scopus 로고    scopus 로고
    • The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
    • Schmutz I., et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010, 24:345-357.
    • (2010) Genes Dev. , vol.24 , pp. 345-357
    • Schmutz, I.1
  • 18
    • 0037426839 scopus 로고    scopus 로고
    • Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
    • Etchegaray J.-P., et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003, 421:177-182.
    • (2003) Nature , vol.421 , pp. 177-182
    • Etchegaray, J.-P.1
  • 19
    • 80053355301 scopus 로고    scopus 로고
    • Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
    • DiTacchio L., et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 2011, 333:1881-1885.
    • (2011) Science , vol.333 , pp. 1881-1885
    • DiTacchio, L.1
  • 20
    • 80053344014 scopus 로고    scopus 로고
    • Circadian rhythms. A new histone code for clocks?
    • Brown S. Circadian rhythms. A new histone code for clocks?. Science 2011, 333:1833-1834.
    • (2011) Science , vol.333 , pp. 1833-1834
    • Brown, S.1
  • 21
    • 78649725166 scopus 로고    scopus 로고
    • Mammalian circadian clock and metabolism - the epigenetic link
    • Bellet M.M., Sassone-Corsi P. Mammalian circadian clock and metabolism - the epigenetic link. J. Cell Sci. 2010, 123:3837-3848.
    • (2010) J. Cell Sci. , vol.123 , pp. 3837-3848
    • Bellet, M.M.1    Sassone-Corsi, P.2
  • 22
    • 0037086535 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein
    • Yagita K., et al. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J. 2002, 21:1301-1314.
    • (2002) EMBO J. , vol.21 , pp. 1301-1314
    • Yagita, K.1
  • 23
    • 0035824636 scopus 로고    scopus 로고
    • Nuclear export of mammalian PERIOD proteins
    • Vielhaber E.L., et al. Nuclear export of mammalian PERIOD proteins. J. Biol. Chem. 2001, 276:45921-45927.
    • (2001) J. Biol. Chem. , vol.276 , pp. 45921-45927
    • Vielhaber, E.L.1
  • 24
    • 0034214387 scopus 로고    scopus 로고
    • Dimerization and nuclear entry of mPER proteins in mammalian cells
    • Yagita K., et al. Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes Dev. 2000, 14:1353-1363. 10.1101/gad.14.11.1353.
    • (2000) Genes Dev. , vol.14 , pp. 1353-1363
    • Yagita, K.1
  • 25
    • 0034810739 scopus 로고    scopus 로고
    • Nuclear entry mechanism of rat PER2 (rPER2): role of rPER2 in nuclear localization of CRY protein
    • Miyazaki K., et al. Nuclear entry mechanism of rat PER2 (rPER2): role of rPER2 in nuclear localization of CRY protein. Mol. Cell. Biol. 2001, 21:6651-6659. 10.1128/MCB.21.19.6651-6659.2001.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 6651-6659
    • Miyazaki, K.1
  • 26
    • 84891611987 scopus 로고    scopus 로고
    • PML regulates PER2 nuclear localization and circadian function
    • Miki T., et al. PML regulates PER2 nuclear localization and circadian function. EMBO J. 2012, 2:1-13.
    • (2012) EMBO J. , vol.2 , pp. 1-13
    • Miki, T.1
  • 27
    • 33846005528 scopus 로고    scopus 로고
    • Modeling of a human circadian mutation yields insights into clock regulation by PER2
    • Xu Y., et al. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 2007, 128:59-70.
    • (2007) Cell , vol.128 , pp. 59-70
    • Xu, Y.1
  • 28
    • 33749319064 scopus 로고    scopus 로고
    • Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPD)
    • Vanselow K., et al. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPD). Genes Dev. 2006, 20:2660-2672.
    • (2006) Genes Dev. , vol.20 , pp. 2660-2672
    • Vanselow, K.1
  • 29
    • 18244365850 scopus 로고    scopus 로고
    • PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
    • Brown S., et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 2005, 308:693-696.
    • (2005) Science , vol.308 , pp. 693-696
    • Brown, S.1
  • 30
    • 62549092748 scopus 로고    scopus 로고
    • Molecular characterization of Mybbp1a as a co-repressor on the Period2 promoter
    • Hara Y., et al. Molecular characterization of Mybbp1a as a co-repressor on the Period2 promoter. Nucleic Acids Res. 2009, 37:1115-1126.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 1115-1126
    • Hara, Y.1
  • 31
    • 79959366611 scopus 로고    scopus 로고
    • A molecular mechanism for circadian clock negative feedback
    • Duong H.A., et al. A molecular mechanism for circadian clock negative feedback. Science 2011, 332:1436-1439.
    • (2011) Science , vol.332 , pp. 1436-1439
    • Duong, H.A.1
  • 32
    • 15044343742 scopus 로고    scopus 로고
    • Control of mammalian circadian rhythm by CKIe{open}-regulated proteasome-mediated PER2 degradation
    • Eide E.J., et al. Control of mammalian circadian rhythm by CKIe{open}-regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol. 2005, 25:2795-2807. 10.1128/MCB.25.7.2795-2807.2005.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 2795-2807
    • Eide, E.J.1
  • 33
    • 47549102014 scopus 로고    scopus 로고
    • SIRT1 is a circadian deacetylase for core clock components
    • Belden W.J., Dunlap J.C. SIRT1 is a circadian deacetylase for core clock components. Cell 2008, 134:212-214.
    • (2008) Cell , vol.134 , pp. 212-214
    • Belden, W.J.1    Dunlap, J.C.2
  • 34
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1
  • 35
    • 47549088250 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 36
    • 34248566788 scopus 로고    scopus 로고
    • SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
    • Busino L., et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 2007, 316:900-904.
    • (2007) Science , vol.316 , pp. 900-904
    • Busino, L.1
  • 37
    • 34248525919 scopus 로고    scopus 로고
    • The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
    • Godinho S.I.H., et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 2007, 316:897-900.
    • (2007) Science , vol.316 , pp. 897-900
    • Godinho, S.I.H.1
  • 38
    • 34249097203 scopus 로고    scopus 로고
    • Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
    • Siepka S.M., et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 2007, 129:1011-1023.
    • (2007) Cell , vol.129 , pp. 1011-1023
    • Siepka, S.M.1
  • 39
    • 22844432019 scopus 로고    scopus 로고
    • SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein
    • Shirogane T., et al. SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 2005, 280:26863-26872.
    • (2005) J. Biol. Chem. , vol.280 , pp. 26863-26872
    • Shirogane, T.1
  • 40
    • 34848913124 scopus 로고    scopus 로고
    • Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics
    • Reischl S., et al. Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 2007, 22:375-386.
    • (2007) J. Biol. Rhythms , vol.22 , pp. 375-386
    • Reischl, S.1
  • 41
    • 79953328303 scopus 로고    scopus 로고
    • Casein kinase 1-dependent phosphorylation of familial advanced sleep phase syndrome-associated residues controls PERIOD 2 stability
    • Shanware N.P., et al. Casein kinase 1-dependent phosphorylation of familial advanced sleep phase syndrome-associated residues controls PERIOD 2 stability. J. Biol. Chem. 2011, 286:12766-12774.
    • (2011) J. Biol. Chem. , vol.286 , pp. 12766-12774
    • Shanware, N.P.1
  • 42
    • 77957000375 scopus 로고    scopus 로고
    • Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes
    • Meng Q.-J., et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:15240-15245.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 15240-15245
    • Meng, Q.-J.1
  • 43
    • 41549142176 scopus 로고    scopus 로고
    • Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins
    • Meng Q.-J., et al. Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 2008, 58:78-88.
    • (2008) Neuron , vol.58 , pp. 78-88
    • Meng, Q.-J.1
  • 44
    • 80053639356 scopus 로고    scopus 로고
    • The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1
    • Lee H.-M., et al. The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:16451-16456.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 16451-16456
    • Lee, H.-M.1
  • 45
    • 58549103297 scopus 로고    scopus 로고
    • A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3B
    • Hirota T., et al. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3B. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:20746-20751.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 20746-20751
    • Hirota, T.1
  • 46
    • 34547127625 scopus 로고    scopus 로고
    • Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Ie{open} (CKIe{open})-dependent degradation of clock protein mPer2
    • Um J.H., et al. Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Ie{open} (CKIe{open})-dependent degradation of clock protein mPer2. J. Biol. Chem. 2007, 282:20794-20798.
    • (2007) J. Biol. Chem. , vol.282 , pp. 20794-20798
    • Um, J.H.1
  • 47
    • 31144434817 scopus 로고    scopus 로고
    • Constant darkness is a circadian metabolic signal in mammals
    • Zhang J., et al. Constant darkness is a circadian metabolic signal in mammals. Nature 2006, 439:340-343.
    • (2006) Nature , vol.439 , pp. 340-343
    • Zhang, J.1
  • 48
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • Doi M., et al. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006, 125:497-508.
    • (2006) Cell , vol.125 , pp. 497-508
    • Doi, M.1
  • 49
    • 33745175507 scopus 로고    scopus 로고
    • Circadian transcription: passing the HAT to CLOCK
    • Hardin P.E., Yu W. Circadian transcription: passing the HAT to CLOCK. Cell 2006, 125:424-426.
    • (2006) Cell , vol.125 , pp. 424-426
    • Hardin, P.E.1    Yu, W.2
  • 50
    • 37549057357 scopus 로고    scopus 로고
    • Ac-ing the clock
    • Sehgal A. Ac-ing the clock. Neuron 2008, 57:8-10.
    • (2008) Neuron , vol.57 , pp. 8-10
    • Sehgal, A.1
  • 51
    • 77956627087 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
    • Asher G., et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 2010, 142:943-953.
    • (2010) Cell , vol.142 , pp. 943-953
    • Asher, G.1
  • 52
    • 78650432933 scopus 로고    scopus 로고
    • High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase
    • Hirota T., et al. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol. 2010, 8:e1000559.
    • (2010) PLoS Biol. , vol.8
    • Hirota, T.1
  • 53
    • 84862909015 scopus 로고    scopus 로고
    • Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening
    • Chen Z., et al. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:101-106.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 101-106
    • Chen, Z.1
  • 54
    • 34249701848 scopus 로고    scopus 로고
    • Narcolepsy and familial advanced sleep-phase syndrome: molecular genetics of sleep disorders
    • Tafti M., et al. Narcolepsy and familial advanced sleep-phase syndrome: molecular genetics of sleep disorders. Curr. Opin. Genet. Dev. 2007, 17:222-227.
    • (2007) Curr. Opin. Genet. Dev. , vol.17 , pp. 222-227
    • Tafti, M.1
  • 55
    • 68949200379 scopus 로고    scopus 로고
    • The transcriptional repressor DEC2 regulates sleep length in mammals
    • He Y., et al. The transcriptional repressor DEC2 regulates sleep length in mammals. Science 2009, 325:866-870.
    • (2009) Science , vol.325 , pp. 866-870
    • He, Y.1
  • 56
    • 26444507854 scopus 로고    scopus 로고
    • The period length of fibroblast circadian gene expression varies widely among human individuals
    • Brown S.A., et al. The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol. 2005, 3:e338.
    • (2005) PLoS Biol. , vol.3
    • Brown, S.A.1
  • 57
    • 79961167854 scopus 로고    scopus 로고
    • Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs
    • Chen S.-K., et al. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 2011, 476:92-95. 10.1038/nature10206.
    • (2011) Nature , vol.476 , pp. 92-95
    • Chen, S.-K.1
  • 58
    • 80755181329 scopus 로고    scopus 로고
    • Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
    • Schmidt T.M., et al. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J. Neurosci. 2011, 31:16094-16101.
    • (2011) J. Neurosci. , vol.31 , pp. 16094-16101
    • Schmidt, T.M.1
  • 59
    • 0345596433 scopus 로고    scopus 로고
    • A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light
    • Albrecht U., et al. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 1997, 91:1055-1064.
    • (1997) Cell , vol.91 , pp. 1055-1064
    • Albrecht, U.1
  • 60
    • 0032102386 scopus 로고    scopus 로고
    • Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain
    • Zylka M.J., et al. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 1998, 20:1103-1110.
    • (1998) Neuron , vol.20 , pp. 1103-1110
    • Zylka, M.J.1
  • 61
    • 0031472474 scopus 로고    scopus 로고
    • Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei
    • Shearman L.P., et al. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 1997, 19:1261126-1261129.
    • (1997) Neuron , vol.19 , pp. 1261126-1261129
    • Shearman, L.P.1
  • 62
    • 0036430296 scopus 로고    scopus 로고
    • Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts
    • Yan L., Silver R. Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. Eur. J. Neurosci. 2002, 16:1531-1540.
    • (2002) Eur. J. Neurosci. , vol.16 , pp. 1531-1540
    • Yan, L.1    Silver, R.2
  • 63
    • 80054761700 scopus 로고    scopus 로고
    • Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays
    • Schwartz W.J., et al. Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:17219-17224.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 17219-17224
    • Schwartz, W.J.1
  • 64
    • 0037020198 scopus 로고    scopus 로고
    • The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo
    • Fu L., et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002, 111:41-50.
    • (2002) Cell , vol.111 , pp. 41-50
    • Fu, L.1
  • 65
    • 84857057191 scopus 로고    scopus 로고
    • The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis
    • Gu X., et al. The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis. Cell Death Differ. 2012, 19:397-405.
    • (2012) Cell Death Differ. , vol.19 , pp. 397-405
    • Gu, X.1
  • 66
    • 33750026895 scopus 로고    scopus 로고
    • Lack of food anticipation in Per2 mutant mice
    • Feillet C., et al. Lack of food anticipation in Per2 mutant mice. Curr. Biol. 2006, 16:2016-2022.
    • (2006) Curr. Biol. , vol.16 , pp. 2016-2022
    • Feillet, C.1
  • 67
    • 33846944676 scopus 로고    scopus 로고
    • System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
    • Kornmann B., et al. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 2007, 5:e34.
    • (2007) PLoS Biol. , vol.5
    • Kornmann, B.1
  • 68
    • 78049437320 scopus 로고    scopus 로고
    • PER2 controls lipid metabolism by direct regulation of PPARγ
    • Grimaldi B., et al. PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab. 2010, 12:509-520.
    • (2010) Cell Metab. , vol.12 , pp. 509-520
    • Grimaldi, B.1
  • 69
    • 33746625139 scopus 로고    scopus 로고
    • The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock
    • Liu J., et al. The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect. Immun. 2006, 74:4750-4756.
    • (2006) Infect. Immun. , vol.74 , pp. 4750-4756
    • Liu, J.1
  • 70
    • 13444254068 scopus 로고    scopus 로고
    • The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption
    • Spanagel R., et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat. Med. 2005, 11:35-42.
    • (2005) Nat. Med. , vol.11 , pp. 35-42
    • Spanagel, R.1
  • 71
    • 33751565112 scopus 로고    scopus 로고
    • Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice
    • McDearmon E.L., et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 2006, 314:1304-1308.
    • (2006) Science , vol.314 , pp. 1304-1308
    • McDearmon, E.L.1
  • 72
    • 65049091058 scopus 로고    scopus 로고
    • Motivational modulation of rhythms of the expression of the clock protein PER2 in the limbic forebrain
    • Amir S., Stewart J. Motivational modulation of rhythms of the expression of the clock protein PER2 in the limbic forebrain. Biol. Psychiatry 2009, 65:829-834.
    • (2009) Biol. Psychiatry , vol.65 , pp. 829-834
    • Amir, S.1    Stewart, J.2
  • 73
    • 68049096316 scopus 로고    scopus 로고
    • Segregation of expression of mPeriod gene homologs in neurons and glia: possible divergent roles of mPeriod1 and mPeriod2 in the brain
    • Cheng H-Y.M., et al. Segregation of expression of mPeriod gene homologs in neurons and glia: possible divergent roles of mPeriod1 and mPeriod2 in the brain. Hum. Mol. Genet. 2009, 18:3110-3124.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 3110-3124
    • Cheng, H.-Y.M.1
  • 74
    • 84860299312 scopus 로고    scopus 로고
    • Timing to perfection: the biology of central and peripheral circadian clocks
    • Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 2012, 74:246-260.
    • (2012) Neuron , vol.74 , pp. 246-260
    • Albrecht, U.1
  • 75
    • 80053082769 scopus 로고    scopus 로고
    • Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus
    • Hosokawa N., Hatakeyama T. Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:15396-15401.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 15396-15401
    • Hosokawa, N.1    Hatakeyama, T.2
  • 76
    • 79251539603 scopus 로고    scopus 로고
    • Circadian rhythms persist without transcription in a eukaryote
    • O'Neill J.S., et al. Circadian rhythms persist without transcription in a eukaryote. Nature 2011, 469:554-558.
    • (2011) Nature , vol.469 , pp. 554-558
    • O'Neill, J.S.1
  • 77
    • 79251566511 scopus 로고    scopus 로고
    • Circadian clocks in human red blood cells
    • O'Neill J.S., Reddy A.B. Circadian clocks in human red blood cells. Nature 2011, 469:498-503.
    • (2011) Nature , vol.469 , pp. 498-503
    • O'Neill, J.S.1    Reddy, A.B.2
  • 78
    • 33748347313 scopus 로고    scopus 로고
    • A Timeless debate: resolving TIM's noncircadian roles with possible clock function
    • Gotter A. A Timeless debate: resolving TIM's noncircadian roles with possible clock function. Neuroreport 2006, 17:11-15.
    • (2006) Neuroreport , vol.17 , pp. 11-15
    • Gotter, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.