메뉴 건너뛰기




Volumn 47, Issue 4, 2014, Pages 242-255

Epigenetics and the IRFs: A complex interplay in the control of immunity and autoimmunity

Author keywords

Autoimmunity; Epigenetics; IRF; SLE; Transcription factors

Indexed keywords

HISTONE DEACETYLASE 1; HISTONE DEACETYLASE 2; HISTONE DEACETYLASE 3; INTERFERON CONSENSUS SEQUENCE BINDING PROTEIN; INTERFERON REGULATORY FACTOR; INTERFERON REGULATORY FACTOR 1; INTERFERON REGULATORY FACTOR 2; INTERFERON REGULATORY FACTOR 3; INTERFERON REGULATORY FACTOR 4; INTERFERON REGULATORY FACTOR 5; INTERFERON REGULATORY FACTOR 7; INTERFERON REGULATORY FACTOR 9; INTERFERON STIMULATED GENE FACTOR 3; INTERLEUKIN 12; INTERLEUKIN 17; INTERLEUKIN 18; INTERLEUKIN 21; INTERLEUKIN 23; INTERLEUKIN 4; INTERLEUKIN 6; MICRORNA 122; NUCLEAR RECEPTOR COACTIVATOR; PATTERN RECOGNITION RECEPTOR; PROLACTIN; RNA POLYMERASE II; STAT1 PROTEIN; STAT4 PROTEIN; STAT5 PROTEIN; TRANSCRIPTION FACTOR NFAT;

EID: 84901066297     PISSN: 08916934     EISSN: 1607842X     Source Type: Journal    
DOI: 10.3109/08916934.2013.853050     Document Type: Review
Times cited : (18)

References (210)
  • 1
    • 0041519183 scopus 로고    scopus 로고
    • Mechanisms of autoimmunity
    • Eisenberg, R. 2003. Mechanisms of autoimmunity. Immunol. Res. 27: 203-218.
    • (2003) Immunol. Res , vol.27 , pp. 203-218
    • Eisenberg, R.1
  • 2
    • 0038579722 scopus 로고    scopus 로고
    • Intrinsic T cell defects in systemic autoimmunity
    • Kong, P., J. Odegard, F. Bouzahzah, et al. 2003. Intrinsic T cell defects in systemic autoimmunity. Ann. N Y Acad. Sci. 987: 60-67.
    • (2003) Ann. N y Acad. Sci , vol.987 , pp. 60-67
    • Kong, P.1    Odegard, J.2    Bouzahzah, F.3
  • 3
    • 0035525528 scopus 로고    scopus 로고
    • From T to B and back again: Positive feedback in systemic autoimmune disease
    • Shlomchik, M. J., J. E. Craft, and M. J. Mamula. 2001. From T to B and back again: positive feedback in systemic autoimmune disease. Nat. Rev. Immunol. 1: 147-153.
    • (2001) Nat. Rev. Immunol , vol.1 , pp. 147-153
    • Shlomchik, M.J.1    Craft, J.E.2    Mamula, M.J.3
  • 4
    • 82555196095 scopus 로고    scopus 로고
    • Systemic lupus erythematosus
    • Tsokos, G. C. 2011. Systemic lupus erythematosus. N. Engl. J. Med. 365: 2110-2121.
    • (2011) N. Engl. J. Med , vol.365 , pp. 2110-2121
    • Tsokos, G.C.1
  • 5
    • 38349178776 scopus 로고    scopus 로고
    • Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice
    • Hsu, H. C., P. Yang, J. Wang, et al. 2008. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9: 166-175.
    • (2008) Nat. Immunol , vol.9 , pp. 166-175
    • Hsu, H.C.1    Yang, P.2    Wang, J.3
  • 6
    • 58149279490 scopus 로고    scopus 로고
    • ICOSdependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity
    • Odegard, J. M., B. R. Marks, L. D. Di Placido, et al. 2008. ICOSdependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J. Exp. Med. 205: 2873-2886.
    • (2008) J. Exp. Med , vol.205 , pp. 2873-2886
    • Odegard, J.M.1    Marks, B.R.2    Di Placido, L.D.3
  • 7
    • 21144438325 scopus 로고    scopus 로고
    • A RINGtype ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity
    • Vinuesa, C. G., M. C. Cook, C. Angelucci, et al. 2005. A RINGtype ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435: 452-458.
    • (2005) Nature , vol.435 , pp. 452-458
    • Vinuesa, C.G.1    Cook, M.C.2    Angelucci, C.3
  • 8
    • 84870919913 scopus 로고    scopus 로고
    • Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis
    • Pisitkun, P., H. L. Ha, H. Wang, et al. 2012. Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis. Immunity 37: 1104-1115.
    • (2012) Immunity , vol.37 , pp. 1104-1115
    • Pisitkun, P.1    Ha, H.L.2    Wang, H.3
  • 9
    • 66149120713 scopus 로고    scopus 로고
    • Th17 cells in rheumatoid arthritis and systemic lupus erythematosus
    • Pernis, A. B. 2009. Th17 cells in rheumatoid arthritis and systemic lupus erythematosus. J. Intern. Med. 265: 644-652.
    • (2009) J. Intern. Med , vol.265 , pp. 644-652
    • Pernis, A.B.1
  • 11
    • 0035053491 scopus 로고    scopus 로고
    • The role of IFN-gamma in systemic lupus erythematosus: A challenge to the Th1/Th2 paradigm in autoimmunity
    • Theofilopoulos, A. N., S. Koundouris, D. H. Kono, et al. 2001. The role of IFN-gamma in systemic lupus erythematosus: a challenge to the Th1/Th2 paradigm in autoimmunity. Arthritis Res. 3: 136-141.
    • (2001) Arthritis Res , vol.3 , pp. 136-141
    • Theofilopoulos, A.N.1    Koundouris, S.2    Kono, D.H.3
  • 12
    • 84867168473 scopus 로고    scopus 로고
    • TLRs and IFNs: Critical pieces of the autoimmunity puzzle
    • Theofilopoulos, A. N. 2012. TLRs and IFNs: critical pieces of the autoimmunity puzzle. J. Clin. Invest. 122: 3464-3466.
    • (2012) J. Clin. Invest , vol.122 , pp. 3464-3466
    • Theofilopoulos, A.N.1
  • 13
    • 83455169554 scopus 로고    scopus 로고
    • Interferon alpha as a primary pathogenic factor in human lupus
    • Niewold, T. B. 2011. Interferon alpha as a primary pathogenic factor in human lupus. J. Interferon Cytokine Res. 31: 887-892.
    • (2011) J. Interferon Cytokine Res , vol.31 , pp. 887-892
    • Niewold, T.B.1
  • 14
    • 79955694610 scopus 로고    scopus 로고
    • Type i interferon in organ-targeted autoimmune and inflammatory diseases
    • Crow, M. K. 2010. Type I interferon in organ-targeted autoimmune and inflammatory diseases. Arthritis Res. Ther. 12: S5.
    • (2010) Arthritis Res. Ther , vol.12
    • Crow, M.K.1
  • 15
    • 84864874057 scopus 로고    scopus 로고
    • Type i IFN system in the development and manifestations of SLE
    • Elkon, K. B., and A. Wiedeman. 2012. Type I IFN system in the development and manifestations of SLE. Curr. Opin. Rheumatol. 24: 499-505.
    • (2012) Curr. Opin. Rheumatol , vol.24 , pp. 499-505
    • Elkon, K.B.1    Wiedeman, A.2
  • 16
    • 78649835509 scopus 로고    scopus 로고
    • Targeting BAFF in autoimmunity
    • Davidson, A. 2010. Targeting BAFF in autoimmunity. Curr. Opin. Immunol. 22: 732-739.
    • (2010) Curr. Opin. Immunol , vol.22 , pp. 732-739
    • Davidson, A.1
  • 17
    • 77955343903 scopus 로고    scopus 로고
    • Myeloid cells, BAFF, and IFN-gamma establish an inflammatory loop that exacerbates autoimmunity in Lyn-deficient mice
    • Scapini, P., Y. Hu, C. L. Chu, et al. 2010. Myeloid cells, BAFF, and IFN-gamma establish an inflammatory loop that exacerbates autoimmunity in Lyn-deficient mice. J. Exp. Med. 207: 1757-1773.
    • (2010) J. Exp. Med , vol.207 , pp. 1757-1773
    • Scapini, P.1    Hu, Y.2    Chu, C.L.3
  • 18
    • 40749132629 scopus 로고    scopus 로고
    • Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis
    • Schiffer, L., R. Bethunaickan, M. Ramanujam, et al. 2008. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J. Immunol. 180: 1938-1947.
    • (2008) J. Immunol , vol.180 , pp. 1938-1947
    • Schiffer, L.1    Bethunaickan, R.2    Ramanujam, M.3
  • 19
    • 13444283466 scopus 로고    scopus 로고
    • Roles of interferon-regulatory factors in T-helper-cell differentiation
    • Lohoff, M., and T. W. Mak. 2005. Roles of interferon-regulatory factors in T-helper-cell differentiation. Nat. Rev. Immunol. 5: 125-135.
    • (2005) Nat. Rev. Immunol , vol.5 , pp. 125-135
    • Lohoff, M.1    Mak, T.W.2
  • 20
    • 79956141306 scopus 로고    scopus 로고
    • Interferon regulatory factors in human lupus pathogenesis
    • Salloum, R., and T. B. Niewold. 2011. Interferon regulatory factors in human lupus pathogenesis. Transl. Res. 157: 326-331.
    • (2011) Transl. Res , vol.157 , pp. 326-331
    • Salloum, R.1    Niewold, T.B.2
  • 21
    • 84861317353 scopus 로고    scopus 로고
    • Interferon regulatory factors: Beyond the antiviral response and their link to the development of autoimmune pathology
    • Santana-de Anda, K., D. Gomez-Martin, M. Diaz-Zamudio, et al. 2011. Interferon regulatory factors: beyond the antiviral response and their link to the development of autoimmune pathology. Autoimmun. Rev. 11: 98-103.
    • (2011) Autoimmun. Rev , vol.11 , pp. 98-103
    • Santana-De Anda, K.1    Gomez-Martin, D.2    Diaz-Zamudio, M.3
  • 22
    • 42649114059 scopus 로고    scopus 로고
    • The IRF family transcription factors in immunity and oncogenesis
    • Tamura, T., H. Yanai, D. Savitsky, et al. 2008. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26: 535-584.
    • (2008) Annu. Rev. Immunol , vol.26 , pp. 535-584
    • Tamura, T.1    Yanai, H.2    Savitsky, D.3
  • 23
    • 55549138004 scopus 로고    scopus 로고
    • Insights into interferon regulatory factor activation from the crystal structure of dimeric IRF5
    • Chen, W., S. S. Lam, H. Srinath, et al. 2008. Insights into interferon regulatory factor activation from the crystal structure of dimeric IRF5. Nat. Struct. Mol. Biol. 15: 1213-1220.
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 1213-1220
    • Chen, W.1    Lam, S.S.2    Srinath, H.3
  • 24
    • 0242574745 scopus 로고    scopus 로고
    • Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation
    • Qin, B. Y., C. Liu, S. S. Lam, et al. 2003. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Nat. Struct. Biol. 10: 913-921.
    • (2003) Nat. Struct. Biol , vol.10 , pp. 913-921
    • Qin, B.Y.1    Liu, C.2    Lam, S.S.3
  • 25
    • 0242658895 scopus 로고    scopus 로고
    • X-ray crystal structure of IRF-3 and its functional implications
    • Takahasi, K., N. N. Suzuki, M. Horiuchi, et al. 2003. X-ray crystal structure of IRF-3 and its functional implications. Nat. Struct. Biol. 10: 922-927.
    • (2003) Nat. Struct. Biol , vol.10 , pp. 922-927
    • Takahasi, K.1    Suzuki, N.N.2    Horiuchi, M.3
  • 26
    • 78751477191 scopus 로고    scopus 로고
    • Gene silencing by microRNAs: Contributions of translational repression and mRNA decay
    • Huntzinger, E., and E. Izaurralde. 2011. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12: 99-110.
    • (2011) Nat. Rev. Genet , vol.12 , pp. 99-110
    • Huntzinger, E.1    Izaurralde, E.2
  • 27
    • 84871069553 scopus 로고    scopus 로고
    • Epigenetic regulation by long noncoding RNAs
    • Lee, J. T. 2012. Epigenetic regulation by long noncoding RNAs. Science 338: 1435-1439.
    • (2012) Science , vol.338 , pp. 1435-1439
    • Lee, J.T.1
  • 28
    • 84860371953 scopus 로고    scopus 로고
    • Epigenetic protein families: A new frontier for drug discovery
    • Arrowsmith, C. H., C. Bountra, P. V. Fish, et al. 2012. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11: 384-400.
    • (2012) Nat. Rev. Drug Discov , vol.11 , pp. 384-400
    • Arrowsmith, C.H.1    Bountra, C.2    Fish, P.V.3
  • 29
    • 84875424617 scopus 로고    scopus 로고
    • Emerging roles for chromatin as a signal integration and storage platform
    • Badeaux, A. I., and Y. Shi. 2013. Emerging roles for chromatin as a signal integration and storage platform. Nat. Rev. Mol. Cell Biol. 14: 211-224.
    • (2013) Nat. Rev. Mol. Cell Biol , vol.14 , pp. 211-224
    • Badeaux, A.I.1    Shi, Y.2
  • 30
    • 70349443224 scopus 로고    scopus 로고
    • Transcriptional control of the inflammatory response
    • Medzhitov, R., and T. Horng. 2009. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9: 692-703.
    • (2009) Nat. Rev. Immunol , vol.9 , pp. 692-703
    • Medzhitov, R.1    Horng, T.2
  • 31
    • 78651479749 scopus 로고    scopus 로고
    • The genomic landscapes of inflammation
    • Natoli, G., S. Ghisletti, and I. Barozzi. 2011. The genomic landscapes of inflammation. Genes Dev. 25: 101-106.
    • (2011) Genes Dev , vol.25 , pp. 101-106
    • Natoli, G.1    Ghisletti, S.2    Barozzi, I.3
  • 32
    • 84859401055 scopus 로고    scopus 로고
    • Transcriptional and epigenetic control of T helper cell specification: Molecular mechanisms underlying commitment and plasticity
    • Kanno, Y., G. Vahedi, K. Hirahara, et al. 2012. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30: 707-731.
    • (2012) Annu. Rev. Immunol , Issue.30 , pp. 707-731
    • Kanno, Y.1    Vahedi, G.2    Hirahara, K.3
  • 33
    • 0024380583 scopus 로고
    • Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes
    • Harada, H., T. Fujita, M. Miyamoto, et al. 1989. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 58: 729-739.
    • (1989) Cell , vol.58 , pp. 729-739
    • Harada, H.1    Fujita, T.2    Miyamoto, M.3
  • 34
    • 0023788435 scopus 로고
    • Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-b gene regulatory elements
    • Miyamoto, M., T. Fujita, Y. Kimura, et al. 1988. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-b gene regulatory elements. Cell 54: 903-913.
    • (1988) Cell , vol.54 , pp. 903-913
    • Miyamoto, M.1    Fujita, T.2    Kimura, Y.3
  • 35
    • 0028097932 scopus 로고
    • Tyrosine phosphorylated p91 binds to a single element in the ISGF2/IRF-1 promoter to mediate induction by IFNa and IFNg, and is likely to autoregulate the p91 gene
    • Pine, R., A. Canova, and C. Schindler. 1994. Tyrosine phosphorylated p91 binds to a single element in the ISGF2/IRF-1 promoter to mediate induction by IFNa and IFNg, and is likely to autoregulate the p91 gene. EMBO J. 13: 158-167.
    • (1994) EMBO J , vol.13 , pp. 158-167
    • Pine, R.1    Canova, A.2    Schindler, C.3
  • 36
    • 84864911121 scopus 로고    scopus 로고
    • HIV-1, interferon and the interferon regulatory factor system: An interplay between induction, antiviral responses and viral evasion.
    • Marsili, G., A. L. Remoli, M. Sgarbanti, et al. 2012. HIV-1, interferon and the interferon regulatory factor system: an interplay between induction, antiviral responses and viral evasion. Cytokine Growth Factor Rev. 23: 255-270.
    • (2012) Cytokine Growth Factor Rev , vol.23 , pp. 255-270
    • Marsili, G.1    Remoli, A.L.2    Sgarbanti, M.3
  • 37
    • 0025282332 scopus 로고
    • Interferon-regulatory factor 1 is an immediate-early gene under transcriptional regulation by prolactin in Nb2 T cells
    • Yu-Lee, L. Y., J. A. Hrachovy, A. M. Stevens, et al. 1990. Interferon-regulatory factor 1 is an immediate-early gene under transcriptional regulation by prolactin in Nb2 T cells. Mol. Cell. Biol. 10: 3087-3094.
    • (1990) Mol. Cell. Biol , vol.10 , pp. 3087-3094
    • Yu-Lee, L.Y.1    Hrachovy, J.A.2    Stevens, A.M.3
  • 38
    • 0034456318 scopus 로고    scopus 로고
    • Prolactin activates interferon regulatory factor-1 expression in normal lympho-hemopoietic cells
    • Dogusan, Z., M. L. Book, P. Verdood, et al. 2000. Prolactin activates interferon regulatory factor-1 expression in normal lympho-hemopoietic cells. Eur. Cytokine Netw. 11: 435-442.
    • (2000) Eur. Cytokine Netw , vol.11 , pp. 435-442
    • Dogusan, Z.1    Book, M.L.2    Verdood, P.3
  • 39
    • 0033525511 scopus 로고    scopus 로고
    • Interleukin-12 induces expression of interferon regulatory factor-1 via signal transducer and activator of transcription-4 in human T helper type 1 cells
    • Coccia, E. M., N. Passini, A. Battistini, et al. 1999. Interleukin-12 induces expression of interferon regulatory factor-1 via signal transducer and activator of transcription-4 in human T helper type 1 cells. J. Biol. Chem. 274: 6698-6703.
    • (1999) J. Biol. Chem , vol.274 , pp. 6698-6703
    • Coccia, E.M.1    Passini, N.2    Battistini, A.3
  • 40
    • 0033213949 scopus 로고    scopus 로고
    • IFN-alpha activates Stat6 and leads to the formation of Stat2:Stat6 complexes in B cells
    • Gupta, S., M. Jiang, and A. B. Pernis. 1999. IFN-alpha activates Stat6 and leads to the formation of Stat2:Stat6 complexes in B cells. J. Immunol. 163: 3834-3841.
    • (1999) J. Immunol , vol.163 , pp. 3834-3841
    • Gupta, S.1    Jiang, M.2    Pernis, A.B.3
  • 41
    • 0032403512 scopus 로고    scopus 로고
    • Signaling pathways mediated by the TNF-and cytokine-receptor families target a common cis-element of the IRF-1 promoter
    • Gupta, S., D. Xia, M. Jiang, et al. 1998. Signaling pathways mediated by the TNF-and cytokine-receptor families target a common cis-element of the IRF-1 promoter. J. Immunol. 161: 5997-6004.
    • (1998) J. Immunol , vol.161 , pp. 5997-6004
    • Gupta, S.1    Xia, D.2    Jiang, M.3
  • 42
    • 0031005027 scopus 로고    scopus 로고
    • Synergy between interferon-g and tumor necrosis factor-a in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kB
    • Ohmori, Y., R. Screiber, and T. Hamilton. 1997. Synergy between interferon-g and tumor necrosis factor-a in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kB. J. Biol. Chem. 272: 14899-14907.
    • (1997) J. Biol. Chem , vol.272 , pp. 14899-14907
    • Ohmori, Y.1    Screiber, R.2    Hamilton, T.3
  • 43
    • 0030608917 scopus 로고    scopus 로고
    • Convergence of TNFa and IFNg signaling pathways through synergistic induction of IRF-1/ISGF2 is mediated by a composite GAS/kB promoter element
    • Pine, R. 1997. Convergence of TNFa and IFNg signaling pathways through synergistic induction of IRF-1/ISGF2 is mediated by a composite GAS/kB promoter element. Nucleic Acids Res. 25: 4346-4354.
    • (1997) Nucleic Acids Res , vol.25 , pp. 4346-4354
    • Pine, R.1
  • 44
    • 3142721913 scopus 로고    scopus 로고
    • Requirement of histone deacetylase activity for signaling by STAT1
    • Klampfer, L., J. Huang, L. A. Swaby, et al. 2004. Requirement of histone deacetylase activity for signaling by STAT1. J. Biol. Chem. 279: 30358-30368.
    • (2004) J. Biol. Chem , vol.279 , pp. 30358-30368
    • Klampfer, L.1    Huang, J.2    Swaby, L.A.3
  • 45
    • 3042752799 scopus 로고    scopus 로고
    • Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity
    • Chang, H. M., M. Paulson, M. Holko, et al. 2004. Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc. Natl. Acad. Sci. USA 101: 9578-9583.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 9578-9583
    • Chang, H.M.1    Paulson, M.2    Holko, M.3
  • 46
    • 0344304443 scopus 로고    scopus 로고
    • Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1
    • Nusinzon, I., and C. M. Horvath. 2003. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc. Natl. Acad. Sci. USA 100: 14742-14747.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 14742-14747
    • Nusinzon, I.1    Horvath, C.M.2
  • 47
    • 77952385796 scopus 로고    scopus 로고
    • Histone deacetylases inhibit IFN-gamma-inducible gene expression in mouse trophoblast cells
    • Choi, J. C., R. Holtz, and S. P. Murphy. 2009. Histone deacetylases inhibit IFN-gamma-inducible gene expression in mouse trophoblast cells. J. Immunol. 182: 6307-6315.
    • (2009) J. Immunol , vol.182 , pp. 6307-6315
    • Choi, J.C.1    Holtz, R.2    Murphy, S.P.3
  • 48
    • 79953124454 scopus 로고    scopus 로고
    • Epigenetic control of IRF1 responses in HIV-exposed seronegative versus HIV-susceptible individuals
    • Su, R. C., A. Sivro, J. Kimani, et al. 2011. Epigenetic control of IRF1 responses in HIV-exposed seronegative versus HIV-susceptible individuals. Blood 117: 2649-2657.
    • (2011) Blood , vol.117 , pp. 2649-2657
    • Su, R.C.1    Sivro, A.2    Kimani, J.3
  • 49
    • 77956928375 scopus 로고    scopus 로고
    • Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1)-activated transcription of the interferon regulatory factor 1 gene (IRF1)
    • Buro, L. J., E. Chipumuro, and M. A. Henriksen. 2010. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1)-activated transcription of the interferon regulatory factor 1 gene (IRF1). Epigenetics Chromatin 3: 16.
    • (2010) Epigenetics Chromatin , vol.3 , pp. 16
    • Buro, L.J.1    Chipumuro, E.2    Henriksen, M.A.3
  • 50
    • 84855587546 scopus 로고    scopus 로고
    • Knockdown of menin affects pre-mRNA processing and promoter fidelity at the interferon-gamma inducible IRF1 gene
    • Auriemma, L. B., S. Shah, L. M. Linden, et al. 2012. Knockdown of menin affects pre-mRNA processing and promoter fidelity at the interferon-gamma inducible IRF1 gene. Epigenetics Chromatin 5:2.
    • (2012) Epigenetics Chromatin , vol.5 , pp. 2
    • Auriemma, L.B.1    Shah, S.2    Linden, L.M.3
  • 51
    • 82355181529 scopus 로고    scopus 로고
    • A novel disrupter of telomere silencing 1-like (DOT1L) interaction is required for signal transducer and activator of transcription 1 (STAT1)-activated gene expression
    • Shah, S., and M. A. Henriksen. 2011. A novel disrupter of telomere silencing 1-like (DOT1L) interaction is required for signal transducer and activator of transcription 1 (STAT1)-activated gene expression. J. Biol. Chem. 286: 41195-41204.
    • (2011) J. Biol. Chem , vol.286 , pp. 41195-41204
    • Shah, S.1    Henriksen, M.A.2
  • 52
    • 84867881183 scopus 로고    scopus 로고
    • Regulation of T helper cell differentiation by interferon regulatory factor family members
    • Zhang, R., K. Chen, L. Peng, et al. 2012. Regulation of T helper cell differentiation by interferon regulatory factor family members. Immunol. Res. 54: 169-176.
    • (2012) Immunol. Res , vol.54 , pp. 169-176
    • Zhang, R.1    Chen, K.2    Peng, L.3
  • 53
    • 0030741433 scopus 로고    scopus 로고
    • Multistage regulation of Th1-type immune responses by the transcription factor IRF-1
    • Taki, S., T. Sato, K. Ogasawara, et al. 1997. Multistage regulation of Th1-type immune responses by the transcription factor IRF-1. Immunity 6: 673-679.
    • (1997) Immunity , vol.6 , pp. 673-679
    • Taki, S.1    Sato, T.2    Ogasawara, K.3
  • 54
    • 0033179698 scopus 로고    scopus 로고
    • IL-12 is dysregulated in macrophages from IRF-1 and IRF-2 knockout mice
    • Salkowski, C. A., K. Kopydlowski, J. Blanco, et al. 1999. IL-12 is dysregulated in macrophages from IRF-1 and IRF-2 knockout mice. J. Immunol. 163: 1529-1536.
    • (1999) J. Immunol , vol.163 , pp. 1529-1536
    • Salkowski, C.A.1    Kopydlowski, K.2    Blanco, J.3
  • 55
    • 11244336489 scopus 로고    scopus 로고
    • Synergistic activation of interleukin-12 p35 gene transcription by interferon regulatory factor-1 and interferon consensus sequence-binding protein
    • Liu, J., X. Guan, T. Tamura, et al. 2004. Synergistic activation of interleukin-12 p35 gene transcription by interferon regulatory factor-1 and interferon consensus sequence-binding protein. J. Biol. Chem. 279: 55609-55617.
    • (2004) J. Biol. Chem , vol.279 , pp. 55609-55617
    • Liu, J.1    Guan, X.2    Tamura, T.3
  • 56
    • 0035104778 scopus 로고    scopus 로고
    • Role of interferon regulatory factor-1 in the regulation of IL-18 production and activity
    • Fantuzzi, G., D. Reed, M. Qi, et al. 2001. Role of interferon regulatory factor-1 in the regulation of IL-18 production and activity. Eur. J. Immunol. 31: 369-375.
    • (2001) Eur. J. Immunol , vol.31 , pp. 369-375
    • Fantuzzi, G.1    Reed, D.2    Qi, M.3
  • 57
    • 0030747793 scopus 로고    scopus 로고
    • Interferon regulatory Factor-1 is required for a T helper 1 immune response in vivo
    • Lohoff, M., D. Ferrick, H. Mittrucker, et al. 1997. Interferon regulatory Factor-1 is required for a T helper 1 immune response in vivo. Immunity 6: 681-689.
    • (1997) Immunity , vol.6 , pp. 681-689
    • Lohoff, M.1    Ferrick, D.2    Mittrucker, H.3
  • 58
    • 37349040852 scopus 로고    scopus 로고
    • The contribution of transcription factor IRF1 to the interferon-gamma- interleukin 12 signaling axis and TH1 versus TH-17 differentiation of CD4\+ T cells
    • Kano, S., K. Sato, Y. Morishita, et al. 2008. The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and TH1 versus TH-17 differentiation of CD4\+ T cells. Nat. Immunol. 9: 34-41.
    • (2008) Nat. Immunol , vol.9 , pp. 34-41
    • Kano, S.1    Sato, K.2    Morishita, Y.3
  • 59
    • 18744386097 scopus 로고    scopus 로고
    • IFN-gamma represses IL-4 expression via IRF-1 and IRF-2
    • Elser, B., M. Lohoff, S. Kock, et al. 2002. IFN-gamma represses IL-4 expression via IRF-1 and IRF-2. Immunity 17: 703-712.
    • (2002) Immunity , vol.17 , pp. 703-712
    • Elser, B.1    Lohoff, M.2    Kock, S.3
  • 60
    • 0029805028 scopus 로고    scopus 로고
    • The transcription factor interferon regulatory factor-1 is essential for natural killer cell function in vivo
    • Duncan, G. S., H. W. Mittrucker, D. Kagi, et al. 1996. The transcription factor interferon regulatory factor-1 is essential for natural killer cell function in vivo. J. Exp. Med. 184: 2043-2048.
    • (1996) J. Exp. Med , vol.184 , pp. 2043-2048
    • Duncan, G.S.1    Mittrucker, H.W.2    Kagi, D.3
  • 61
    • 0032510062 scopus 로고    scopus 로고
    • Requirement for IRF-1 in the microenvironment supporting development of natural killer cells
    • Ogasawara, K., S. Hida, N. Azimi, et al. 1998. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391: 700-703.
    • (1998) Nature , vol.391 , pp. 700-703
    • Ogasawara, K.1    Hida, S.2    Azimi, N.3
  • 62
    • 0031048823 scopus 로고    scopus 로고
    • Reduced incidence and severity of antigen-induced autoimmune diseases in mice lacking interferon regulatory factor-1
    • Tada, Y., A. Ho, T. Matsuyama, et al. 1997. Reduced incidence and severity of antigen-induced autoimmune diseases in mice lacking interferon regulatory factor-1. J. Exp. Med. 185: 231-238.
    • (1997) J. Exp. Med , vol.185 , pp. 231-238
    • Tada, Y.1    Ho, A.2    Matsuyama, T.3
  • 63
    • 33646597302 scopus 로고    scopus 로고
    • Interferon regulatory factor-1 gene deletion decreases glomerulonephritis in MRL/lpr mice
    • Reilly, C. M., S. Olgun, D. Goodwin, et al. 2006. Interferon regulatory factor-1 gene deletion decreases glomerulonephritis in MRL/lpr mice. Eur. J. Immunol. 36: 1296-1308.
    • (2006) Eur. J. Immunol , vol.36 , pp. 1296-1308
    • Reilly, C.M.1    Olgun, S.2    Goodwin, D.3
  • 64
    • 84869861619 scopus 로고    scopus 로고
    • Definition of IFN-gamma-related pathways critical for chemically-induced systemic autoimmunity
    • Pollard, K. M., P. Hultman, C. B. Toomey, et al. 2003. Definition of IFN-gamma-related pathways critical for chemically-induced systemic autoimmunity. J. Autoimmun. 39: 323-331.
    • (2003) J. Autoimmun , vol.39 , pp. 323-331
    • Pollard, K.M.1    Hultman, P.2    Toomey, C.B.3
  • 65
    • 0029617947 scopus 로고
    • Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome
    • Thanos, D., and T. Maniatis. 1995. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83: 1091-1100.
    • (1995) Cell , vol.83 , pp. 1091-1100
    • Thanos, D.1    Maniatis, T.2
  • 66
    • 77749242510 scopus 로고    scopus 로고
    • The transcriptional code of human IFN-beta gene expression
    • Ford, E., and D. Thanos. 2010. The transcriptional code of human IFN-beta gene expression. Biochim. Biophys. Acta 1799: 328-336.
    • (2010) Biochim. Biophys. Acta , vol.1799 , pp. 328-336
    • Ford, E.1    Thanos, D.2
  • 67
    • 0031604766 scopus 로고    scopus 로고
    • Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription
    • Merika, M., A. J. Williams, G. Chen, et al. 1998. Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol. Cell 1: 277-287.
    • (1998) Mol. Cell , vol.1 , pp. 277-287
    • Merika, M.1    Williams, A.J.2    Chen, G.3
  • 68
    • 0033019307 scopus 로고    scopus 로고
    • The histone acetylase PCAF is a phorbol-ester-inducible coactivator of the IRF family that confers enhanced interferon responsiveness
    • Masumi, A., I. M. Wang, B. Lefebvre, et al. 1999. The histone acetylase PCAF is a phorbol-ester-inducible coactivator of the IRF family that confers enhanced interferon responsiveness. Mol. Cell. Biol. 19: 1810-1820.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 1810-1820
    • Masumi, A.1    Wang, I.M.2    Lefebvre, B.3
  • 69
    • 0035877666 scopus 로고    scopus 로고
    • Coactivator p300 acetylates the interferon regulatory factor-2 in U937 cells following phorbol ester treatment
    • Masumi, A., and K. Ozato. 2001. Coactivator p300 acetylates the interferon regulatory factor-2 in U937 cells following phorbol ester treatment. J. Biol. Chem. 276: 20973-20980.
    • (2001) J. Biol. Chem , vol.276 , pp. 20973-20980
    • Masumi, A.1    Ozato, K.2
  • 70
    • 33747867770 scopus 로고    scopus 로고
    • Nucleolin is involved in interferon regulatory factor-2-dependent transcriptional activation
    • Masumi, A., H. Fukazawa, T. Shimazu, et al. 2006. Nucleolin is involved in interferon regulatory factor-2-dependent transcriptional activation. Oncogene 25: 5113-5124.
    • (2006) Oncogene , vol.25 , pp. 5113-5124
    • Masumi, A.1    Fukazawa, H.2    Shimazu, T.3
  • 71
    • 0038491558 scopus 로고    scopus 로고
    • Interferon regulatory factor-2 regulates cell growth through its acetylation
    • Masumi, A., Y. Yamakawa, H. Fukazawa, et al. 2003. Interferon regulatory factor-2 regulates cell growth through its acetylation. J. Biol. Chem. 278: 25401-25407.
    • (2003) J. Biol. Chem , vol.278 , pp. 25401-25407
    • Masumi, A.1    Yamakawa, Y.2    Fukazawa, H.3
  • 72
    • 79952207449 scopus 로고    scopus 로고
    • Histone acetyltransferases as regulators of nonhistone proteins: The role of interferon regulatory factor acetylation on gene transcription
    • Masumi, A. 2011. Histone acetyltransferases as regulators of nonhistone proteins: the role of interferon regulatory factor acetylation on gene transcription. J. Biomed. Biotechnol. 2011: 640610.
    • (2011) J. Biomed. Biotechnol , vol.2011 , pp. 640610
    • Masumi, A.1
  • 73
    • 77649340053 scopus 로고    scopus 로고
    • Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes
    • Zhang, Z., L. Song, K. Maurer, et al. 2010. Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun. 11: 124-133.
    • (2010) Genes Immun , vol.11 , pp. 124-133
    • Zhang, Z.1    Song, L.2    Maurer, K.3
  • 74
    • 56049091716 scopus 로고    scopus 로고
    • Ubc9-mediated sumoylation leads to transcriptional repression of IRF-1
    • Kim, E. J., J. S. Park, and S. J. Um. 2008. Ubc9-mediated sumoylation leads to transcriptional repression of IRF-1. Biochem. Biophys. Res. Commun. 377: 952-956.
    • (2008) Biochem. Biophys. Res. Commun , vol.377 , pp. 952-956
    • Kim, E.J.1    Park, J.S.2    Um, S.J.3
  • 75
    • 36749102595 scopus 로고    scopus 로고
    • Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis
    • Park, J., K. Kim, E. J. Lee, et al. 2007. Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis. Proc. Natl. Acad. Sci. USA 104: 17028-17033.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 17028-17033
    • Park, J.1    Kim, K.2    Lee, E.J.3
  • 76
    • 72949083741 scopus 로고    scopus 로고
    • SUMOylated IRF-1 shows oncogenic potential by mimicking IRF-2
    • Park, S. M., M. Chae, B. K. Kim, et al. 2009. SUMOylated IRF-1 shows oncogenic potential by mimicking IRF-2. Biochem. Biophys. Res. Commun. 391: 926-930.
    • (2009) Biochem. Biophys. Res. Commun , vol.391 , pp. 926-930
    • Park, S.M.1    Chae, M.2    Kim, B.K.3
  • 77
    • 67349240823 scopus 로고    scopus 로고
    • A new molecular network comprising PU.1, interferon regulatory factor proteins and miR-342 stimulates ATRA-mediated granulocytic differentiation of acute promyelocytic leukemia cells
    • De Marchis, M. L., M. Ballarino, B. Salvatori, et al. 2009. A new molecular network comprising PU.1, interferon regulatory factor proteins and miR-342 stimulates ATRA-mediated granulocytic differentiation of acute promyelocytic leukemia cells. Leukemia 23: 856-862.
    • (2009) Leukemia , vol.23 , pp. 856-862
    • De Marchis, M.L.1    Ballarino, M.2    Salvatori, B.3
  • 78
    • 79958715481 scopus 로고    scopus 로고
    • Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1
    • Lian, J., H. Tian, L. Liu, et al. 2010. Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1. Cell Death Dis. 1: e94.
    • (2010) Cell Death Dis , vol.1
    • Lian, J.1    Tian, H.2    Liu, L.3
  • 79
    • 84873304007 scopus 로고    scopus 로고
    • Recent advances in understanding viral evasion of type i interferon
    • Taylor, K. E., and K. L. Mossman. 2012. Recent advances in understanding viral evasion of type I interferon. Immunology 138: 190-197.
    • (2012) Immunology , vol.138 , pp. 190-197
    • Taylor, K.E.1    Mossman, K.L.2
  • 80
    • 34848817968 scopus 로고    scopus 로고
    • Acetylationdependent signal transduction for type i interferon receptor
    • Tang, X., J. S. Gao, Y. J. Guan, et al. 2007. Acetylationdependent signal transduction for type I interferon receptor. Cell 131: 93-105.
    • (2007) Cell , vol.131 , pp. 93-105
    • Tang, X.1    Gao, J.S.2    Guan, Y.J.3
  • 81
    • 84866138079 scopus 로고    scopus 로고
    • Silencing of microRNA-122 enhances interferon-alpha signaling in the liver through regulating SOCS3 promoter methylation
    • Yoshikawa, T., A. Takata, M. Otsuka, et al. 2012. Silencing of microRNA-122 enhances interferon-alpha signaling in the liver through regulating SOCS3 promoter methylation. Sci. Rep. 2: 637.
    • (2012) Sci. Rep , vol.2 , pp. 637
    • Yoshikawa, T.1    Takata, A.2    Otsuka, M.3
  • 82
    • 79955626218 scopus 로고    scopus 로고
    • A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon
    • Liang, D., Y. Gao, X. Lin, et al. 2011. A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon. Cell Res. 21: 793-806.
    • (2011) Cell Res , vol.21 , pp. 793-806
    • Liang, D.1    Gao, Y.2    Lin, X.3
  • 83
    • 77956646453 scopus 로고    scopus 로고
    • Reduced expression of IRF7 in nasal epithelial cells from smokers after infection with influenza
    • Jaspers, I., K. M. Horvath, W. Zhang, et al. 2010. Reduced expression of IRF7 in nasal epithelial cells from smokers after infection with influenza. Am. J. Respir. Cell. Mol. Biol. 43: 368-375.
    • (2010) Am. J. Respir. Cell. Mol. Biol , vol.43 , pp. 368-375
    • Jaspers, I.1    Horvath, K.M.2    Zhang, W.3
  • 84
    • 83355170536 scopus 로고    scopus 로고
    • Epigenetic silencing of IRF7 and/or IRF5 in lung cancer cells leads to increased sensitivity to oncolytic viruses
    • Li, Q., and M. A. Tainsky. 2011. Epigenetic silencing of IRF7 and/or IRF5 in lung cancer cells leads to increased sensitivity to oncolytic viruses. PLoS ONE 6: e28683.
    • (2011) PLoS ONE , vol.6
    • Li, Q.1    Tainsky, M.A.2
  • 85
    • 0034644718 scopus 로고    scopus 로고
    • Regulation of the promoter activity of interferon regulatory factor-7 gene. Activation by interferon snd silencing by hypermethylation
    • Lu, R., W. C. Au, W. S. Yeow, et al. 2000. Regulation of the promoter activity of interferon regulatory factor-7 gene. Activation by interferon snd silencing by hypermethylation. J. Biol. Chem. 275: 31805-31812.
    • (2000) J. Biol. Chem , vol.275 , pp. 31805-31812
    • Lu, R.1    Au, W.C.2    Yeow, W.S.3
  • 86
    • 77955414503 scopus 로고    scopus 로고
    • Trichostatin A blocks type i interferon production by activated plasmacytoid dendritic cells
    • Salvi, V., D. Bosisio, S. Mitola, et al. 2010. Trichostatin A blocks type I interferon production by activated plasmacytoid dendritic cells. Immunobiology 215: 756-761.
    • (2010) Immunobiology , vol.215 , pp. 756-761
    • Salvi, V.1    Bosisio, D.2    Mitola, S.3
  • 87
    • 84862801311 scopus 로고    scopus 로고
    • IRF7, a functional factor associates with systemic lupus erythematosus
    • Xu, W. D., Y. J. Zhang, K. Xu, et al. 2012. IRF7, a functional factor associates with systemic lupus erythematosus. Cytokine 58: 317-320.
    • (2012) Cytokine , vol.58 , pp. 317-320
    • Xu, W.D.1    Zhang, Y.J.2    Xu, K.3
  • 88
    • 46849113681 scopus 로고    scopus 로고
    • Promoter polymorphisms in the IRF3 gene confer protection against systemic lupus erythematosus
    • Akahoshi, M., H. Nakashima, A. Sadanaga, et al. 2008. Promoter polymorphisms in the IRF3 gene confer protection against systemic lupus erythematosus. Lupus 17: 568-574.
    • (2008) Lupus , vol.17 , pp. 568-574
    • Akahoshi, M.1    Nakashima, H.2    Sadanaga, A.3
  • 89
    • 60449083724 scopus 로고    scopus 로고
    • No evidence for genetic association of interferon regulatory factor 3 in systemic lupus erythematosus
    • Sanchez, E., M. A. Gonzalez-Gay, J. L. Callejas-Rubio, et al. 2009. No evidence for genetic association of interferon regulatory factor 3 in systemic lupus erythematosus. Lupus 18: 230-234.
    • (2009) Lupus , vol.18 , pp. 230-234
    • Sanchez, E.1    Gonzalez-Gay, M.A.2    Callejas-Rubio, J.L.3
  • 90
    • 84860476524 scopus 로고    scopus 로고
    • Enhanced interferon regulatory factor 3 binding to the interleukin-23p19 promoter correlates with enhanced interleukin-23 expression in systemic lupus erythematosus
    • Smith, S., J. N. Gabhann, R. Higgs, et al. 2012. Enhanced interferon regulatory factor 3 binding to the interleukin-23p19 promoter correlates with enhanced interleukin-23 expression in systemic lupus erythematosus. Arthritis Rheum. 64: 1601-1609.
    • (2012) Arthritis Rheum , vol.64 , pp. 1601-1609
    • Smith, S.1    Gabhann, J.N.2    Higgs, R.3
  • 91
    • 75749110600 scopus 로고    scopus 로고
    • Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-alpha activity in lupus patients
    • Salloum, R., B. S. Franek, S. N. Kariuki, et al. 2010. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-alpha activity in lupus patients. Arthritis Rheum. 62: 553-561.
    • (2010) Arthritis Rheum , vol.62 , pp. 553-561
    • Salloum, R.1    Franek, B.S.2    Kariuki, S.N.3
  • 92
    • 84861806223 scopus 로고    scopus 로고
    • Association of PHRF1-IRF7 region polymorphism with clinical manifestations of systemic lupus erythematosus in a Japanese population
    • Kawasaki, A., H. Furukawa, Y. Kondo, et al. 2012. Association of PHRF1-IRF7 region polymorphism with clinical manifestations of systemic lupus erythematosus in a Japanese population. Lupus 21: 890-895.
    • (2012) Lupus , vol.21 , pp. 890-895
    • Kawasaki, A.1    Furukawa, H.2    Kondo, Y.3
  • 93
    • 79953707345 scopus 로고    scopus 로고
    • Association of a functional IRF7 variant with systemic lupus erythematosus
    • Fu, Q., J. Zhao, X. Qian, et al. 2011. Association of a functional IRF7 variant with systemic lupus erythematosus. Arthritis Rheum. 63: 749-754.
    • (2011) Arthritis Rheum , vol.63 , pp. 749-754
    • Fu, Q.1    Zhao, J.2    Qian, X.3
  • 94
    • 80052529432 scopus 로고    scopus 로고
    • Hematopoietic stem cell transplant for systemic lupus erythematosus: Interferon regulatory factor 7 activation correlates with the IFN signature and recurrent disease
    • Sweeney, S. E. 2011. Hematopoietic stem cell transplant for systemic lupus erythematosus: interferon regulatory factor 7 activation correlates with the IFN signature and recurrent disease. Lupus 20: 975-980.
    • (2011) Lupus , vol.20 , pp. 975-980
    • Sweeney, S.E.1
  • 95
    • 41849090456 scopus 로고    scopus 로고
    • IRF9 and STAT1 are required for IgG autoantibody production and B cell expression of TLR7 in mice
    • Thibault, D. L., A. D. Chu, K. L. Graham, et al. 2008. IRF9 and STAT1 are required for IgG autoantibody production and B cell expression of TLR7 in mice. J. Clin. Invest. 118: 1417-1426.
    • (2008) J. Clin. Invest , vol.118 , pp. 1417-1426
    • Thibault, D.L.1    Chu, A.D.2    Graham, K.L.3
  • 96
    • 0032015647 scopus 로고    scopus 로고
    • Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo
    • Wathelet, M. G., C. H. Lin, B. S. Parekh, et al. 1998. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol. Cell 1: 507-518.
    • (1998) Mol. Cell , vol.1 , pp. 507-518
    • Wathelet, M.G.1    Lin, C.H.2    Parekh, B.S.3
  • 97
    • 0032971444 scopus 로고    scopus 로고
    • Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-beta promoter
    • Parekh, B. S., and T. Maniatis. 1999. Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-beta promoter. Mol. Cell 3: 125-129.
    • (1999) Mol. Cell , vol.3 , pp. 125-129
    • Parekh, B.S.1    Maniatis, T.2
  • 98
    • 0032481352 scopus 로고    scopus 로고
    • Direct triggering of the type i interferon system by virus infection: Activation of a transcription factor complex containing IRF-3 and CBP/p300
    • Yoneyama, M., W. Suhara, Y. Fukuhara, et al. 1998. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17: 1087-1095.
    • (1998) EMBO J , vol.17 , pp. 1087-1095
    • Yoneyama, M.1    Suhara, W.2    Fukuhara, Y.3
  • 99
    • 0034111332 scopus 로고    scopus 로고
    • Regulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1
    • Kumar, K. P., K. M. McBride, B. K. Weaver, et al. 2000. Regulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1. Mol. Cell. Biol. 20: 4159-4168.
    • (2000) Mol. Cell. Biol , vol.20 , pp. 4159-4168
    • Kumar, K.P.1    McBride, K.M.2    Weaver, B.K.3
  • 100
    • 0037844850 scopus 로고    scopus 로고
    • Interferon regulatory factor-7 synergizes with other transcription factors through multiple interactions with p300/CBP coactivators
    • Yang, H., C. H. Lin, G. Ma, et al. 2003. Interferon regulatory factor-7 synergizes with other transcription factors through multiple interactions with p300/CBP coactivators. J. Biol. Chem. 278: 15495-15504.
    • (2003) J. Biol. Chem , vol.278 , pp. 15495-15504
    • Yang, H.1    Lin, C.H.2    Ma, G.3
  • 101
    • 0347298773 scopus 로고    scopus 로고
    • Acetylation of interferon regulatory factor-7 by p300/CREB-binding protein (CBP)-associated factor (PCAF) impairs its DNA binding
    • Caillaud, A., A. Prakash, E. Smith, et al. 2002. Acetylation of interferon regulatory factor-7 by p300/CREB-binding protein (CBP)-associated factor (PCAF) impairs its DNA binding. J. Biol. Chem. 277: 49417-49421.
    • (2002) J. Biol. Chem , vol.277 , pp. 49417-49421
    • Caillaud, A.1    Prakash, A.2    Smith, E.3
  • 102
    • 77956703571 scopus 로고    scopus 로고
    • The type i interferon signaling pathway is a target for glucocorticoid inhibition
    • Flammer, J. R., J. Dobrovolna, M. A. Kennedy, et al. 2010. The type I interferon signaling pathway is a target for glucocorticoid inhibition. Mol. Cell. Biol. 30: 4564-4574.
    • (2010) Mol. Cell. Biol , vol.30 , pp. 4564-4574
    • Flammer, J.R.1    Dobrovolna, J.2    Kennedy, M.A.3
  • 103
    • 30444456366 scopus 로고    scopus 로고
    • The GRIP1:IRF3 interaction as a target for glucocorticoid receptor-mediated immunosuppression
    • Reily, M. M., C. Pantoja, X. Hu, et al. 2006. The GRIP1:IRF3 interaction as a target for glucocorticoid receptor-mediated immunosuppression. EMBO J. 25: 108-117.
    • (2006) EMBO J , vol.25 , pp. 108-117
    • Reily, M.M.1    Pantoja, C.2    Hu, X.3
  • 104
    • 33645812740 scopus 로고    scopus 로고
    • Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation
    • Nusinzon, I., and C. M. Horvath. 2006. Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol. Cell. Biol. 26: 3106-3113.
    • (2006) Mol. Cell. Biol , vol.26 , pp. 3106-3113
    • Nusinzon, I.1    Horvath, C.M.2
  • 105
    • 82455175292 scopus 로고    scopus 로고
    • PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and beta-catenin
    • Zhu, J., C. B. Coyne, and S. N. Sarkar. 2011. PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and beta-catenin. EMBO J. 30: 4838-4849.
    • (2011) EMBO J , vol.30 , pp. 4838-4849
    • Zhu, J.1    Coyne, C.B.2    Sarkar, S.N.3
  • 106
    • 83755181625 scopus 로고    scopus 로고
    • Galectin-9 protein expression in endothelial cells is positively regulated by histone deacetylase 3
    • Alam, S., H. Li, A. Margariti, et al. 2011. Galectin-9 protein expression in endothelial cells is positively regulated by histone deacetylase 3. J. Biol. Chem. 286: 44211-44217.
    • (2011) J. Biol. Chem , vol.286 , pp. 44211-44217
    • Alam, S.1    Li, H.2    Margariti, A.3
  • 107
    • 84862017441 scopus 로고    scopus 로고
    • Recruitment of histone deacetylase 3 to the interferon-A gene promoters attenuates interferon expression
    • Genin, P., R. Lin, J. Hiscott, et al. 2012. Recruitment of histone deacetylase 3 to the interferon-A gene promoters attenuates interferon expression. PLoS ONE 7: e38336.
    • (2012) PLoS ONE , vol.7
    • Genin, P.1    Lin, R.2    Hiscott, J.3
  • 108
    • 84855373185 scopus 로고    scopus 로고
    • Opposed regulation of type i IFN-induced STAT3 and ISGF3 transcriptional activities by histone deacetylases (HDACS) 1 and 2
    • Icardi, L., S. Lievens, R. Mori, et al. 2012. Opposed regulation of type I IFN-induced STAT3 and ISGF3 transcriptional activities by histone deacetylases (HDACS) 1 and 2. FASEB J. 26: 240-249.
    • (2012) FASEB J , vol.26 , pp. 240-249
    • Icardi, L.1    Lievens, S.2    Mori, R.3
  • 109
    • 84869120419 scopus 로고    scopus 로고
    • Epstein-Barr virus latent membrane protein 1 regulates the function of interferon regulatory factor 7 by inducing its sumoylation
    • Bentz, G. L., J. Shackelford, and J. S. Pagano. 2012. Epstein-Barr virus latent membrane protein 1 regulates the function of interferon regulatory factor 7 by inducing its sumoylation. J. Virol. 86: 12251-12261.
    • (2012) J. Virol , vol.86 , pp. 12251-12261
    • Bentz, G.L.1    Shackelford, J.2    Pagano, J.S.3
  • 110
    • 54449099430 scopus 로고    scopus 로고
    • Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type i interferon gene expression
    • Kubota, T., M. Matsuoka, T. H. Chang, et al. 2008. Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type I interferon gene expression. J. Biol. Chem. 283: 25660-25670.
    • (2008) J. Biol. Chem , vol.283 , pp. 25660-25670
    • Kubota, T.1    Matsuoka, M.2    Chang, T.H.3
  • 111
    • 80555133291 scopus 로고    scopus 로고
    • Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7
    • Liang, Q., H. Deng, X. Li, et al. 2011. Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J. Immunol. 187: 4754-4763.
    • (2011) J. Immunol , vol.187 , pp. 4754-4763
    • Liang, Q.1    Deng, H.2    Li, X.3
  • 112
    • 70349439320 scopus 로고    scopus 로고
    • MiR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses
    • Liu, G., A. Friggeri, Y. Yang, et al. 2009. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc. Natl. Acad. Sci. USA 106: 15819-15824.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 15819-15824
    • Liu, G.1    Friggeri, A.2    Yang, Y.3
  • 113
    • 84878259075 scopus 로고    scopus 로고
    • The microRNA miR-155 controls CD8(\+) T cell responses by regulating interferon signaling
    • Gracias, D. T., E. Stelekati, J. L. Hope, et al. 2013. The microRNA miR-155 controls CD8(\+) T cell responses by regulating interferon signaling. Nat. Immunol. 14: 593-602.
    • (2013) Nat. Immunol , vol.14 , pp. 593-602
    • Gracias, D.T.1    Stelekati, E.2    Hope, J.L.3
  • 114
    • 73249136480 scopus 로고    scopus 로고
    • IRF4 and its regulators: Evolving insights into the pathogenesis of inflammatory arthritis?
    • Biswas, P., G. Bhagat, and A. B. Pernis. 2010. IRF4 and its regulators: evolving insights into the pathogenesis of inflammatory arthritis? Immunol. Rev. 233: 79-96.
    • (2010) Immunol. Rev , vol.233 , pp. 79-96
    • Biswas, P.1    Bhagat, G.2    Pernis, A.B.3
  • 115
    • 82555190936 scopus 로고    scopus 로고
    • The genetic network controlling plasma cell differentiation
    • Nutt, S. L., N. Taubenheim, J. Hasbold, et al. 2011. The genetic network controlling plasma cell differentiation. Semin. Immunol. 23: 341-349.
    • (2011) Semin. Immunol , vol.23 , pp. 341-349
    • Nutt, S.L.1    Taubenheim, N.2    Hasbold, J.3
  • 117
    • 84859713325 scopus 로고    scopus 로고
    • The diverse roles of IRF4 in late germinal center B-cell differentiation
    • De Silva, N. S., G. Simonetti, N. Heise, et al. 2012. The diverse roles of IRF4 in late germinal center B-cell differentiation. Immunol. Rev. 247: 73-92.
    • (2012) Immunol. Rev , vol.247 , pp. 73-92
    • De Silva, N.S.1    Simonetti, G.2    Heise, N.3
  • 118
    • 0030588140 scopus 로고    scopus 로고
    • Cloning of human lymphocyte-specific interferon regulatory factor (hLSIRF/hIRF4) and mapping of the gene to 6p23-25
    • Grossman, A., H. Mittrucker, J. Nicholl, et al. 1996. Cloning of human lymphocyte-specific interferon regulatory factor (hLSIRF/hIRF4) and mapping of the gene to 6p23-25. Genomics 37: 229-233.
    • (1996) Genomics , vol.37 , pp. 229-233
    • Grossman, A.1    Mittrucker, H.2    Nicholl, J.3
  • 119
    • 0034678445 scopus 로고    scopus 로고
    • Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes: Modulation of interferon-regulated gene expression by rel/nuclear factor kappaB
    • Grumont, R. J., and S. Gerondakis. 2000. Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes: modulation of interferon-regulated gene expression by rel/nuclear factor kappaB. J. Exp. Med. 191: 1281-1292.
    • (2000) J. Exp. Med , vol.191 , pp. 1281-1292
    • Grumont, R.J.1    Gerondakis, S.2
  • 120
    • 0029069958 scopus 로고
    • Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferonstimulated response element (ISRE)
    • Matsuyama, T., A. Grossman, H. Mittrucker, et al. 1995. Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferonstimulated response element (ISRE). Nucleic Acids Res. 23: 2127-2136.
    • (1995) Nucleic Acids Res , vol.23 , pp. 2127-2136
    • Matsuyama, T.1    Grossman, A.2    Mittrucker, H.3
  • 121
    • 0034330795 scopus 로고    scopus 로고
    • Activation and regulation of interferon regulatory factor 4 in HTLV type Iinfected lymphocytes
    • Sharma, S., Y. Mamane, N. Grandvaux, et al. 2000. Activation and regulation of interferon regulatory factor 4 in HTLV type Iinfected lymphocytes. AIDS Res. Hum. Retroviruses 16: 1613-1622.
    • (2000) AIDS Res. Hum. Retroviruses , vol.16 , pp. 1613-1622
    • Sharma, S.1    Mamane, Y.2    Grandvaux, N.3
  • 122
    • 0033400453 scopus 로고    scopus 로고
    • Lineage-specific modulation of IL-4 signaling by interferon regulatory factor 4
    • Gupta, S., M. Jiang, A. Anthony, et al. 1999. Lineage-specific modulation of IL-4 signaling by interferon regulatory factor 4. J. Exp. Med. 190: 1837-1848.
    • (1999) J. Exp. Med , vol.190 , pp. 1837-1848
    • Gupta, S.1    Jiang, M.2    Anthony, A.3
  • 123
    • 64049089798 scopus 로고    scopus 로고
    • Critical regulation of early Th17 cell differentiation by interleukin-1 signaling
    • Chung, Y., S. H. Chang, G. J. Martinez, et al. 2009. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30: 576-587.
    • (2009) Immunity , vol.30 , pp. 576-587
    • Chung, Y.1    Chang, S.H.2    Martinez, G.J.3
  • 124
    • 34548237299 scopus 로고    scopus 로고
    • A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma
    • Saito, M., J. Gao, K. Basso, et al. 2007. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell 12: 280-292.
    • (2007) Cancer Cell , vol.12 , pp. 280-292
    • Saito, M.1    Gao, J.2    Basso, K.3
  • 125
    • 0037105515 scopus 로고    scopus 로고
    • Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells
    • Sharma, S., N. Grandvaux, Y. Mamane, et al. 2002. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells. J. Immunol. 169: 3120-3130.
    • (2002) J. Immunol , vol.169 , pp. 3120-3130
    • Sharma, S.1    Grandvaux, N.2    Mamane, Y.3
  • 126
    • 27744509044 scopus 로고    scopus 로고
    • Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages
    • Lehtonen, A., V. Veckman, T. Nikula, et al. 2005. Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages. J. Immunol. 175: 6570-6579.
    • (2005) J. Immunol , vol.175 , pp. 6570-6579
    • Lehtonen, A.1    Veckman, V.2    Nikula, T.3
  • 127
    • 62649165369 scopus 로고    scopus 로고
    • Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses
    • Zheng, Y., A. Chaudhry, A. Kas, et al. 2009. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458: 351-356.
    • (2009) Nature , vol.458 , pp. 351-356
    • Zheng, Y.1    Chaudhry, A.2    Kas, A.3
  • 128
    • 0029763203 scopus 로고    scopus 로고
    • Pip, a lymphoidrestricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU.1
    • Brass, A., E. Kehrli, C. Eisenbeis, et al. 1996. Pip, a lymphoidrestricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU.1. Genes Develop. 10: 2335-2347.
    • (1996) Genes Develop , vol.10 , pp. 2335-2347
    • Brass, A.1    Kehrli, E.2    Eisenbeis, C.3
  • 129
    • 0029073345 scopus 로고
    • Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator
    • Eisenbeis, C., H. Singh, and U. Storb. 1995. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Develop. 9: 1377-1387.
    • (1995) Genes Develop , vol.9 , pp. 1377-1387
    • Eisenbeis, C.1    Singh, H.2    Storb, U.3
  • 130
    • 77956954197 scopus 로고    scopus 로고
    • The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection
    • Satoh, T., O. Takeuchi, A. Vandenbon, et al. 2010. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 11: 936-944.
    • (2010) Nat. Immunol , vol.11 , pp. 936-944
    • Satoh, T.1    Takeuchi, O.2    Vandenbon, A.3
  • 131
    • 75649112342 scopus 로고    scopus 로고
    • Estrogen receptor signaling promotes dendritic cell differentiation by increasing expression of the transcription factor IRF4
    • Carreras, E., S. Turner, M. B. Frank, et al. 2010. Estrogen receptor signaling promotes dendritic cell differentiation by increasing expression of the transcription factor IRF4. Blood 115: 238-246.
    • (2010) Blood , vol.115 , pp. 238-246
    • Carreras, E.1    Turner, S.2    Frank, M.B.3
  • 132
    • 44449083407 scopus 로고    scopus 로고
    • Deacetylase activity is required for STAT5-dependent GM-CSF functional activity in macrophages and differentiation to dendritic cells
    • Sebastian, C., M. Serra, A. Yeramian, et al. 2008. Deacetylase activity is required for STAT5-dependent GM-CSF functional activity in macrophages and differentiation to dendritic cells. J. Immunol. 180: 5898-5906.
    • (2008) J. Immunol , vol.180 , pp. 5898-5906
    • Sebastian, C.1    Serra, M.2    Yeramian, A.3
  • 133
    • 29244451848 scopus 로고    scopus 로고
    • Downregulation of interferon regulatory factor 4 gene expression in leukemic cells due to hypermethylation of CpG motifs in the promoter region
    • Ortmann, C. A., A. Burchert, K. Holzle, et al. 2005. Downregulation of interferon regulatory factor 4 gene expression in leukemic cells due to hypermethylation of CpG motifs in the promoter region. Nucleic Acids Res. 33: 6895-6905.
    • (2005) Nucleic Acids Res , vol.33 , pp. 6895-6905
    • Ortmann, C.A.1    Burchert, A.2    Holzle, K.3
  • 134
    • 81455141958 scopus 로고    scopus 로고
    • MicroRNA-125b potentiates macrophage activation
    • Chaudhuri, A. A., A. Y. So, N. Sinha, et al. 2011. MicroRNA-125b potentiates macrophage activation. J. Immunol. 187: 5062-5068.
    • (2011) J. Immunol , vol.187 , pp. 5062-5068
    • Chaudhuri, A.A.1    So, A.Y.2    Sinha, N.3
  • 135
    • 77954263256 scopus 로고    scopus 로고
    • MicroRNA 125b inhibition of B cell differentiation in germinal centers
    • Gururajan, M., C. L. Haga, S. Das, et al. 2010. MicroRNA 125b inhibition of B cell differentiation in germinal centers. Int. Immunol. 22: 583-592.
    • (2010) Int. Immunol , vol.22 , pp. 583-592
    • Gururajan, M.1    Haga, C.L.2    Das, S.3
  • 136
    • 65549112644 scopus 로고    scopus 로고
    • Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas
    • Malumbres, R., K. A. Sarosiek, E. Cubedo, et al. 2009. Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood 113: 3754-3764.
    • (2009) Blood , vol.113 , pp. 3754-3764
    • Malumbres, R.1    Sarosiek, K.A.2    Cubedo, E.3
  • 137
    • 34548128307 scopus 로고    scopus 로고
    • The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4
    • Brustle, A., S. Heink, M. Huber, et al. 2007. The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8: 958-966.
    • (2007) Nat. Immunol , vol.8 , pp. 958-966
    • Brustle, A.1    Heink, S.2    Huber, M.3
  • 138
    • 57449105853 scopus 로고    scopus 로고
    • IRF-4 Binding Protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor
    • Chen, Q., W. Yang, S. Gupta, et al. 2008. IRF-4 Binding Protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 299: 899-911.
    • (2008) Immunity , vol.299 , pp. 899-911
    • Chen, Q.1    Yang, W.2    Gupta, S.3
  • 139
    • 57349118423 scopus 로고    scopus 로고
    • Interferon regulatory factor 4 differentially regulates the production of Th2 cytokines in naive vs. Effector/memory CD4\+ T cells
    • Honma, K., D. Kimura, N. Tominaga, et al. 2008. Interferon regulatory factor 4 differentially regulates the production of Th2 cytokines in naive vs. effector/memory CD4\+ T cells. Proc. Natl. Acad. Sci. USA 105: 15890-15895.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 15890-15895
    • Honma, K.1    Kimura, D.2    Tominaga, N.3
  • 140
    • 0037089575 scopus 로고    scopus 로고
    • Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression
    • Rengarajan, J., K. A. Mowen, K. D. Mcbride, et al. 2002. Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J. Exp. Med. 195: 1003-1012.
    • (2002) J. Exp. Med , vol.195 , pp. 1003-1012
    • Rengarajan, J.1    Mowen, K.A.2    McBride, K.D.3
  • 141
    • 77955902281 scopus 로고    scopus 로고
    • Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells
    • Staudt, V., E. Bothur, M. Klein, et al. 2010. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33: 192-202.
    • (2010) Immunity , vol.33 , pp. 192-202
    • Staudt, V.1    Bothur, E.2    Klein, M.3
  • 142
    • 0037015052 scopus 로고    scopus 로고
    • Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4
    • Lohoff, M., H.-W. Mittrucker, S. Prechtl, et al. 2002. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc. Natl. Acad. Sci. USA 99: 11808-11812.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 11808-11812
    • Lohoff, M.1    Mittrucker, H.-W.2    Prechtl, S.3
  • 143
    • 84861872906 scopus 로고    scopus 로고
    • Transcription factor IRF4 determines germinal center formation through follicular Thelper cell differentiation
    • Bollig, N., A. Brustle, K. Kellner, et al. 2012. Transcription factor IRF4 determines germinal center formation through follicular Thelper cell differentiation. Proc. Natl. Acad. Sci. USA 109: 8664-8669.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 8664-8669
    • Bollig, N.1    Brustle, A.2    Kellner, K.3
  • 144
    • 71749089605 scopus 로고    scopus 로고
    • Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors
    • Kwon, H., D. Thierry-Mieg, J. Thierry-Mieg, et al. 2009. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31: 941-952.
    • (2009) Immunity , vol.31 , pp. 941-952
    • Kwon, H.1    Thierry-Mieg, D.2    Thierry-Mieg, J.3
  • 145
    • 58549094107 scopus 로고    scopus 로고
    • IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype
    • Huber, M., A. Brustle, K. Reinhard, et al. 2008. IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc. Natl. Acad. Sci. USA 105: 20846-20851.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 20846-20851
    • Huber, M.1    Brustle, A.2    Reinhard, K.3
  • 146
    • 79952955744 scopus 로고    scopus 로고
    • The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells
    • Cretney, E., A. Xin, W. Shi, et al. 2011. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12: 304-311.
    • (2011) Nat. Immunol , vol.12 , pp. 304-311
    • Cretney, E.1    Xin, A.2    Shi, W.3
  • 147
    • 33745182931 scopus 로고    scopus 로고
    • Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination
    • Klein, U., S. Casola, G. Cattoretti, et al. 2006. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7: 773-782.
    • (2006) Nat. Immunol , vol.7 , pp. 773-782
    • Klein, U.1    Casola, S.2    Cattoretti, G.3
  • 148
    • 33747133955 scopus 로고    scopus 로고
    • Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation
    • Sciammas, R., A. L. Shaffer, J. H. Schatz, et al. 2006. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25: 225-236.
    • (2006) Immunity , vol.25 , pp. 225-236
    • Sciammas, R.1    Shaffer, A.L.2    Schatz, J.H.3
  • 149
    • 47049120726 scopus 로고    scopus 로고
    • IRF4 addiction in multiple myeloma
    • Shaffer, A. L., N. C. Emre, L. Lamy, et al. 2008. IRF4 addiction in multiple myeloma. Nature 454: 226-231.
    • (2008) Nature , vol.454 , pp. 226-231
    • Shaffer, A.L.1    Emre, N.C.2    Lamy, L.3
  • 150
    • 84862152044 scopus 로고    scopus 로고
    • Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma
    • Yang, Y., A. L. Shaffer 3rd, N. C. Emre, et al. 2012. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 21: 723-737.
    • (2012) Cancer Cell , vol.21 , pp. 723-737
    • Yang, Y.1    Shaffer III, A.L.2    Emre, N.C.3
  • 151
    • 27644548945 scopus 로고    scopus 로고
    • Negative regulation of toll-like-receptor signaling by IRF-4
    • Negishi, H., Y. Ohba, H. Yanai, et al. 2005. Negative regulation of toll-like-receptor signaling by IRF-4. Proc. Natl. Acad. Sci. USA 102: 15989-15994.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 15989-15994
    • Negishi, H.1    Ohba, Y.2    Yanai, H.3
  • 152
    • 32644464262 scopus 로고    scopus 로고
    • IRF family proteins and type i interferon induction in dendritic cells
    • Tailor, P., T. Tamura, and K. Ozato. 2006. IRF family proteins and type I interferon induction in dendritic cells. Cell Res. 16: 134-140.
    • (2006) Cell Res , vol.16 , pp. 134-140
    • Tailor, P.1    Tamura, T.2    Ozato, K.3
  • 153
    • 80053926066 scopus 로고    scopus 로고
    • Shared and distinct functions of the transcription factors IRF4 and IRF8 in myeloid cell development
    • Yamamoto, M., T. Kato, C. Hotta, et al. 2011. Shared and distinct functions of the transcription factors IRF4 and IRF8 in myeloid cell development. PLoS ONE 6: e25812.
    • (2011) PLoS ONE , vol.6
    • Yamamoto, M.1    Kato, T.2    Hotta, C.3
  • 154
    • 79960943876 scopus 로고    scopus 로고
    • IRF4 deficiency abrogates lupus nephritis despite enhancing systemic cytokine production
    • Lech, M., M. Weidenbusch, O. P. Kulkarni, et al. 2011. IRF4 deficiency abrogates lupus nephritis despite enhancing systemic cytokine production. J. Am. Soc. Nephrol. 22: 1443-1452.
    • (2011) J. Am. Soc. Nephrol , vol.22 , pp. 1443-1452
    • Lech, M.1    Weidenbusch, M.2    Kulkarni, O.P.3
  • 155
    • 77956361520 scopus 로고    scopus 로고
    • Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice
    • Biswas, P., S. Gupta, E. Chang, et al. 2010. Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice. J. Clin. Invest. 120: 3280-3295.
    • (2010) J. Clin. Invest , vol.120 , pp. 3280-3295
    • Biswas, P.1    Gupta, S.2    Chang, E.3
  • 156
    • 33644637826 scopus 로고    scopus 로고
    • Loss of IRF-4-binding protein leads to the spontaneous development of systemic autoimmunity
    • Fanzo, J. C., W. Yang, S. Y. Jang, et al. 2006. Loss of IRF-4-binding protein leads to the spontaneous development of systemic autoimmunity. J. Clin. Invest. 116: 703-714.
    • (2006) J. Clin. Invest , vol.116 , pp. 703-714
    • Fanzo, J.C.1    Yang, W.2    Jang, S.Y.3
  • 157
    • 0037382339 scopus 로고    scopus 로고
    • Molecular cloning of IBP, a SWAP-70 homologous GEF, which is highly expressed in the immune system
    • Gupta, S., A. Lee, C. Hu, et al. 2003. Molecular cloning of IBP, a SWAP-70 homologous GEF, which is highly expressed in the immune system. Human Immunol. 64: 389-401.
    • (2003) Human Immunol , vol.64 , pp. 389-401
    • Gupta, S.1    Lee, A.2    Hu, C.3
  • 158
    • 84860376756 scopus 로고    scopus 로고
    • Dual regulation of IRF4 function in T and B cells is required for the coordination of T-B cell interactions and the prevention of autoimmunity
    • Biswas, P. S., S. Gupta, R. A. Stirzaker, et al. 2012. Dual regulation of IRF4 function in T and B cells is required for the coordination of T-B cell interactions and the prevention of autoimmunity. J. Exp. Med. 209: 581-596.
    • (2012) J. Exp. Med , vol.209 , pp. 581-596
    • Biswas, P.S.1    Gupta, S.2    Stirzaker, R.A.3
  • 159
    • 31344465701 scopus 로고    scopus 로고
    • E2A and IRF-4/Pip promote chromatin modification and transcription of the immunoglobulin kappa locus in pre-B cells
    • Lazorchak, A. S., M. S. Schlissel, and Y. Zhuang. 2006. E2A and IRF-4/Pip promote chromatin modification and transcription of the immunoglobulin kappa locus in pre-B cells. Mol. Cell. Biol. 26: 810-821.
    • (2006) Mol. Cell. Biol , vol.26 , pp. 810-821
    • Lazorchak, A.S.1    Schlissel, M.S.2    Zhuang, Y.3
  • 160
    • 33751567260 scopus 로고    scopus 로고
    • IFN regulatory factor 4 and 8 promote Ig light chain kappa locus activation in pre-B cell development
    • Ma, S., A. Turetsky, L. Trinh, et al. 2006. IFN regulatory factor 4 and 8 promote Ig light chain kappa locus activation in pre-B cell development. J. Immunol. 177: 7898-7904.
    • (2006) J. Immunol , vol.177 , pp. 7898-7904
    • Ma, S.1    Turetsky, A.2    Trinh, L.3
  • 161
    • 84878642483 scopus 로고    scopus 로고
    • Transcription-coupled eviction of histones H2A/H2B governs V(D)
    • Bevington, S., and J. Boyes. 2012. Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination. EMBO J 32: 1381-1392.
    • (2012) J Recombination. EMBO J , vol.32 , pp. 1381-1392
    • Bevington, S.1    Boyes, J.2
  • 162
    • 84867581744 scopus 로고    scopus 로고
    • A validated regulatory network for Th17 cell specification
    • Ciofani, M., A. Madar, C. Galan, et al. 2012. A validated regulatory network for Th17 cell specification. Cell 151: 289-303.
    • (2012) Cell , vol.151 , pp. 289-303
    • Ciofani, M.1    Madar, A.2    Galan, C.3
  • 163
    • 79952112644 scopus 로고    scopus 로고
    • Interferon regulatory factor 4 regulates thymocyte differentiation by repressing Runx3 expression
    • Cao, Y., H. Li, Y. Sun, et al. 2010. Interferon regulatory factor 4 regulates thymocyte differentiation by repressing Runx3 expression. Eur. J. Immunol. 40: 3198-3209.
    • (2010) Eur. J. Immunol , vol.40 , pp. 3198-3209
    • Cao, Y.1    Li, H.2    Sun, Y.3
  • 164
    • 84870217929 scopus 로고    scopus 로고
    • Interferon regulatory factor 5 in the pathogenesis of systemic lupus erythematosus
    • Cham, C. M., K. Ko, and T. B. Niewold. 2012. Interferon regulatory factor 5 in the pathogenesis of systemic lupus erythematosus. Clin. Dev. Immunol. 2012: 780436.
    • (2012) Clin. Dev. Immunol , vol.2012 , pp. 780436
    • Cham, C.M.1    Ko, K.2    Niewold, T.B.3
  • 165
    • 37349039478 scopus 로고    scopus 로고
    • The genetics and biology of Irf5-mediated signaling in lupus
    • Kozyrev, S. V., and M. E. Alarcon-Riquelme. 2007. The genetics and biology of Irf5-mediated signaling in lupus. Autoimmunity 40: 591-601.
    • (2007) Autoimmunity , vol.40 , pp. 591-601
    • Kozyrev, S.V.1    Alarcon-Riquelme, M.E.2
  • 166
    • 79951482447 scopus 로고    scopus 로고
    • Genderdependent expression of murine Irf5 gene: Implications for sex bias in autoimmunity
    • Shen, H., R. Panchanathan, P. Rajavelu, et al. 2010. Genderdependent expression of murine Irf5 gene: implications for sex bias in autoimmunity. J. Mol. Cell. Biol. 2: 284-290.
    • (2010) J. Mol. Cell. Biol , vol.2 , pp. 284-290
    • Shen, H.1    Panchanathan, R.2    Rajavelu, P.3
  • 168
    • 77954635384 scopus 로고    scopus 로고
    • DNA methylation of interferon regulatory factors in gastric cancer and noncancerous gastric mucosae
    • Yamashita, M., M. Toyota, H. Suzuki, et al. 2010. DNA methylation of interferon regulatory factors in gastric cancer and noncancerous gastric mucosae. Cancer Sci. 101: 1708-1716.
    • (2010) Cancer Sci , vol.101 , pp. 1708-1716
    • Yamashita, M.1    Toyota, M.2    Suzuki, H.3
  • 169
    • 77953290791 scopus 로고    scopus 로고
    • Assessment of DNA methylation at the interferon regulatory factor 5 (IRF5) promoter region in inflammatory bowel diseases
    • Balasa, A., G. Gathungu, P. Kisfali, et al. 2010. Assessment of DNA methylation at the interferon regulatory factor 5 (IRF5) promoter region in inflammatory bowel diseases. Int. J. Colorectal Dis. 25: 553-556.
    • (2010) Int. J. Colorectal Dis , vol.25 , pp. 553-556
    • Balasa, A.1    Gathungu, G.2    Kisfali, P.3
  • 170
    • 84873703760 scopus 로고    scopus 로고
    • Methylation profile of the promoter region of IRF5 in primary Sjogren's syndrome
    • Gestermann, N., M. Koutero, R. Belkhir, et al. 2012. Methylation profile of the promoter region of IRF5 in primary Sjogren's syndrome. Eur. Cytokine Netw. 23: 166-172.
    • (2012) Eur. Cytokine Netw , vol.23 , pp. 166-172
    • Gestermann, N.1    Koutero, M.2    Belkhir, R.3
  • 171
    • 84876377429 scopus 로고    scopus 로고
    • A MycmicroRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes
    • Polioudakis, D., A. A. Bhinge, P. J. Killion, et al. 2013. A MycmicroRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res. 41: 2239-2254.
    • (2013) Nucleic Acids Res , vol.41 , pp. 2239-2254
    • Polioudakis, D.1    Bhinge, A.A.2    Killion, P.J.3
  • 172
    • 65249138193 scopus 로고    scopus 로고
    • MicroRNA-146A contributes to abnormal activation of the type i interferon pathway in human lupus by targeting the key signaling proteins
    • Tang, Y., X. Luo, H. Cui, et al. 2009. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 60: 1065-1075.
    • (2009) Arthritis Rheum , vol.60 , pp. 1065-1075
    • Tang, Y.1    Luo, X.2    Cui, H.3
  • 173
    • 15044345461 scopus 로고    scopus 로고
    • Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors
    • Takaoka, A., H. Yanai, S. Kondo, et al. 2005. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434: 243-249.
    • (2005) Nature , vol.434 , pp. 243-249
    • Takaoka, A.1    Yanai, H.2    Kondo, S.3
  • 174
    • 79951671510 scopus 로고    scopus 로고
    • IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses
    • Krausgruber, T., K. Blazek, T. Smallie, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12: 231-238.
    • (2011) Nat. Immunol , vol.12 , pp. 231-238
    • Krausgruber, T.1    Blazek, K.2    Smallie, T.3
  • 175
    • 79551508963 scopus 로고    scopus 로고
    • Critical role of IRF-5 in the development of T helper 1 responses to Leishmania donovani infection
    • Paun, A., R. Bankoti, T. Joshi, et al. 2011. Critical role of IRF-5 in the development of T helper 1 responses to Leishmania donovani infection. PLoS Pathog. 7: e1001246.
    • (2011) PLoS Pathog , vol.7
    • Paun, A.1    Bankoti, R.2    Joshi, T.3
  • 176
    • 84864137558 scopus 로고    scopus 로고
    • Unique contribution of IRF-5-Ikaros axis to the B-cell IgG2a response
    • Fang, C. M., S. Roy, E. Nielsen, et al. 2012. Unique contribution of IRF-5-Ikaros axis to the B-cell IgG2a response. Genes Immun. 13: 421-430.
    • (2012) Genes Immun , vol.13 , pp. 421-430
    • Fang, C.M.1    Roy, S.2    Nielsen, E.3
  • 177
    • 77949518633 scopus 로고    scopus 로고
    • Critical role of IRF-5 in regulation of B-cell differentiation
    • Lien, C., C. M. Fang, D. Huso, et al. 2010. Critical role of IRF-5 in regulation of B-cell differentiation. Proc. Natl. Acad. Sci. USA 107: 4664-4668.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 4664-4668
    • Lien, C.1    Fang, C.M.2    Huso, D.3
  • 178
    • 77953368347 scopus 로고    scopus 로고
    • Contribution of IRF5 in B cells to the development of murine SLE-like disease through its transcriptional control of the IgG2a locus
    • Savitsky, D. A., H. Yanai, T. Tamura, et al. 2010. Contribution of IRF5 in B cells to the development of murine SLE-like disease through its transcriptional control of the IgG2a locus. Proc. Natl. Acad. Sci. USA 107: 10154-10159.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 10154-10159
    • Savitsky, D.A.1    Yanai, H.2    Tamura, T.3
  • 179
    • 84859612798 scopus 로고    scopus 로고
    • Spontaneous mutation of the Dock2 gene in Irf5-/-mice complicates interpretation of type i interferon production and antibody responses
    • Purtha, W. E., M. Swiecki, M. Colonna, et al. 2012. Spontaneous mutation of the Dock2 gene in Irf5-/-mice complicates interpretation of type I interferon production and antibody responses. Proc. Natl. Acad. Sci. USA 109: E898-E904.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109
    • Purtha, W.E.1    Swiecki, M.2    Colonna, M.3
  • 180
    • 84862132098 scopus 로고    scopus 로고
    • Irf5-deficient mice are protected from pristane-induced lupus via increased Th2 cytokines and altered IgG class switching
    • Feng, D., L. Yang, X. Bi, et al. 2012. Irf5-deficient mice are protected from pristane-induced lupus via increased Th2 cytokines and altered IgG class switching. Eur. J. Immunol. 42: 1477-1487.
    • (2012) Eur. J. Immunol , vol.42 , pp. 1477-1487
    • Feng, D.1    Yang, L.2    Bi, X.3
  • 181
    • 79953718368 scopus 로고    scopus 로고
    • Interferon regulatory factor 5 is critical for the development of lupus in MRL/lpr mice
    • Tada, Y., S. Kondo, S. Aoki, et al. 2011. Interferon regulatory factor 5 is critical for the development of lupus in MRL/lpr mice. Arthritis Rheum. 63: 738-748.
    • (2011) Arthritis Rheum , vol.63 , pp. 738-748
    • Tada, Y.1    Kondo, S.2    Aoki, S.3
  • 182
    • 84860351105 scopus 로고    scopus 로고
    • Pleiotropic IFN-dependent and-independent effects of IRF5 on the pathogenesis of experimental lupus
    • Xu, Y., P. Y. Lee, Y. Li, et al. 2012. Pleiotropic IFN-dependent and-independent effects of IRF5 on the pathogenesis of experimental lupus. J. Immunol. 188: 4113-4121.
    • (2012) J. Immunol , vol.188 , pp. 4113-4121
    • Xu, Y.1    Lee, P.Y.2    Li, Y.3
  • 183
    • 84866556348 scopus 로고    scopus 로고
    • Monocytes from Irf5-/-mice have an intrinsic defect in their response to pristane-induced lupus
    • Yang, L., D. Feng, X. Bi, et al. 2012. Monocytes from Irf5-/-mice have an intrinsic defect in their response to pristane-induced lupus. J. Immunol. 189: 3741-3750.
    • (2012) J. Immunol , vol.189 , pp. 3741-3750
    • Yang, L.1    Feng, D.2    Bi, X.3
  • 184
    • 76249125968 scopus 로고    scopus 로고
    • IFN regulatory factor 5 is required for disease development in the FcgammaRIIB-/-Yaa and FcgammaRIIB-/-mouse models of systemic lupus erythematosus
    • Richez, C., K. Yasuda, R. G. Bonegio, et al. 2010. IFN regulatory factor 5 is required for disease development in the FcgammaRIIB-/-Yaa and FcgammaRIIB-/-mouse models of systemic lupus erythematosus. J. Immunol. 184: 796-806.
    • (2010) J. Immunol , vol.184 , pp. 796-806
    • Richez, C.1    Yasuda, K.2    Bonegio, R.G.3
  • 185
    • 78650637976 scopus 로고    scopus 로고
    • Differential requirement of histone acetylase and deacetylase activities for IRF5-mediated proinflammatory cytokine expression
    • Feng, D., N. Sangster-Guity, R. Stone, et al. 2010. Differential requirement of histone acetylase and deacetylase activities for IRF5-mediated proinflammatory cytokine expression. J. Immunol. 185: 6003-6012.
    • (2010) J. Immunol , vol.185 , pp. 6003-6012
    • Feng, D.1    Sangster-Guity, N.2    Stone, R.3
  • 186
    • 84869080573 scopus 로고    scopus 로고
    • KAP1/TRIM28: An inhibitor of IRF5 function in inflammatory macrophages
    • Eames, H. L., D. G. Saliba, T. Krausgruber, et al. 2012. KAP1/TRIM28: an inhibitor of IRF5 function in inflammatory macrophages. Immunobiology 217: 1315-1324.
    • (2012) Immunobiology , vol.217 , pp. 1315-1324
    • Eames, H.L.1    Saliba, D.G.2    Krausgruber, T.3
  • 187
    • 66549125977 scopus 로고    scopus 로고
    • IRF8 regulates myeloid and B lymphoid lineage diversification
    • Wang, H., and H. C. Morse 3rd. 2009. IRF8 regulates myeloid and B lymphoid lineage diversification. Immunol. Res. 43: 109-117.
    • (2009) Immunol. Res , vol.43 , pp. 109-117
    • Wang, H.1    Morse III, H.C.2
  • 188
    • 33750839981 scopus 로고    scopus 로고
    • Stages of germinal center transit are defined by B cell transcription factor coexpression and relative abundance
    • Cattoretti, G., R. Shaknovich, P. M. Smith, et al. 2006. Stages of germinal center transit are defined by B cell transcription factor coexpression and relative abundance. J. Immunol. 177: 6930-6939.
    • (2006) J. Immunol , vol.177 , pp. 6930-6939
    • Cattoretti, G.1    Shaknovich, R.2    Smith, P.M.3
  • 189
    • 84866527136 scopus 로고    scopus 로고
    • Interferon regulatory factor-8 is important for histone deacetylase inhibitormediated antitumor activity
    • Banik, D., A. N. Khan, E. Walseng, et al. 2012. Interferon regulatory factor-8 is important for histone deacetylase inhibitormediated antitumor activity. PLoS ONE 7: e45422.
    • (2012) PLoS ONE , vol.7
    • Banik, D.1    Khan, A.N.2    Walseng, E.3
  • 190
    • 51349083104 scopus 로고    scopus 로고
    • Epigenetic disruption of interferon-gamma response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas
    • Lee, K. Y., H. Geng, K. M. Ng, et al. 2008. Epigenetic disruption of interferon-gamma response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas. Oncogene 27: 5267-5276.
    • (2008) Oncogene , vol.27 , pp. 5267-5276
    • Lee, K.Y.1    Geng, H.2    Ng, K.M.3
  • 191
    • 57749097557 scopus 로고    scopus 로고
    • DNA methylation represses IFN-gamma-induced and signal transducer and activator of transcription 1-mediated IFN regulatory factor 8 activation in colon carcinoma cells
    • McGough, J. M., D. Yang, S. Huang, et al. 2008. DNA methylation represses IFN-gamma-induced and signal transducer and activator of transcription 1-mediated IFN regulatory factor 8 activation in colon carcinoma cells. Mol. Cancer Res. 6: 1841-1851.
    • (2008) Mol. Cancer Res , vol.6 , pp. 1841-1851
    • McGough, J.M.1    Yang, D.2    Huang, S.3
  • 192
    • 34248230089 scopus 로고    scopus 로고
    • Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells
    • Yang, D., M. Thangaraju, K. Greeneltch, et al. 2007. Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells. Cancer Res. 67: 3301-3309.
    • (2007) Cancer Res , vol.67 , pp. 3301-3309
    • Yang, D.1    Thangaraju, M.2    Greeneltch, K.3
  • 193
    • 84872255978 scopus 로고    scopus 로고
    • BCL6 positively regulates AID and germinal center gene expression via repression of miR-155
    • Basso, K., C. Schneider, Q. Shen, et al. 2012. BCL6 positively regulates AID and germinal center gene expression via repression of miR-155. J. Exp. Med. 209: 2455-2465.
    • (2012) J. Exp. Med , vol.209 , pp. 2455-2465
    • Basso, K.1    Schneider, C.2    Shen, Q.3
  • 194
    • 84871262291 scopus 로고    scopus 로고
    • MiR-22 controls Irf8 mRNA abundance and murine dendritic cell development
    • Li, H. S., N. Greeley, N. Sugimoto, et al. 2012. miR-22 controls Irf8 mRNA abundance and murine dendritic cell development. PLoS ONE 7: e52341.
    • (2012) PLoS ONE , vol.7
    • Li, H.S.1    Greeley, N.2    Sugimoto, N.3
  • 195
    • 79959854280 scopus 로고    scopus 로고
    • Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis
    • Marquis, J. F., O. Kapoustina, D. Langlais, et al. 2011. Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis. PLoS Genet. 7: e1002097.
    • (2011) PLoS Genet , vol.7
    • Marquis, J.F.1    Kapoustina, O.2    Langlais, D.3
  • 196
    • 33748131877 scopus 로고    scopus 로고
    • Identification of IRF-8 and IRF-1 target genes in activated macrophages
    • Dror, N., M. Alter-Koltunoff, A. Azriel, et al. 2007. Identification of IRF-8 and IRF-1 target genes in activated macrophages. Mol. Immunol. 44: 338-346.
    • (2007) Mol. Immunol , vol.44 , pp. 338-346
    • Dror, N.1    Alter-Koltunoff, M.2    Azriel, A.3
  • 197
    • 82555166971 scopus 로고    scopus 로고
    • Transcription factor networks in dendritic cell development
    • Satpathy, A. T., K. M. Murphy, and W. Kc. 2011. Transcription factor networks in dendritic cell development. Semin. Immunol. 23: 388-397.
    • (2011) Semin. Immunol , vol.23 , pp. 388-397
    • Satpathy, A.T.1    Murphy, K.M.2    Kc, W.3
  • 198
    • 34548035397 scopus 로고    scopus 로고
    • The feedback phase of type i interferon induction in dendritic cells requires interferon regulatory factor 8
    • Tailor, P., T. Tamura, H. J. Kong, et al. 2007. The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 27: 228-239.
    • (2007) Immunity , vol.27 , pp. 228-239
    • Tailor, P.1    Tamura, T.2    Kong, H.J.3
  • 199
    • 0033567084 scopus 로고    scopus 로고
    • Roles of IFN consensus sequence binding protein and PU.1 in regulating IL-18 gene expression
    • Kim, Y. M., H. S. Kang, S. G. Paik, et al. 1999. Roles of IFN consensus sequence binding protein and PU.1 in regulating IL-18 gene expression. J. Immunol. 163: 2000-2007.
    • (1999) J. Immunol , vol.163 , pp. 2000-2007
    • Kim, Y.M.1    Kang, H.S.2    Paik, S.G.3
  • 200
    • 79956279442 scopus 로고    scopus 로고
    • Transcription factor IRF8 directs a silencing programme for TH17 cell differentiation
    • Ouyang, X., R. Zhang, J. Yang, et al. 2011. Transcription factor IRF8 directs a silencing programme for TH17 cell differentiation. Nat. Commun. 2: 314.
    • (2011) Nat. Commun , vol.2 , pp. 314
    • Ouyang, X.1    Zhang, R.2    Yang, J.3
  • 201
    • 0034235928 scopus 로고    scopus 로고
    • An IFN-gammainducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages
    • Wang, I. M., C. Contursi, A. Masumi, et al. 2000. An IFN-gammainducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. J. Immunol. 165: 271-279.
    • (2000) J. Immunol , vol.165 , pp. 271-279
    • Wang, I.M.1    Contursi, C.2    Masumi, A.3
  • 202
    • 0038506030 scopus 로고    scopus 로고
    • IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development
    • Lu, R., K. L. Medina, D. W. Lancki, et al. 2003. IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev. 17: 1703-1708.
    • (2003) Genes Dev , vol.17 , pp. 1703-1708
    • Lu, R.1    Medina, K.L.2    Lancki, D.W.3
  • 203
    • 80855134317 scopus 로고    scopus 로고
    • IRF8 governs expression of genes involved in innate and adaptive immunity in human and mouse germinal center B cells
    • Shin, D. M., C. H. Lee, and H. C. Morse 3rd. 2011. IRF8 governs expression of genes involved in innate and adaptive immunity in human and mouse germinal center B cells. PLoS ONE 6: e27384.
    • (2011) PLoS ONE , vol.6
    • Shin, D.M.1    Lee, C.H.2    Morse III, H.C.3
  • 204
    • 80055080962 scopus 로고    scopus 로고
    • Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus
    • Cunninghame Graham, D. S., D. L. Morris, T. R. Bhangale, et al. 2011. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet. 7: e1002341.
    • (2011) PLoS Genet , vol.7
    • Cunninghame Graham, D.S.1    Morris, D.L.2    Bhangale, T.R.3
  • 205
    • 84859491100 scopus 로고    scopus 로고
    • Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study
    • Lessard, C. J., I. Adrianto, J. A. Ice, et al. 2012. Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am. J. Hum. Genet. 90: 648-660.
    • (2012) Am. J. Hum. Genet , vol.90 , pp. 648-660
    • Lessard, C.J.1    Adrianto, I.2    Ice, J.A.3
  • 206
    • 84874229894 scopus 로고    scopus 로고
    • Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid dendritic cells in the pathogenesis of lupus
    • Baccala, R., R. Gonzalez-Quintial, A. L. Blasius, et al. 2013. Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid dendritic cells in the pathogenesis of lupus. Proc. Natl. Acad. Sci. USA 110: 2940-2945.
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 2940-2945
    • Baccala, R.1    Gonzalez-Quintial, R.2    Blasius, A.L.3
  • 208
    • 0036837865 scopus 로고    scopus 로고
    • Gamma interferon triggers interaction between ICSBP (IRF-8) and TEL, recruiting the histone deacetylase HDAC3 to the interferon-responsive element
    • Kuwata, T., C. Gongora, Y. Kanno, et al. 2002. Gamma interferon triggers interaction between ICSBP (IRF-8) and TEL, recruiting the histone deacetylase HDAC3 to the interferon-responsive element. Mol. Cell. Biol. 22: 7439-7448.
    • (2002) Mol. Cell. Biol , vol.22 , pp. 7439-7448
    • Kuwata, T.1    Gongora, C.2    Kanno, Y.3
  • 209
    • 77956656509 scopus 로고    scopus 로고
    • Interferon consensus sequence binding protein (ICSBP) decreases betacatenin activity in myeloid cells by repressing GAS2 transcription
    • Huang, W., W. Zhou, G. Saberwal, et al. 2010. Interferon consensus sequence binding protein (ICSBP) decreases betacatenin activity in myeloid cells by repressing GAS2 transcription. Mol. Cell. Biol. 30: 4575-4594.
    • (2010) Mol. Cell. Biol , vol.30 , pp. 4575-4594
    • Huang, W.1    Zhou, W.2    Saberwal, G.3
  • 210
    • 79951837401 scopus 로고    scopus 로고
    • Critical role of IRF-8 in negative regulation of TLR3 expression by Src homology 2 domain-containing protein tyrosine phosphatase-2 activity in human myeloid dendritic cells
    • Fragale, A., E. Stellacci, R. Ilari, et al. 2011. Critical role of IRF-8 in negative regulation of TLR3 expression by Src homology 2 domain-containing protein tyrosine phosphatase-2 activity in human myeloid dendritic cells. J. Immunol. 186: 1951-1962.
    • (2011) J. Immunol , vol.186 , pp. 1951-1962
    • Fragale, A.1    Stellacci, E.2    Ilari, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.