-
1
-
-
79959404050
-
Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod
-
Hut R., Beersma D.G.M. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2011, 366:2141-2154.
-
(2011)
Philos. Trans. R. Soc. Lond. B: Biol. Sci.
, vol.366
, pp. 2141-2154
-
-
Hut, R.1
Beersma, D.G.M.2
-
4
-
-
36048981153
-
Epidemiology of the human circadian clock
-
Roenneberg T., et al. Epidemiology of the human circadian clock. Sleep Med. Rev. 2007, 11:429-438.
-
(2007)
Sleep Med. Rev.
, vol.11
, pp. 429-438
-
-
Roenneberg, T.1
-
5
-
-
79960770017
-
Genetics of sleep and sleep disorders
-
Sehgal A., Mignot E. Genetics of sleep and sleep disorders. Cell 2011, 146:194-207.
-
(2011)
Cell
, vol.146
, pp. 194-207
-
-
Sehgal, A.1
Mignot, E.2
-
6
-
-
80052899282
-
The genetics of the human circadian clock
-
Zhang L., et al. The genetics of the human circadian clock. Adv. Genet. 2011, 74:231-247.
-
(2011)
Adv. Genet.
, vol.74
, pp. 231-247
-
-
Zhang, L.1
-
7
-
-
0142244105
-
Two pedigrees of familial advanced sleep phase syndrome in Japan
-
Satoh K., et al. Two pedigrees of familial advanced sleep phase syndrome in Japan. Sleep 2003, 26:416-417.
-
(2003)
Sleep
, vol.26
, pp. 416-417
-
-
Satoh, K.1
-
8
-
-
0034945096
-
Familial advanced sleep phase syndrome
-
Reid K.J., et al. Familial advanced sleep phase syndrome. Arch. Neurol. 2001, 58:1089-1094.
-
(2001)
Arch. Neurol.
, vol.58
, pp. 1089-1094
-
-
Reid, K.J.1
-
9
-
-
0032872087
-
Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans
-
Jones C.R., et al. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat. Med. 1999, 5:1062-1065.
-
(1999)
Nat. Med.
, vol.5
, pp. 1062-1065
-
-
Jones, C.R.1
-
10
-
-
15844420887
-
Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome
-
Xu Y., et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434:640-644.
-
(2005)
Nature
, vol.434
, pp. 640-644
-
-
Xu, Y.1
-
11
-
-
78649370503
-
Therapeutics for circadian rhythm sleep disorders
-
Dodson E.R., Zee P.C. Therapeutics for circadian rhythm sleep disorders. Sleep Med. Clin. 2010, 5:701-715.
-
(2010)
Sleep Med. Clin.
, vol.5
, pp. 701-715
-
-
Dodson, E.R.1
Zee, P.C.2
-
12
-
-
84862675384
-
Central and peripheral circadian clocks in mammals
-
Mohawk J., et al. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 2012, 35:445-462.
-
(2012)
Annu. Rev. Neurosci.
, vol.35
, pp. 445-462
-
-
Mohawk, J.1
-
13
-
-
84858172824
-
(Re)inventing the circadian feedback loop
-
Brown S.A., et al. (Re)inventing the circadian feedback loop. Dev. Cell 2012, 22:477-487.
-
(2012)
Dev. Cell
, vol.22
, pp. 477-487
-
-
Brown, S.A.1
-
14
-
-
13944254430
-
System-level identification of transcriptional circuits underlying mammalian circadian clocks
-
Ueda H.R., et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 2005, 37:187-192.
-
(2005)
Nat. Genet.
, vol.37
, pp. 187-192
-
-
Ueda, H.R.1
-
15
-
-
70449093653
-
Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
-
Chen R., et al. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol. Cell 2009, 36:417-430.
-
(2009)
Mol. Cell
, vol.36
, pp. 417-430
-
-
Chen, R.1
-
17
-
-
76749139528
-
The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
-
Schmutz I., et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010, 24:345-357.
-
(2010)
Genes Dev.
, vol.24
, pp. 345-357
-
-
Schmutz, I.1
-
18
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray J.-P., et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003, 421:177-182.
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.-P.1
-
19
-
-
80053355301
-
Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
-
DiTacchio L., et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 2011, 333:1881-1885.
-
(2011)
Science
, vol.333
, pp. 1881-1885
-
-
DiTacchio, L.1
-
20
-
-
80053344014
-
Circadian rhythms. A new histone code for clocks?
-
Brown S. Circadian rhythms. A new histone code for clocks?. Science 2011, 333:1833-1834.
-
(2011)
Science
, vol.333
, pp. 1833-1834
-
-
Brown, S.1
-
21
-
-
78649725166
-
Mammalian circadian clock and metabolism - the epigenetic link
-
Bellet M.M., Sassone-Corsi P. Mammalian circadian clock and metabolism - the epigenetic link. J. Cell Sci. 2010, 123:3837-3848.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 3837-3848
-
-
Bellet, M.M.1
Sassone-Corsi, P.2
-
22
-
-
0037086535
-
Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein
-
Yagita K., et al. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J. 2002, 21:1301-1314.
-
(2002)
EMBO J.
, vol.21
, pp. 1301-1314
-
-
Yagita, K.1
-
23
-
-
0035824636
-
Nuclear export of mammalian PERIOD proteins
-
Vielhaber E.L., et al. Nuclear export of mammalian PERIOD proteins. J. Biol. Chem. 2001, 276:45921-45927.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 45921-45927
-
-
Vielhaber, E.L.1
-
24
-
-
0034214387
-
Dimerization and nuclear entry of mPER proteins in mammalian cells
-
Yagita K., et al. Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes Dev. 2000, 14:1353-1363. 10.1101/gad.14.11.1353.
-
(2000)
Genes Dev.
, vol.14
, pp. 1353-1363
-
-
Yagita, K.1
-
25
-
-
0034810739
-
Nuclear entry mechanism of rat PER2 (rPER2): role of rPER2 in nuclear localization of CRY protein
-
Miyazaki K., et al. Nuclear entry mechanism of rat PER2 (rPER2): role of rPER2 in nuclear localization of CRY protein. Mol. Cell. Biol. 2001, 21:6651-6659. 10.1128/MCB.21.19.6651-6659.2001.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 6651-6659
-
-
Miyazaki, K.1
-
26
-
-
84891611987
-
PML regulates PER2 nuclear localization and circadian function
-
Miki T., et al. PML regulates PER2 nuclear localization and circadian function. EMBO J. 2012, 2:1-13.
-
(2012)
EMBO J.
, vol.2
, pp. 1-13
-
-
Miki, T.1
-
27
-
-
33846005528
-
Modeling of a human circadian mutation yields insights into clock regulation by PER2
-
Xu Y., et al. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 2007, 128:59-70.
-
(2007)
Cell
, vol.128
, pp. 59-70
-
-
Xu, Y.1
-
28
-
-
33749319064
-
Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPD)
-
Vanselow K., et al. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPD). Genes Dev. 2006, 20:2660-2672.
-
(2006)
Genes Dev.
, vol.20
, pp. 2660-2672
-
-
Vanselow, K.1
-
29
-
-
18244365850
-
PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
-
Brown S., et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 2005, 308:693-696.
-
(2005)
Science
, vol.308
, pp. 693-696
-
-
Brown, S.1
-
30
-
-
62549092748
-
Molecular characterization of Mybbp1a as a co-repressor on the Period2 promoter
-
Hara Y., et al. Molecular characterization of Mybbp1a as a co-repressor on the Period2 promoter. Nucleic Acids Res. 2009, 37:1115-1126.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 1115-1126
-
-
Hara, Y.1
-
31
-
-
79959366611
-
A molecular mechanism for circadian clock negative feedback
-
Duong H.A., et al. A molecular mechanism for circadian clock negative feedback. Science 2011, 332:1436-1439.
-
(2011)
Science
, vol.332
, pp. 1436-1439
-
-
Duong, H.A.1
-
32
-
-
15044343742
-
Control of mammalian circadian rhythm by CKIe{open}-regulated proteasome-mediated PER2 degradation
-
Eide E.J., et al. Control of mammalian circadian rhythm by CKIe{open}-regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol. 2005, 25:2795-2807. 10.1128/MCB.25.7.2795-2807.2005.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 2795-2807
-
-
Eide, E.J.1
-
33
-
-
47549102014
-
SIRT1 is a circadian deacetylase for core clock components
-
Belden W.J., Dunlap J.C. SIRT1 is a circadian deacetylase for core clock components. Cell 2008, 134:212-214.
-
(2008)
Cell
, vol.134
, pp. 212-214
-
-
Belden, W.J.1
Dunlap, J.C.2
-
34
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
35
-
-
47549088250
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
36
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino L., et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 2007, 316:900-904.
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
-
37
-
-
34248525919
-
The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
-
Godinho S.I.H., et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 2007, 316:897-900.
-
(2007)
Science
, vol.316
, pp. 897-900
-
-
Godinho, S.I.H.1
-
38
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
-
Siepka S.M., et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 2007, 129:1011-1023.
-
(2007)
Cell
, vol.129
, pp. 1011-1023
-
-
Siepka, S.M.1
-
39
-
-
22844432019
-
SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein
-
Shirogane T., et al. SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 2005, 280:26863-26872.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 26863-26872
-
-
Shirogane, T.1
-
40
-
-
34848913124
-
Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics
-
Reischl S., et al. Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 2007, 22:375-386.
-
(2007)
J. Biol. Rhythms
, vol.22
, pp. 375-386
-
-
Reischl, S.1
-
41
-
-
79953328303
-
Casein kinase 1-dependent phosphorylation of familial advanced sleep phase syndrome-associated residues controls PERIOD 2 stability
-
Shanware N.P., et al. Casein kinase 1-dependent phosphorylation of familial advanced sleep phase syndrome-associated residues controls PERIOD 2 stability. J. Biol. Chem. 2011, 286:12766-12774.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 12766-12774
-
-
Shanware, N.P.1
-
42
-
-
77957000375
-
Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes
-
Meng Q.-J., et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:15240-15245.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 15240-15245
-
-
Meng, Q.-J.1
-
43
-
-
41549142176
-
Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins
-
Meng Q.-J., et al. Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 2008, 58:78-88.
-
(2008)
Neuron
, vol.58
, pp. 78-88
-
-
Meng, Q.-J.1
-
44
-
-
80053639356
-
The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1
-
Lee H.-M., et al. The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:16451-16456.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 16451-16456
-
-
Lee, H.-M.1
-
45
-
-
58549103297
-
A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3B
-
Hirota T., et al. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3B. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:20746-20751.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 20746-20751
-
-
Hirota, T.1
-
46
-
-
34547127625
-
Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Ie{open} (CKIe{open})-dependent degradation of clock protein mPer2
-
Um J.H., et al. Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Ie{open} (CKIe{open})-dependent degradation of clock protein mPer2. J. Biol. Chem. 2007, 282:20794-20798.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20794-20798
-
-
Um, J.H.1
-
47
-
-
31144434817
-
Constant darkness is a circadian metabolic signal in mammals
-
Zhang J., et al. Constant darkness is a circadian metabolic signal in mammals. Nature 2006, 439:340-343.
-
(2006)
Nature
, vol.439
, pp. 340-343
-
-
Zhang, J.1
-
48
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi M., et al. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006, 125:497-508.
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
-
49
-
-
33745175507
-
Circadian transcription: passing the HAT to CLOCK
-
Hardin P.E., Yu W. Circadian transcription: passing the HAT to CLOCK. Cell 2006, 125:424-426.
-
(2006)
Cell
, vol.125
, pp. 424-426
-
-
Hardin, P.E.1
Yu, W.2
-
50
-
-
37549057357
-
Ac-ing the clock
-
Sehgal A. Ac-ing the clock. Neuron 2008, 57:8-10.
-
(2008)
Neuron
, vol.57
, pp. 8-10
-
-
Sehgal, A.1
-
51
-
-
77956627087
-
Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
-
Asher G., et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 2010, 142:943-953.
-
(2010)
Cell
, vol.142
, pp. 943-953
-
-
Asher, G.1
-
52
-
-
78650432933
-
High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase
-
Hirota T., et al. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol. 2010, 8:e1000559.
-
(2010)
PLoS Biol.
, vol.8
-
-
Hirota, T.1
-
53
-
-
84862909015
-
Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening
-
Chen Z., et al. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:101-106.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 101-106
-
-
Chen, Z.1
-
54
-
-
34249701848
-
Narcolepsy and familial advanced sleep-phase syndrome: molecular genetics of sleep disorders
-
Tafti M., et al. Narcolepsy and familial advanced sleep-phase syndrome: molecular genetics of sleep disorders. Curr. Opin. Genet. Dev. 2007, 17:222-227.
-
(2007)
Curr. Opin. Genet. Dev.
, vol.17
, pp. 222-227
-
-
Tafti, M.1
-
55
-
-
68949200379
-
The transcriptional repressor DEC2 regulates sleep length in mammals
-
He Y., et al. The transcriptional repressor DEC2 regulates sleep length in mammals. Science 2009, 325:866-870.
-
(2009)
Science
, vol.325
, pp. 866-870
-
-
He, Y.1
-
56
-
-
26444507854
-
The period length of fibroblast circadian gene expression varies widely among human individuals
-
Brown S.A., et al. The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol. 2005, 3:e338.
-
(2005)
PLoS Biol.
, vol.3
-
-
Brown, S.A.1
-
57
-
-
79961167854
-
Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs
-
Chen S.-K., et al. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 2011, 476:92-95. 10.1038/nature10206.
-
(2011)
Nature
, vol.476
, pp. 92-95
-
-
Chen, S.-K.1
-
58
-
-
80755181329
-
Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function
-
Schmidt T.M., et al. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J. Neurosci. 2011, 31:16094-16101.
-
(2011)
J. Neurosci.
, vol.31
, pp. 16094-16101
-
-
Schmidt, T.M.1
-
59
-
-
0345596433
-
A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light
-
Albrecht U., et al. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 1997, 91:1055-1064.
-
(1997)
Cell
, vol.91
, pp. 1055-1064
-
-
Albrecht, U.1
-
60
-
-
0032102386
-
Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain
-
Zylka M.J., et al. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 1998, 20:1103-1110.
-
(1998)
Neuron
, vol.20
, pp. 1103-1110
-
-
Zylka, M.J.1
-
61
-
-
0031472474
-
Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei
-
Shearman L.P., et al. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 1997, 19:1261126-1261129.
-
(1997)
Neuron
, vol.19
, pp. 1261126-1261129
-
-
Shearman, L.P.1
-
62
-
-
0036430296
-
Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts
-
Yan L., Silver R. Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. Eur. J. Neurosci. 2002, 16:1531-1540.
-
(2002)
Eur. J. Neurosci.
, vol.16
, pp. 1531-1540
-
-
Yan, L.1
Silver, R.2
-
63
-
-
80054761700
-
Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays
-
Schwartz W.J., et al. Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:17219-17224.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 17219-17224
-
-
Schwartz, W.J.1
-
64
-
-
0037020198
-
The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo
-
Fu L., et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002, 111:41-50.
-
(2002)
Cell
, vol.111
, pp. 41-50
-
-
Fu, L.1
-
65
-
-
84857057191
-
The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis
-
Gu X., et al. The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis. Cell Death Differ. 2012, 19:397-405.
-
(2012)
Cell Death Differ.
, vol.19
, pp. 397-405
-
-
Gu, X.1
-
66
-
-
33750026895
-
Lack of food anticipation in Per2 mutant mice
-
Feillet C., et al. Lack of food anticipation in Per2 mutant mice. Curr. Biol. 2006, 16:2016-2022.
-
(2006)
Curr. Biol.
, vol.16
, pp. 2016-2022
-
-
Feillet, C.1
-
67
-
-
33846944676
-
System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
-
Kornmann B., et al. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 2007, 5:e34.
-
(2007)
PLoS Biol.
, vol.5
-
-
Kornmann, B.1
-
68
-
-
78049437320
-
PER2 controls lipid metabolism by direct regulation of PPARγ
-
Grimaldi B., et al. PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab. 2010, 12:509-520.
-
(2010)
Cell Metab.
, vol.12
, pp. 509-520
-
-
Grimaldi, B.1
-
69
-
-
33746625139
-
The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock
-
Liu J., et al. The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect. Immun. 2006, 74:4750-4756.
-
(2006)
Infect. Immun.
, vol.74
, pp. 4750-4756
-
-
Liu, J.1
-
70
-
-
13444254068
-
The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption
-
Spanagel R., et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat. Med. 2005, 11:35-42.
-
(2005)
Nat. Med.
, vol.11
, pp. 35-42
-
-
Spanagel, R.1
-
71
-
-
33751565112
-
Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice
-
McDearmon E.L., et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 2006, 314:1304-1308.
-
(2006)
Science
, vol.314
, pp. 1304-1308
-
-
McDearmon, E.L.1
-
72
-
-
65049091058
-
Motivational modulation of rhythms of the expression of the clock protein PER2 in the limbic forebrain
-
Amir S., Stewart J. Motivational modulation of rhythms of the expression of the clock protein PER2 in the limbic forebrain. Biol. Psychiatry 2009, 65:829-834.
-
(2009)
Biol. Psychiatry
, vol.65
, pp. 829-834
-
-
Amir, S.1
Stewart, J.2
-
73
-
-
68049096316
-
Segregation of expression of mPeriod gene homologs in neurons and glia: possible divergent roles of mPeriod1 and mPeriod2 in the brain
-
Cheng H-Y.M., et al. Segregation of expression of mPeriod gene homologs in neurons and glia: possible divergent roles of mPeriod1 and mPeriod2 in the brain. Hum. Mol. Genet. 2009, 18:3110-3124.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 3110-3124
-
-
Cheng, H.-Y.M.1
-
74
-
-
84860299312
-
Timing to perfection: the biology of central and peripheral circadian clocks
-
Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 2012, 74:246-260.
-
(2012)
Neuron
, vol.74
, pp. 246-260
-
-
Albrecht, U.1
-
75
-
-
80053082769
-
Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus
-
Hosokawa N., Hatakeyama T. Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:15396-15401.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 15396-15401
-
-
Hosokawa, N.1
Hatakeyama, T.2
-
76
-
-
79251539603
-
Circadian rhythms persist without transcription in a eukaryote
-
O'Neill J.S., et al. Circadian rhythms persist without transcription in a eukaryote. Nature 2011, 469:554-558.
-
(2011)
Nature
, vol.469
, pp. 554-558
-
-
O'Neill, J.S.1
-
77
-
-
79251566511
-
Circadian clocks in human red blood cells
-
O'Neill J.S., Reddy A.B. Circadian clocks in human red blood cells. Nature 2011, 469:498-503.
-
(2011)
Nature
, vol.469
, pp. 498-503
-
-
O'Neill, J.S.1
Reddy, A.B.2
-
78
-
-
33748347313
-
A Timeless debate: resolving TIM's noncircadian roles with possible clock function
-
Gotter A. A Timeless debate: resolving TIM's noncircadian roles with possible clock function. Neuroreport 2006, 17:11-15.
-
(2006)
Neuroreport
, vol.17
, pp. 11-15
-
-
Gotter, A.1
|