메뉴 건너뛰기




Volumn 189, Issue 3, 2011, Pages 705-736

Transcriptional regulation in saccharomyces cerevisiae: Transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators

Author keywords

[No Author keywords available]

Indexed keywords

CARRIER PROTEIN; MESSENGER RNA; RNA POLYMERASE II; TRANSCRIPTION ACTIVATOR; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR ADR1; TRANSCRIPTION FACTOR GAL11; TRANSCRIPTION FACTOR GAL4; TRANSCRIPTION FACTOR GCN4; TRANSCRIPTION FACTOR HAP1; TRANSCRIPTION FACTOR HSF1; TRANSCRIPTION FACTOR IID; TRANSCRIPTION FACTOR LEU3; TRANSCRIPTION FACTOR SAGA; TRANSCRIPTION FACTOR ZAP1; UNCLASSIFIED DRUG;

EID: 81255210794     PISSN: 00166731     EISSN: 19432631     Source Type: Journal    
DOI: 10.1534/genetics.111.127019     Document Type: Article
Times cited : (260)

References (439)
  • 1
    • 3042857554 scopus 로고    scopus 로고
    • Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae
    • Agricola, E., L. Verdone, B. Xella, E. Di Mauro, and M. Caserta, 2004 Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae. Biochemistry 43: 8878-8884.
    • (2004) Biochemistry , vol.43 , pp. 8878-8884
    • Agricola, E.1    Verdone, L.2    Xella, B.3    di Mauro, E.4    Caserta, M.5
  • 2
    • 33750742731 scopus 로고    scopus 로고
    • H4 acetylation does not replace H3 acetylation in chromatin remodelling and transcription activation of Adr1-dependent genes
    • Agricola, E., L. Verdone, E. Di Mauro, and M. Caserta, 2006 H4 acetylation does not replace H3 acetylation in chromatin remodelling and transcription activation of Adr1-dependent genes. Mol. Microbiol. 62: 1433-1446.
    • (2006) Mol. Microbiol , vol.62 , pp. 1433-1446
    • Agricola, E.1    Verdone, L.2    Di Mauro, E.3    Caserta, M.4
  • 3
    • 65549156025 scopus 로고    scopus 로고
    • TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II
    • Akhtar, M. S., M. Heidemann, J. R. Tietjen, D. W. Zhang, R. D. Chapman et al., 2009 TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34: 387-393.
    • (2009) Mol. Cell , vol.34 , pp. 387-393
    • Akhtar, M.S.1    Heidemann, M.2    Tietjen, J.R.3    Zhang, D.W.4    Chapman, R.D.5
  • 4
    • 34047111213 scopus 로고    scopus 로고
    • Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome
    • Albert, I., T. N. Mavrich, L. P. Tomsho, J. Qi, S. J. Zanton et al., 2007 Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446: 572-576.
    • (2007) Nature , vol.446 , pp. 572-576
    • Albert, I.1    Mavrich, T.N.2    Tomsho, L.P.3    Qi, J.4    Zanton, S.J.5
  • 5
    • 0033567954 scopus 로고    scopus 로고
    • NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing esa1p and the ATM-related cofactor tra1p
    • In Process Citation
    • Allard, S., R. T. Utley, J. Savard, A. Clarke, P. Grant et al., 1999 NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing esa1p and the ATM-related cofactor tra1p. [In Process Citation] EMBO J. 18: 5108-5119.
    • (1999) EMBO J , vol.18 , pp. 5108-5119
    • Allard, S.1    Utley, R.T.2    Savard, J.3    Clarke, A.4    Grant, P.5
  • 6
    • 0022799080 scopus 로고
    • Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements
    • Almer, A., H. Rudolph, A. Hinnen, and W. Horz, 1986 Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5: 2689-2696.
    • (1986) EMBO J , vol.5 , pp. 2689-2696
    • Almer, A.1    Rudolph, H.2    Hinnen, A.3    Horz, W.4
  • 7
    • 0032765083 scopus 로고    scopus 로고
    • Three-dimensional structure of the human TFIID-IIA-IIB complex
    • Andel, F. III. A. G. Ladurner, C. Inouye, R. Tjian, and E. Nogales, 1999 Three-dimensional structure of the human TFIID-IIA-IIB complex. Science 286: 2153-2156.
    • (1999) Science , vol.286 , pp. 2153-2156
    • Andel, F.1    Inouye, C.2    Tjian, R.3    Nogales, E.4
  • 8
    • 33646023157 scopus 로고    scopus 로고
    • Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA
    • Andrau, J. C., L. van de Pasch, P. Lijnzaad, T. Bijma, M. G. Koerkamp et al., 2006 Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA. Mol. Cell 22: 179-192.
    • (2006) Mol. Cell , vol.22 , pp. 179-192
    • Andrau, J.C.1    van de Pasch, L.2    Lijnzaad, P.3    Bijma, T.4    Koerkamp, M.G.5
  • 9
    • 57749121616 scopus 로고    scopus 로고
    • A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters
    • Badis, G., E. T. Chan, H. van Bakel, L. Pena-Castillo, D. Tillo et al., 2008 A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell 32: 878-887.
    • (2008) Mol. Cell , vol.32 , pp. 878-887
    • Badis, G.1    Chan, E.T.2    van Bakel, H.3    Pena-Castillo, L.4    Tillo, D.5
  • 10
    • 0024066720 scopus 로고
    • Yeast regulatory gene GAL3: Carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases
    • Bajwa, W., T. E. Torchia, and J. E. Hopper, 1988 Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol. Cell. Biol. 8: 3439-3447.
    • (1988) Mol. Cell. Biol , vol.8 , pp. 3439-3447
    • Bajwa, W.1    Torchia, T.E.2    Hopper, J.E.3
  • 11
    • 34547879583 scopus 로고    scopus 로고
    • The SAGA continues: Expanding the cellular role of a transcriptional co-activator complex
    • Baker, S. P., and P. A. Grant, 2007 The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26: 5329-5340.
    • (2007) Oncogene , vol.26 , pp. 5329-5340
    • Baker, S.P.1    Grant, P.A.2
  • 12
    • 0037041022 scopus 로고    scopus 로고
    • Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation
    • Balasubramanian, R., M. G. Pray-Grant, W. Selleck, P. A. Grant, and S. Tan, 2002 Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation. J. Biol. Chem. 277: 7989-7995.
    • (2002) J. Biol. Chem , vol.277 , pp. 7989-7995
    • Balasubramanian, R.1    Pray-Grant, M.G.2    Selleck, W.3    Grant, P.A.4    Tan, S.5
  • 13
    • 0347481390 scopus 로고    scopus 로고
    • The Hsp90 molecular chaperone complex regulates maltose induc tion and stability of the Saccharomyces MAL gene transcription activator Mal63p
    • Bali, M., B. Zhang, K. A. Morano, and C. A. Michels, 2003 The Hsp90 molecular chaperone complex regulates maltose induc tion and stability of the Saccharomyces MAL gene transcription activator Mal63p. J. Biol. Chem. 278: 47441-47448.
    • (2003) J. Biol. Chem , vol.278 , pp. 47441-47448
    • Bali, M.1    Zhang, B.2    Morano, K.A.3    Michels, C.A.4
  • 14
    • 0038185286 scopus 로고    scopus 로고
    • Multiple mechanistically distinct functions of SAGA at the PHO5 promoter
    • Barbaric, S., H. Reinke, and W. Horz, 2003 Multiple mechanistically distinct functions of SAGA at the PHO5 promoter. Mol. Cell. Biol. 23: 3468-3476.
    • (2003) Mol. Cell. Biol , vol.23 , pp. 3468-3476
    • Barbaric, S.1    Reinke, H.2    Horz, W.3
  • 15
    • 0029005178 scopus 로고
    • Contact with a compnent of the polymerase II holoenzyme suffices for gene activation
    • Barberis, A., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinagel et al., 1995 Contact with a compnent of the polymerase II holoenzyme suffices for gene activation. Cell 81: 359-368.
    • (1995) Cell , vol.81 , pp. 359-368
    • Barberis, A.1    Pearlberg, J.2    Simkovich, N.3    Farrell, S.4    Reinagel, P.5
  • 16
    • 1542328960 scopus 로고    scopus 로고
    • Identification and distinct regulation of yeast TATA box-containing genes
    • Basehoar, A. D., S. J. Zanton, and B. F. Pugh, 2004 Identification and distinct regulation of yeast TATA box-containing genes. Cell 116: 699-709.
    • (2004) Cell , vol.116 , pp. 699-709
    • Basehoar, A.D.1    Zanton, S.J.2    Pugh, B.F.3
  • 17
    • 24044470632 scopus 로고    scopus 로고
    • A conserved mediator hinge revealed in the structure of the MED7.MED21 (Med7.Srb7) heterodimer
    • Baumli, S., S. Hoeppner, and P. Cramer, 2005 A conserved mediator hinge revealed in the structure of the MED7.MED21 (Med7.Srb7) heterodimer. J. Biol. Chem. 280: 18171-18178.
    • (2005) J. Biol. Chem , vol.280 , pp. 18171-18178
    • Baumli, S.1    Hoeppner, S.2    Cramer, P.3
  • 18
    • 0033957403 scopus 로고    scopus 로고
    • Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters
    • Belotserkovskaya, R., D. E. Sterner, M. Deng, M. H. Sayre, P. M. Lieberman et al., 2000 Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters. Mol. Cell. Biol. 20: 634-647.
    • (2000) Mol. Cell. Biol , vol.20 , pp. 634-647
    • Belotserkovskaya, R.1    Sterner, D.E.2    Deng, M.3    Sayre, M.H.4    Lieberman, P.M.5
  • 19
    • 0026645025 scopus 로고
    • Genetic isolation of ADA2: A potential transcriptional adaptor required for function of certain acidic activation domains
    • Berger, S. L., B. Pina, N. Silverman, G. A. Marcus, J. Agapite et al., 1992 Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70: 251-265.
    • (1992) Cell , vol.70 , pp. 251-265
    • Berger, S.L.1    Pina, B.2    Silverman, N.3    Marcus, G.A.4    Agapite, J.5
  • 21
    • 69949159297 scopus 로고    scopus 로고
    • Pervasive transcription constitutes a new level of eukaryotic genome regulation
    • Berretta, J., and A. Morillon, 2009 Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep. 10: 973-982.
    • (2009) EMBO Rep , vol.10 , pp. 973-982
    • Berretta, J.1    Morillon, A.2
  • 22
  • 23
    • 0036838096 scopus 로고    scopus 로고
    • Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo
    • Bhaumik, S. R., and M. R. Green, 2002 Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Mol. Cell. Biol. 22: 7365-7371.
    • (2002) Mol. Cell. Biol , vol.22 , pp. 7365-7371
    • Bhaumik, S.R.1    Green, M.R.2
  • 24
    • 1042289670 scopus 로고    scopus 로고
    • In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer
    • Bhaumik, S. R., T. Raha, D. P. Aiello, and M. R. Green, 2004 In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes Dev. 18: 333-343.
    • (2004) Genes Dev , vol.18 , pp. 333-343
    • Bhaumik, S.R.1    Raha, T.2    Aiello, D.P.3    Green, M.R.4
  • 25
    • 0035883746 scopus 로고    scopus 로고
    • The Swi5 activator recruits the Mediator complex to the HO promoter without RNA polymerase II
    • Bhoite, L. T., Y. Yu, and D. J. Stillman, 2001 The Swi5 activator recruits the Mediator complex to the HO promoter without RNA polymerase II. Genes Dev. 15: 2457-2469.
    • (2001) Genes Dev , vol.15 , pp. 2457-2469
    • Bhoite, L.T.1    Yu, Y.2    Stillman, D.J.3
  • 26
    • 25144501171 scopus 로고    scopus 로고
    • Yeast mediator and its role in transcriptional regulation
    • Biddick, R., and E. T. Young, 2005 Yeast mediator and its role in transcriptional regulation. C. R. Biol. 328: 773-782.
    • (2005) C. R. Biol , vol.328 , pp. 773-782
    • Biddick, R.1    Young, E.T.2
  • 27
    • 57749106706 scopus 로고    scopus 로고
    • The transcriptional coactivators SAGA, SWI/SNF, and mediator make distinct contributions to activation of glucose-repressed genes
    • Biddick, R. K., G. L. Law, K. K. Chin, and E. T. Young, 2008a The transcriptional coactivators SAGA, SWI/SNF, and mediator make distinct contributions to activation of glucose-repressed genes. J. Biol. Chem. 283: 33101-33109.
    • (2008) J. Biol. Chem , vol.283 , pp. 33101-33109
    • Biddick, R.K.1    Law, G.L.2    Chin, K.K.3    Young, E.T.4
  • 28
    • 39049121209 scopus 로고    scopus 로고
    • Adr1 and Cat8 mediate coactivator recruitment and chromatin remodeling at glucose-regulated genes
    • Biddick, R. K., G. L. Law, and E. T. Young, 2008b Adr1 and Cat8 mediate coactivator recruitment and chromatin remodeling at glucose-regulated genes. PLoS ONE 3: e1436
    • (2008) PLoS ONE , vol.e1436 , pp. 3
    • Biddick, R.K.1    Law, G.L.2    Young, E.T.3
  • 29
    • 0032563164 scopus 로고    scopus 로고
    • Human TAF(II)28 and TAF(II)18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family
    • Birck, C., O. Poch, C. Romier, M. Ruff, G. Mengus et al., 1998 Human TAF(II)28 and TAF(II)18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell 94: 239-249.
    • (1998) Cell , vol.94 , pp. 239-249
    • Birck, C.1    Poch, O.2    Romier, C.3    Ruff, M.4    Mengus, G.5
  • 30
    • 0034679822 scopus 로고    scopus 로고
    • A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator
    • Bird, A. J.,H. Zhao,H. Luo, L. T. Jensen, C. Srinivasan et al., 2000 A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator. EMBO J. 19: 3704-3713.
    • (2000) EMBO J , vol.19 , pp. 3704-3713
    • Bird, A.J.1    Zhao, H.2    Luo, H.3    Jensen, L.T.4    Srinivasan, C.5
  • 31
    • 18844427874 scopus 로고    scopus 로고
    • The yeast Mediator complex and its regulation
    • Bjorklund, S., and C. M. Gustafsson, 2005 The yeast Mediator complex and its regulation. Trends Biochem. Sci. 30: 240-244.
    • (2005) Trends Biochem. Sci , vol.30 , pp. 240-244
    • Bjorklund, S.1    Gustafsson, C.M.2
  • 32
    • 0024006243 scopus 로고
    • Regulation of expression and activity of the yeast transcription factor ADR1
    • Blumberg, H., T. A. Hartshorne, and E. T. Young, 1988 Regulation of expression and activity of the yeast transcription factor ADR1. Mol. Cell. Biol. 8: 1868-1876.
    • (1988) Mol. Cell. Biol , vol.8 , pp. 1868-1876
    • Blumberg, H.1    Hartshorne, T.A.2    Young, E.T.3
  • 33
    • 0036000017 scopus 로고    scopus 로고
    • Repression and activation domains of RME1p structurally overlap, but differ in genetic requirements
    • Blumental-Perry, A., W. Li, G. Simchen, and A. P. Mitchell, 2002 Repression and activation domains of RME1p structurally overlap, but differ in genetic requirements. Mol. Biol. Cell 13: 1709-1721.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 1709-1721
    • Blumental-Perry, A.1    Li, W.2    Simchen, G.3    Mitchell, A.P.4
  • 34
    • 27344449049 scopus 로고    scopus 로고
    • Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A
    • Bochkareva, E., L. Kaustov, A. Ayed, G. S. Yi, Y. Lu et al., 2005 Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc. Natl. Acad. Sci. USA 102: 15412-15417.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 15412-15417
    • Bochkareva, E.1    Kaustov, L.2    Ayed, A.3    Yi, G.S.4    Lu, Y.5
  • 35
    • 0039445009 scopus 로고    scopus 로고
    • Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins
    • Bohm, S., D. Frishman, and H. W. Mewes, 1997 Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res. 25: 2464-2469.
    • (1997) Nucleic Acids Res , vol.25 , pp. 2464-2469
    • Bohm, S.1    Frishman, D.2    Mewes, H.W.3
  • 36
    • 0028047311 scopus 로고
    • Interactions between DNA-bound trimers of the yeast heat shock factor
    • Bonner, J. J., C. Ballou, and D. L. Fackenthal, 1994 Interactions between DNA-bound trimers of the yeast heat shock factor. Mol. Cell. Biol. 14: 501-508.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 501-508
    • Bonner, J.J.1    Ballou, C.2    Fackenthal, D.L.3
  • 38
    • 0034703271 scopus 로고    scopus 로고
    • Structural analysis of yeast HSF by site-specific crosslinking
    • Bonner, J. J., D. Chen, K. Storey, M. Tushan, and K. Lea, 2000b Structural analysis of yeast HSF by site-specific crosslinking. J. Mol. Biol. 302: 581-592.
    • (2000) J. Mol. Biol , vol.302 , pp. 581-592
    • Bonner, J.J.1    Chen, D.2    Storey, K.3    Tushan, M.4    Lea, K.5
  • 39
    • 34547874585 scopus 로고    scopus 로고
    • Divergence of transcription factor binding sites across related yeast species
    • Borneman, A. R., T. A. Gianoulis, Z. D. Zhang, H. Yu, J. Rozowsky et al., 2007 Divergence of transcription factor binding sites across related yeast species. Science 317: 815-819.
    • (2007) Science , vol.317 , pp. 815-819
    • Borneman, A.R.1    Gianoulis, T.A.2    Zhang, Z.D.3    Yu, H.4    Rozowsky, J.5
  • 40
    • 47249134314 scopus 로고    scopus 로고
    • Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex
    • Bourbon, H. M., 2008 Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res. 36: 3993-4008.
    • (2008) Nucleic Acids Res , vol.36 , pp. 3993-4008
    • Bourbon, H.M.1
  • 41
    • 2942610696 scopus 로고    scopus 로고
    • A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II
    • Bourbon, H. M., A. Aguilera, A. Z. Ansari, F. J. Asturias, A. J. Berk et al., 2004 A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol. Cell 14: 553-557.
    • (2004) Mol. Cell , vol.14 , pp. 553-557
    • Bourbon, H.M.1    Aguilera, A.2    Ansari, A.Z.3    Asturias, F.J.4    Berk, A.J.5
  • 42
    • 60749090162 scopus 로고    scopus 로고
    • Transcriptional memory at the nuclear periphery
    • Brickner, J. H., 2009 Transcriptional memory at the nuclear periphery. Curr. Opin. Cell Biol. 21: 127-133.
    • (2009) Curr. Opin. Cell Biol , vol.21 , pp. 127-133
    • Brickner, J.H.1
  • 43
    • 0026019622 scopus 로고
    • The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae
    • Bricmont, P. A., J. R. Daugherty, and T. G. Cooper, 1991 The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 1161-1166.
    • (1991) Mol. Cell. Biol , vol.11 , pp. 1161-1166
    • Bricmont, P.A.1    Daugherty, J.R.2    Cooper, T.G.3
  • 45
    • 0035933521 scopus 로고    scopus 로고
    • Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit
    • Brown, C. E., L. Howe, K. Sousa, S. C. Alley, M. J. Carrozza et al., 2001 Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292: 2333-2337.
    • (2001) Science , vol.292 , pp. 2333-2337
    • Brown, C.E.1    Howe, L.2    Sousa, K.3    Alley, S.C.4    Carrozza, M.J.5
  • 46
    • 0037716755 scopus 로고    scopus 로고
    • Independent recruitment in vivo by gal4 of two complexes required for transcription
    • Bryant, G. O., and M. Ptashne, 2003 Independent recruitment in vivo by gal4 of two complexes required for transcription. Mol. Cell 11: 1301-1309.
    • (2003) Mol. Cell , vol.11 , pp. 1301-1309
    • Bryant, G.O.1    Ptashne, M.2
  • 47
    • 84891703149 scopus 로고    scopus 로고
    • Activator control of nucleosome occupancy in activation and repression of transcription
    • Bryant, G. O., V. Prabhu, M. Floer, X. Wang, D. Spagna et al., 2008 Activator control of nucleosome occupancy in activation and repression of transcription. PLoS Biol. 6: 2928-2939.
    • (2008) PLoS Biol , vol.6 , pp. 2928-2939
    • Bryant, G.O.1    Prabhu, V.2    Floer, M.3    Wang, X.4    Spagna, D.5
  • 48
    • 81255140709 scopus 로고    scopus 로고
    • The acidic transcription activator Gcn4 binds the Mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex
    • in press
    • Brzovic, P. S., C. C. Heikaus, L. Kisselev, R. Vernon, E. Herbig et al., 2011 The acidic transcription activator Gcn4 binds the Mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol. Cell (in press)
    • (2011) Mol. Cell
    • Brzovic, P.S.1    Heikaus, L.C.2    Vernon, R.3    Herbig, E.4
  • 49
    • 0028941966 scopus 로고
    • Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast
    • Buck, S.W., and D. Shore, 1995 Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast. Genes Dev. 9: 370-384.
    • (1995) Genes Dev , vol.9 , pp. 370-384
    • Buck, S.W.1    Shore, D.2
  • 50
    • 0035955710 scopus 로고    scopus 로고
    • The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N-and C-terminal activation domains
    • Bulman, A. L., S. T. Hubl, and H. C. Nelson, 2001 The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N-and C-terminal activation domains. J. Biol. Chem. 276: 40254-40262.
    • (2001) J. Biol. Chem , vol.276 , pp. 40254-40262
    • Bulman, A.L.1    Hubl, S.T.2    Nelson, H.C.3
  • 51
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA polymerase II CTD cycle
    • Buratowski, S., 2009 Progression through the RNA polymerase II CTD cycle. Mol. Cell 36: 541-546.
    • (2009) Mol. Cell , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 52
    • 0023925399 scopus 로고
    • Function of a yeast TATA element-binding protein in a mammalian transcription system
    • Buratowski, S., S. Hahn, P. A. Sharp, and L. Guarente, 1988 Function of a yeast TATA element-binding protein in a mammalian transcription system. Nature 334: 37-42.
    • (1988) Nature , vol.334 , pp. 37-42
    • Buratowski, S.1    Hahn, S.2    Sharp, P.A.3    Guarente, L.4
  • 53
    • 0024977414 scopus 로고
    • Five intermediate complexes in transcription initiation by RNA polymerase II
    • Buratowski, S., S. Hahn, L. Guarente, and P. A. Sharp, 1989 Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56: 549-561.
    • (1989) Cell , vol.56 , pp. 549-561
    • Buratowski, S.1    Hahn, S.2    Guarente, L.3    Sharp, P.A.4
  • 54
    • 1142274214 scopus 로고    scopus 로고
    • Structural basis of transcription: An RNA polymerase IITFIIB cocrystal at 4.5 Angstroms
    • Bushnell, D. A., K. D. Westover, R. E. Davis, and R. D. Kornberg, 2004 Structural basis of transcription: an RNA polymerase IITFIIB cocrystal at 4.5 Angstroms. Science 303: 983-988.
    • (2004) Science , vol.303 , pp. 983-988
    • Bushnell, D.A.1    Westover, K.D.2    Davis, R.E.3    Kornberg, R.D.4
  • 55
    • 1842665662 scopus 로고    scopus 로고
    • Mitochondrial signaling: The retrograde response
    • Butow, R. A., and N. G. Avadhani, 2004 Mitochondrial signaling: the retrograde response. Mol. Cell 14: 1-15.
    • (2004) Mol. Cell , vol.14 , pp. 1-15
    • Butow, R.A.1    Avadhani, N.G.2
  • 56
    • 64049097892 scopus 로고    scopus 로고
    • Mediator structural conservation and implications for the regulation mechanism
    • Cai, G., T. Imasaki, Y. Takagi, and F. J. Asturias, 2009 Mediator structural conservation and implications for the regulation mechanism. Structure 17: 559-567.
    • (2009) Structure , vol.17 , pp. 559-567
    • Cai, G.1    Imasaki, T.2    Takagi, Y.3    Asturias, F.J.4
  • 58
    • 70249121045 scopus 로고    scopus 로고
    • The logic of chromatin architecture and remodelling at promoters
    • Cairns, B. R., 2009 The logic of chromatin architecture and remodelling at promoters. Nature 461: 193-198.
    • (2009) Nature , vol.461 , pp. 193-198
    • Cairns, B.R.1
  • 59
    • 27744577727 scopus 로고    scopus 로고
    • Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
    • Carrozza, M. J., B. Li, L. Florens, T. Suganuma, S. K. Swanson et al., 2005 Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123: 581-592.
    • (2005) Cell , vol.123 , pp. 581-592
    • Carrozza, M.J.1    Li, B.2    Florens, L.3    Suganuma, T.4    Swanson, S.K.5
  • 60
    • 77951608945 scopus 로고    scopus 로고
    • The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors
    • Carter, R., and G. Drouin, 2010 The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors. Mol. Biol. Evol. 27: 1035-1043.
    • (2010) Mol. Biol. Evol , vol.27 , pp. 1035-1043
    • Carter, R.1    Drouin, G.2
  • 61
    • 0031945611 scopus 로고    scopus 로고
    • Ash1, a daughter cell-specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae
    • Chandarlapaty, S., and B. Errede, 1998 Ash1, a daughter cell-specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 2884-2891.
    • (1998) Mol. Cell. Biol , vol.18 , pp. 2884-2891
    • Chandarlapaty, S.1    Errede, B.2
  • 62
    • 49749111448 scopus 로고    scopus 로고
    • Roles of cis-and trans-changes in the regulatory evolution of genes in the gluconeogenic pathway in yeast
    • Chang, Y. W., F. G. Robert Liu, N. Yu, H. M. Sung, P. Yang et al., 2008 Roles of cis-and trans-changes in the regulatory evolution of genes in the gluconeogenic pathway in yeast. Mol. Biol. Evol. 25: 1863-1875.
    • (2008) Mol. Biol. Evol , vol.25 , pp. 1863-1875
    • Chang, Y.W.1    Robert Liu, F.G.2    Yu, N.3    Sung, H.M.4    Yang, P.5
  • 63
    • 0025328308 scopus 로고
    • GAL4 protein: Purification, association with GAL80 protein, and conserved domain structure
    • Chasman, D. I., and R. D. Kornberg, 1990 GAL4 protein: purification, association with GAL80 protein, and conserved domain structure. Mol. Cell. Biol. 10: 2916-2923.
    • (1990) Mol. Cell. Biol , vol.10 , pp. 2916-2923
    • Chasman, D.I.1    Kornberg, R.D.2
  • 64
    • 0028966589 scopus 로고
    • Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain
    • Chatterjee, S., and K. Struhl, 1995 Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 374: 820-821.
    • (1995) Nature , vol.374 , pp. 820-821
    • Chatterjee, S.1    Struhl, K.2
  • 65
    • 77149146167 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry
    • Chen, A. C., A. Jawhari, L. Fischer, C. Buchen, S. Tahir et al., 2010 Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J. 29: 717-726.
    • (2010) EMBO J , vol.29 , pp. 717-726
    • Chen, A.C.1    Jawhari, A.2    Fischer, L.3    Buchen, C.4    Tahir, S.5
  • 66
    • 0141992120 scopus 로고    scopus 로고
    • Binding of TFIIB to RNA polymerase II: Mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complex
    • Chen, H. T., and S. Hahn, 2003 Binding of TFIIB to RNA polymerase II: mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complex. Mol. Cell 12: 437-447.
    • (2003) Mol. Cell , vol.12 , pp. 437-447
    • Chen, H.T.1    Hahn, S.2
  • 67
    • 5444275331 scopus 로고    scopus 로고
    • Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: A model for the structure of the PIC
    • Chen, H.T., and S. Hahn, 2004 Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC. Cell 119: 169-180.
    • (2004) Cell , vol.119 , pp. 169-180
    • Chen, H.T.1    Hahn, S.2
  • 68
    • 34547683177 scopus 로고    scopus 로고
    • The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex
    • Chen, H. T., L. Warfield, and S. Hahn, 2007 The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nat. Struct. Mol. Biol. 14: 696-703.
    • (2007) Nat. Struct. Mol. Biol , vol.14 , pp. 696-703
    • Chen, H.T.1    Warfield, L.2    Hahn, S.3
  • 69
    • 77954572523 scopus 로고    scopus 로고
    • Multiple bHLH proteins regulate CIT2 expression in Saccharomyces cerevisiae
    • Chen, L., and J. M. Lopes, 2010 Multiple bHLH proteins regulate CIT2 expression in Saccharomyces cerevisiae. Yeast 27: 345-359.
    • (2010) Yeast , vol.27 , pp. 345-359
    • Chen, L.1    Lopes, J.M.2
  • 70
    • 34249728838 scopus 로고    scopus 로고
    • Multiple basic helix-loop-helix proteins regulate expression of the ENO1 gene of Saccharomyces cerevisiae
    • Chen, M., and J. M. Lopes, 2007 Multiple basic helix-loop-helix proteins regulate expression of the ENO1 gene of Saccharomyces cerevisiae. Eukaryot. Cell 6: 786-796.
    • (2007) Eukaryot. Cell , vol.6 , pp. 786-796
    • Chen, M.1    Lopes, J.M.2
  • 71
    • 0037195255 scopus 로고    scopus 로고
    • Responses of four yeast genes to changes in the transcriptional machinery are determined by their promoters
    • Cheng, J. X., M. Floer, P. Ononaji, G. Bryant, and M. Ptashne, 2002 Responses of four yeast genes to changes in the transcriptional machinery are determined by their promoters. Curr. Biol. 12: 1828-1832.
    • (2002) Curr. Biol , vol.12 , pp. 1828-1832
    • Cheng, J.X.1    Floer, M.2    Ononaji, P.3    Bryant, G.4    Ptashne, M.5
  • 72
    • 4544352146 scopus 로고    scopus 로고
    • Activation of the gal1 gene of yeast by pairs of 'non-classical' activators
    • Cheng, J. X., M. Gandolfi, and M. Ptashne, 2004 Activation of the gal1 gene of yeast by pairs of 'non-classical' activators. Curr. Biol. 14: 1675-1679.
    • (2004) Curr. Biol , vol.14 , pp. 1675-1679
    • Cheng, J.X.1    Gandolfi, M.2    Ptashne, M.3
  • 73
    • 0024965981 scopus 로고
    • Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1
    • Cherry, J. R., T. R. Johnson, C. Dollard, J. R. Shuster, and C. L. Denis, 1989 Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56: 409-419.
    • (1989) Cell , vol.56 , pp. 409-419
    • Cherry, J.R.1    Johnson, T.R.2    Dollard, C.3    Shuster, J.R.4    Denis, C.L.5
  • 74
    • 33747078457 scopus 로고    scopus 로고
    • Identifying transcription factor functions and targets by phenotypic activation
    • Chua, G., Q. D. Morris, R. Sopko, M. D. Robinson, O. Ryan et al., 2006 Identifying transcription factor functions and targets by phenotypic activation. Proc. Natl. Acad. Sci. USA 103: 12045-12050.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 12045-12050
    • Chua, G.1    Morris, Q.D.2    Sopko, R.3    Robinson, M.D.4    Ryan, O.5
  • 75
    • 67649946313 scopus 로고    scopus 로고
    • Recent advances in understanding the structure and function of general transcription factor TFIID
    • Cler, E., G. Papai, P. Schultz, and I. Davidson, 2009 Recent advances in understanding the structure and function of general transcription factor TFIID. Cell. Mol. Life Sci. 66: 2123-2134.
    • (2009) Cell. Mol. Life Sci , vol.66 , pp. 2123-2134
    • Cler, E.1    Papai, G.2    Schultz, P.3    Davidson, I.4
  • 76
    • 0038724989 scopus 로고    scopus 로고
    • Finding functional features in Saccharomyces genomes by phylogenetic footprinting
    • Cliften, P., P. Sudarsanam, A. Desikan, L. Fulton, B. Fulton et al., 2003 Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301: 71-76.
    • (2003) Science , vol.301 , pp. 71-76
    • Cliften, P.1    Sudarsanam, P.2    Desikan, A.3    Fulton, L.4    Fulton, B.5
  • 77
    • 0023697404 scopus 로고
    • A Ty1 cell-type-specific regulatory sequence is a recognition element for a constitutive binding factor
    • Company, M., and B. Errede, 1988 A Ty1 cell-type-specific regulatory sequence is a recognition element for a constitutive binding factor. Mol. Cell. Biol. 8: 5299-5309.
    • (1988) Mol. Cell. Biol , vol.8 , pp. 5299-5309
    • Company, M.1    Errede, B.2
  • 79
    • 0028012045 scopus 로고
    • Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: Evidence for a repressor binding to the ADR1c region
    • Cook, W. J., D. Chase, D. C. Audino, and C. L. Denis, 1994 Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Mol. Cell. Biol. 14: 629-640.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 629-640
    • Cook, W.J.1    Chase, D.2    Audino, D.C.3    Denis, C.L.4
  • 80
    • 0036024577 scopus 로고    scopus 로고
    • Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: Connecting the dots
    • Cooper, T. G., 2002 Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol. Rev. 26: 223-238.
    • (2002) FEMS Microbiol. Rev , vol.26 , pp. 223-238
    • Cooper, T.G.1
  • 81
    • 57849109058 scopus 로고    scopus 로고
    • Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
    • Core, L. J., J. J. Waterfall, and J. T. Lis, 2008 Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322: 1845-1848.
    • (2008) Science , vol.322 , pp. 1845-1848
    • Core, L.J.1    Waterfall, J.J.2    Lis, J.T.3
  • 82
    • 0036671407 scopus 로고    scopus 로고
    • Ordered recruitment: Gene-specific mechanism of transcription activation
    • Cosma, M. P., 2002 Ordered recruitment: gene-specific mechanism of transcription activation. Mol. Cell 10: 227-236.
    • (2002) Mol. Cell , vol.10 , pp. 227-236
    • Cosma, M.P.1
  • 83
    • 8844250124 scopus 로고    scopus 로고
    • Daughter-specific repression of Saccharomyces cerevisiae HO: Ash1 is the commander
    • Cosma, M. P., 2004 Daughter-specific repression of Saccharomyces cerevisiae HO: Ash1 is the commander. EMBO Rep. 5: 953-957.
    • (2004) EMBO Rep , vol.5 , pp. 953-957
    • Cosma, M.P.1
  • 84
    • 0035499392 scopus 로고    scopus 로고
    • Transcriptional repression: The long and the short of it
    • Courey, A. J., and S. Jia, 2001 Transcriptional repression: the long and the short of it. Genes Dev. 15: 2786-2796.
    • (2001) Genes Dev , vol.15 , pp. 2786-2796
    • Courey, A.J.1    Jia, S.2
  • 85
    • 0035827346 scopus 로고    scopus 로고
    • Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution
    • Cramer, P., D. A. Bushnell, and R. D. Kornberg, 2001 Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292: 1863-1876.
    • (2001) Science , vol.292 , pp. 1863-1876
    • Cramer, P.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 87
    • 72149130298 scopus 로고    scopus 로고
    • Shifting players and paradigms in cell-specific transcription
    • D'Alessio, J. A., K. J. Wright, and R. Tjian, 2009 Shifting players and paradigms in cell-specific transcription. Mol. Cell 36: 924-931.
    • (2009) Mol. Cell , vol.36 , pp. 924-931
    • D'alessio, J.A.1    Wright, K.J.2    Tjian, R.3
  • 89
    • 0036142163 scopus 로고    scopus 로고
    • Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo
    • Davie, J. K., R. J. Trumbly, and S. Y. Dent, 2002 Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo. Mol. Cell. Biol. 22: 693-703.
    • (2002) Mol. Cell. Biol , vol.22 , pp. 693-703
    • Davie, J.K.1    Trumbly, R.J.2    Dent, S.Y.3
  • 90
    • 0036671095 scopus 로고    scopus 로고
    • Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction
    • Davis, J. A., Y. Takagi, R. D. Kornberg, and F. A. Asturias, 2002 Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol. Cell 10: 409-415.
    • (2002) Mol. Cell , vol.10 , pp. 409-415
    • Davis, J.A.1    Takagi, Y.2    Kornberg, R.D.3    Asturias, F.A.4
  • 91
    • 0035804267 scopus 로고    scopus 로고
    • Telomere looping permits gene activation by a downstream UAS in yeast
    • de Bruin, D., Z. Zaman, R. A. Liberatore, and M. Ptashne, 2001 Telomere looping permits gene activation by a downstream UAS in yeast. Nature 409: 109-113.
    • (2001) Nature , vol.409 , pp. 109-113
    • de Bruin, D.1    Zaman, Z.2    Liberatore, R.A.3    Ptashne, M.4
  • 92
    • 0028818262 scopus 로고
    • Mutational analysis of Rox1, a DNA-bending repressor of hypoxic genes in Saccharomyces cerevisiae
    • Deckert, J., A. M. Rodriguez Torres, J. T. Simon, and R. S. Zitomer, 1995 Mutational analysis of Rox1, a DNA-bending repressor of hypoxic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 6109-6117.
    • (1995) Mol. Cell. Biol , vol.15 , pp. 6109-6117
    • Deckert, J.1    Rodriguez Torres, A.M.2    Simon, J.T.3    Zitomer, R.S.4
  • 93
    • 0026610943 scopus 로고
    • ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230
    • Denis, C. L., S. C. Fontaine, D. Chase, B. E. Kemp, and L. T. Bemis, 1992 ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Mol. Cell. Biol. 12: 1507-1514.
    • (1992) Mol. Cell. Biol , vol.12 , pp. 1507-1514
    • Denis, C.L.1    Fontaine, S.C.2    Chase, D.3    Kemp, B.E.4    Bemis, L.T.5
  • 95
    • 0036510384 scopus 로고    scopus 로고
    • In vivo changes of nucleosome positioning in the pretranscription state
    • Di Mauro, E., L. Verdone, B. Chiappini, and M. Caserta, 2002 In vivo changes of nucleosome positioning in the pretranscription state. J. Biol. Chem. 277: 7002-7009.
    • (2002) J. Biol. Chem , vol.277 , pp. 7002-7009
    • di Mauro, E.1    Verdone, L.2    Chiappini, B.3    Caserta, M.4
  • 96
    • 0030988939 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway
    • Dodou, E., and R. Treisman, 1997 The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol. Cell. Biol. 17: 1848-1859.
    • (1997) Mol. Cell. Biol , vol.17 , pp. 1848-1859
    • Dodou, E.1    Treisman, R.2
  • 97
    • 0027222960 scopus 로고
    • ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1
    • Dombek, K. M., S. Camier, and E. T. Young, 1993 ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1. Mol. Cell. Biol. 13: 4391-4399.
    • (1993) Mol. Cell. Biol , vol.13 , pp. 4391-4399
    • Dombek, K.M.1    Camier, S.2    Young, E.T.3
  • 98
    • 76349090199 scopus 로고    scopus 로고
    • CDK8 is a positive regulator of transcriptional elongation within the serum response network
    • Donner, A. J., C. C. Ebmeier, D. J. Taatjes, and J. M. Espinosa, 2010 CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat. Struct. Mol. Biol. 17: 194-201.
    • (2010) Nat. Struct. Mol. Biol , vol.17 , pp. 194-201
    • Donner, A.J.1    Ebmeier, C.C.2    Taatjes, D.J.3    Espinosa, J.M.4
  • 99
    • 0033781448 scopus 로고    scopus 로고
    • Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photo-cross-linking
    • Douziech, M., F. Coin, J. M. Chipoulet, Y. Arai, Y. Ohkuma et al., 2000 Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photo-cross-linking. Mol. Cell. Biol. 20: 8168-8177.
    • (2000) Mol. Cell. Biol , vol.20 , pp. 8168-8177
    • Douziech, M.1    Coin, F.2    Chipoulet, J.M.3    Arai, Y.4    Ohkuma, Y.5
  • 100
    • 34848868550 scopus 로고    scopus 로고
    • Identification of eukaryotic promoter regulatory elements using nonhomologous random recombination
    • Doyon, J. B., and D. R. Liu, 2007 Identification of eukaryotic promoter regulatory elements using nonhomologous random recombination. Nucleic Acids Res. 35: 5851-5860.
    • (2007) Nucleic Acids Res , vol.35 , pp. 5851-5860
    • Doyon, J.B.1    Liu, D.R.2
  • 101
    • 51349123474 scopus 로고    scopus 로고
    • Transcriptional regulators of seven yeast species: Comparative genome analysis
    • Drobna, E., A. Bialkova, and J. Subik, 2008 Transcriptional regulators of seven yeast species: comparative genome analysis. Review. Folia Microbiol. (Praha) 53: 275-287.
    • (2008) Review. Folia Microbiol. (Praha) , vol.53 , pp. 275-287
    • Drobna, E.1    Bialkova, A.2    Subik, J.3
  • 102
    • 0028840090 scopus 로고
    • The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids
    • Drysdale, C. M., E. Duenas, B. M. Jackson, U. Reusser, G. H. Braus et al., 1995 The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol. Cell. Biol. 15: 1220-1233.
    • (1995) Mol. Cell. Biol , vol.15 , pp. 1220-1233
    • Drysdale, C.M.1    Duenas, E.2    Jackson, B.M.3    Reusser, U.4    Braus, G.H.5
  • 103
    • 0034142029 scopus 로고    scopus 로고
    • The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome
    • Ducker, C. E., and R. T. Simpson, 2000 The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome. EMBO J. 19: 400-409.
    • (2000) EMBO J , vol.19 , pp. 400-409
    • Ducker, C.E.1    Simpson, R.T.2
  • 104
    • 0032710459 scopus 로고    scopus 로고
    • The Spt components of SAGA facilitate TBP binding to a promoter at a postactivator-binding step in vivo
    • Dudley, A. M., C. Rougeulle, and F. Winston, 1999 The Spt components of SAGA facilitate TBP binding to a promoter at a postactivator-binding step in vivo. Genes Dev. 13: 2940-2945.
    • (1999) Genes Dev , vol.13 , pp. 2940-2945
    • Dudley, A.M.1    Rougeulle, C.2    Winston, F.3
  • 105
    • 0032563195 scopus 로고    scopus 로고
    • Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response
    • Duina, A. A., H. M. Kalton, and R. F. Gaber, 1998 Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J. Biol. Chem. 273: 18974-18978.
    • (1998) J. Biol. Chem , vol.273 , pp. 18974-18978
    • Duina, A.A.1    Kalton, H.M.2    Gaber, R.F.3
  • 106
    • 0037058930 scopus 로고    scopus 로고
    • Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae
    • Dunham, M. J., H. Badrane, T. Ferea, J. Adams, P. O. Brown et al., 2002 Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99: 16144-16149.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 16144-16149
    • Dunham, M.J.1    Badrane, H.2    Ferea, T.3    Adams, J.4    Brown, P.O.5
  • 107
    • 0026091129 scopus 로고
    • Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation
    • Dynlacht, B. D., T. Hoey, and R. Tjian, 1991 Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66: 563-576.
    • (1991) Cell , vol.66 , pp. 563-576
    • Dynlacht, B.D.1    Hoey, T.2    Tjian, R.3
  • 108
    • 33845925240 scopus 로고    scopus 로고
    • Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response
    • Eastmond, D. L., and H. C. Nelson, 2006 Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J. Biol. Chem. 281: 32909-32921.
    • (2006) J. Biol. Chem , vol.281 , pp. 32909-32921
    • Eastmond, D.L.1    Nelson, H.C.2
  • 109
    • 77149124577 scopus 로고    scopus 로고
    • Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex
    • Eichner, J., H. T. Chen, L. Warfield, and S. Hahn, 2010 Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. EMBO J. 29: 706-716.
    • (2010) EMBO J , vol.29 , pp. 706-716
    • Eichner, J.1    Chen, H.T.2    Warfield, L.3    Hahn, S.4
  • 110
    • 67650550797 scopus 로고    scopus 로고
    • Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae
    • Eide, D. J., 2009 Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 284: 18565-18569.
    • (2009) J. Biol. Chem , vol.284 , pp. 18565-18569
    • Eide, D.J.1
  • 112
    • 0028233352 scopus 로고
    • The Saccharomyces cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein
    • Eisenmann, D. M., C. Chapon, S. M. Roberts, C. Dollard, and F. Winston, 1994 The Saccharomyces cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein. Genetics 137: 647-657.
    • (1994) Genetics , vol.137 , pp. 647-657
    • Eisenmann, D.M.1    Chapon, C.2    Roberts, S.M.3    Dollard, C.4    Winston, F.5
  • 113
    • 0025721856 scopus 로고
    • Both activation and repression of amating-type-specific genes in yeast require transcription factor Mcm1
    • Elble, R., and B. K. Tye, 1991 Both activation and repression of amating-type-specific genes in yeast require transcription factor Mcm1. Proc. Natl. Acad. Sci. USA 88: 10966-10970.
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 10966-10970
    • Elble, R.1    Tye, B.K.2
  • 114
    • 0021659553 scopus 로고
    • Identification of regulatory regions within the Ty1 transposable element that regulate iso-2-cytochrome c production in the CYC7-H2 yeast mutant
    • Errede, B., T. S. Cardillo, M. A. Teague, and F. Sherman, 1984 Identification of regulatory regions within the Ty1 transposable element that regulate iso-2-cytochrome c production in the CYC7-H2 yeast mutant. Mol. Cell. Biol. 4: 1393-1401.
    • (1984) Mol. Cell. Biol , vol.4 , pp. 1393-1401
    • Errede, B.1    Cardillo, T.S.2    Teague, M.A.3    Sherman, F.4
  • 115
    • 0034960967 scopus 로고    scopus 로고
    • Promoterspecific shifts in transcription initiation conferred by yeast TFIIB mutations are determined by the sequence in the immediate vicinity of the start sites
    • Faitar, S. L., S. A. Brodie, and A. S. Ponticelli, 2001 Promoterspecific shifts in transcription initiation conferred by yeast TFIIB mutations are determined by the sequence in the immediate vicinity of the start sites. Mol. Cell. Biol. 21: 4427-4440.
    • (2001) Mol. Cell. Biol , vol.21 , pp. 4427-4440
    • Faitar, S.L.1    Brodie, S.A.2    Ponticelli, A.S.3
  • 116
    • 64549091902 scopus 로고    scopus 로고
    • Where does mediator bind in vivo?
    • Fan, X., and K. Struhl, 2009 Where does mediator bind in vivo? PLoS ONE 4: e5029
    • (2009) PLoS ONE , vol.e5029 , pp. 4
    • Fan, X.1    Struhl, K.2
  • 117
    • 32244438509 scopus 로고    scopus 로고
    • Activator-specific recruitment of Mediator in vivo
    • Fan, X., D. M. Chou, and K. Struhl, 2006 Activator-specific recruitment of Mediator in vivo. Nat. Struct. Mol. Biol. 13: 117-120.
    • (2006) Nat. Struct. Mol. Biol , vol.13 , pp. 117-120
    • Fan, X.1    Chou, D.M.2    Struhl, K.3
  • 118
    • 0026621793 scopus 로고
    • Downstream activating sequence within the coding region of a yeast gene: Specific binding in vitro of RAP1 protein
    • Fantino, E., D. Marguet, and G. J. Lauquin, 1992 Downstream activating sequence within the coding region of a yeast gene: specific binding in vitro of RAP1 protein. Mol. Gen. Genet. 236: 65-75.
    • (1992) Mol. Gen. Genet , vol.236 , pp. 65-75
    • Fantino, E.1    Marguet, D.2    Lauquin, G.J.3
  • 119
    • 0025291085 scopus 로고
    • Role of trans-activating proteins in the generation of active chromatin at the PHO5 promoter in S
    • Fascher, K. D., J. Schmitz, and W. Horz, 1990 Role of trans-activating proteins in the generation of active chromatin at the PHO5 promoter in S. cerevisiae. EMBO J. 9: 2523-2528.
    • (1990) Cerevisiae. EMBO J , vol.9 , pp. 2523-2528
    • Fascher, K.D.1    Schmitz, J.2    Horz, W.3
  • 120
    • 0028590113 scopus 로고
    • Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK
    • Feaver, W. J., J. Q. Svejstrup, N. L. Henry, and R. D. Kornberg, 1994 Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79: 1103-1109.
    • (1994) Cell , vol.79 , pp. 1103-1109
    • Feaver, W.J.1    Svejstrup, J.Q.2    Henry, N.L.3    Kornberg, R.D.4
  • 121
    • 0028041491 scopus 로고
    • Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of Lys14-dependent transcriptional activation
    • Feller, A., E. Dubois, F. Ramos, and A. Pierard, 1994 Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of Lys14-dependent transcriptional activation. Mol. Cell. Biol. 14: 6411-6418.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 6411-6418
    • Feller, A.1    Dubois, E.2    Ramos, F.3    Pierard, A.4
  • 122
    • 59649109756 scopus 로고    scopus 로고
    • Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation
    • Feng, H., L. M. Jenkins, S. R. Durell, R. Hayashi, S. J. Mazur et al., 2009 Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure 17: 202-210.
    • (2009) Structure , vol.17 , pp. 202-210
    • Feng, H.1    Jenkins, L.M.2    Durell, S.R.3    Hayashi, R.4    Mazur, S.J.5
  • 123
    • 0030712874 scopus 로고    scopus 로고
    • Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions
    • Fernandes, L., C. Rodrigues-Pousada, and K. Struhl, 1997 Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol. Cell. Biol. 17: 6982-6993.
    • (1997) Mol. Cell. Biol , vol.17 , pp. 6982-6993
    • Fernandes, L.1    Rodrigues-Pousada, C.2    Struhl, K.3
  • 124
    • 0024298734 scopus 로고
    • GAL4 activates transcription in Drosophila
    • Fischer, J. A., E. Giniger, T. Maniatis, and M. Ptashne, 1988 GAL4 activates transcription in Drosophila. Nature 332: 853-856.
    • (1988) Nature , vol.332 , pp. 853-856
    • Fischer, J.A.1    Giniger, E.2    Maniatis, T.3    Ptashne, M.4
  • 125
    • 18944364218 scopus 로고    scopus 로고
    • Function of a eukaryotic transcription activator during the transcription cycle
    • Fishburn, J., N. Mohibullah, and S. Hahn, 2005 Function of a eukaryotic transcription activator during the transcription cycle. Mol. Cell 18: 369-378.
    • (2005) Mol. Cell , vol.18 , pp. 369-378
    • Fishburn, J.1    Mohibullah, N.2    Hahn, S.3
  • 126
    • 0025891809 scopus 로고
    • A mediator required for activation of RNA polymerase II transcription in vitro
    • Flanagan, P. M., R. J. Kelleher III. M. H. Sayre, H. Tschochner, and R. D. Kornberg, 1991 A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350: 436-438.
    • (1991) Nature , vol.350 , pp. 436-438
    • Flanagan, P.M.1    Kelleher, M.H.2    Tschochner, H.3    Kornberg, R.D.4
  • 127
    • 77951915031 scopus 로고    scopus 로고
    • A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding
    • Floer, M., X. Wang, V. Prabhu, G. Berrozpe, S. Narayan et al., 2010 A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141: 407-418.
    • (2010) Cell , vol.141 , pp. 407-418
    • Floer, M.1    Wang, X.2    Prabhu, V.3    Berrozpe, G.4    Narayan, S.5
  • 128
    • 0037117479 scopus 로고    scopus 로고
    • Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha
    • Freedman, S. J., Z. Y. Sun, F. Poy, A. L. Kung, D. M. Livingston et al., 2002 Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc. Natl. Acad. Sci. USA 99: 5367-5372.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 5367-5372
    • Freedman, S.J.1    Sun, Z.Y.2    Poy, F.3    Kung, A.L.4    Livingston, D.M.5
  • 129
    • 0024457335 scopus 로고
    • A large internal deletion converts yeast LEU3 to a constitutive transcriptional activator
    • Friden, P., C. Reynolds, and P. Schimmel, 1989 A large internal deletion converts yeast LEU3 to a constitutive transcriptional activator. Mol. Cell. Biol. 9: 4056-4060.
    • (1989) Mol. Cell. Biol , vol.9 , pp. 4056-4060
    • Friden, P.1    Reynolds, C.2    Schimmel, P.3
  • 130
    • 70249104647 scopus 로고    scopus 로고
    • Defining mechanisms that regulate RNA polymerase II transcription in vivo
    • Fuda, N. J., M. B. Ardehali, and J. T. Lis, 2009 Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461: 186-192.
    • (2009) Nature , vol.461 , pp. 186-192
    • Fuda, N.J.1    Ardehali, M.B.2    Lis, J.T.3
  • 133
    • 2942582468 scopus 로고    scopus 로고
    • Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data
    • Gao, F., B. C. Foat, and H. J. Bussemaker, 2004 Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 5: 31
    • (2004) BMC Bioinformatics , vol.5 , pp. 31
    • Gao, F.1    Foat, B.C.2    Bussemaker, H.J.3
  • 134
    • 0033023949 scopus 로고    scopus 로고
    • Transcriptional activation by artificial recruitment in yeast is influenced by promoter architecture and downstream sequences
    • Gaudreau, L., M. Keaveney, J. Nevado, Z. Zaman, G. O. Bryant et al., 1999 Transcriptional activation by artificial recruitment in yeast is influenced by promoter architecture and downstream sequences. Proc. Natl. Acad. Sci. USA 96: 2668-2673.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 2668-2673
    • Gaudreau, L.1    Keaveney, M.2    Nevado, J.3    Zaman, Z.4    Bryant, G.O.5
  • 135
  • 136
    • 76149132685 scopus 로고    scopus 로고
    • Generic binding sites, generic DNA-binding domains: Where does specific promoter recognition come from?
    • Georges, A. B., B. A. Benayoun, S. Caburet, and R. A. Veitia, 2010 Generic binding sites, generic DNA-binding domains: Where does specific promoter recognition come from? FASEB J. 24: 346-356.
    • (2010) FASEB J , vol.24 , pp. 346-356
    • Georges, A.B.1    Benayoun, B.A.2    Caburet, S.3    Veitia, R.A.4
  • 137
    • 10044250105 scopus 로고    scopus 로고
    • Amino acid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interaction with RNA polymerase II
    • Ghazy, M. A., S. A. Brodie, M. L. Ammerman, L. M. Ziegler, and A. S. Ponticelli, 2004 Amino acid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interaction with RNA polymerase II. Mol. Cell. Biol. 24: 10975-10985.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 10975-10985
    • Ghazy, M.A.1    Brodie, S.A.2    Ammerman, M.L.3    Ziegler, L.M.4    Ponticelli, A.S.5
  • 138
    • 0027197863 scopus 로고
    • DNA melting on yeast RNA polymerase II promoters
    • Giardina, C., and J. T. Lis, 1993 DNA melting on yeast RNA polymerase II promoters. Science 261: 759-762.
    • (1993) Science , vol.261 , pp. 759-762
    • Giardina, C.1    Lis, J.T.2
  • 139
    • 0035827332 scopus 로고    scopus 로고
    • Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 A resolution
    • Gnatt, A. L., P. Cramer, J. Fu, D. A. Bushnell, and R. D. Kornberg, 2001 Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292: 1876-1882.
    • (2001) Science , vol.292 , pp. 1876-1882
    • Gnatt, A.L.1    Cramer, P.2    Fu, J.3    Bushnell, D.A.4    Kornberg, R.D.5
  • 140
    • 0030841232 scopus 로고    scopus 로고
    • Synergistic and promoter-selective activation of transcription by recruitment of transcription factors TFIID and TFIIB
    • Gonzalez-Couto, E., N. Klages, and M. Strubin, 1997 Synergistic and promoter-selective activation of transcription by recruitment of transcription factors TFIID and TFIIB. Proc. Natl. Acad. Sci. USA 94: 8036-8041.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 8036-8041
    • Gonzalez-Couto, E.1    Klages, N.2    Strubin, M.3
  • 141
    • 70350731108 scopus 로고    scopus 로고
    • Distinguishing direct vs. indirect transcription factor-DNA interactions
    • Gordan, R., A. J. Hartemink, and M. L. Bulyk, 2009 Distinguishing direct vs. indirect transcription factor-DNA interactions. Genome Res. 19: 2090-2100.
    • (2009) Genome Res , vol.19 , pp. 2090-2100
    • Gordan, R.1    Hartemink, A.J.2    Bulyk, M.L.3
  • 142
    • 20744437261 scopus 로고    scopus 로고
    • Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo
    • Govind, C. K., S. Yoon, H. Qiu, S. Govind, and A. G. Hinnebusch, 2005 Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo. Mol. Cell. Biol. 25: 5626-5638.
    • (2005) Mol. Cell. Biol , vol.25 , pp. 5626-5638
    • Govind, C.K.1    Yoon, S.2    Qiu, H.3    Govind, S.4    Hinnebusch, A.G.5
  • 143
    • 0030797349 scopus 로고    scopus 로고
    • Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: Characterization of an Ada complex and the SAGA (spt/Ada) complex
    • Grant, P. A., L. Duggan, J. Cote, S. M. Roberts, J. E. Brownell et al., 1997 Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (spt/Ada) complex. Genes Dev. 11: 1640-1650.
    • (1997) Genes Dev , vol.11 , pp. 1640-1650
    • Grant, P.A.1    Duggan, L.2    Cote, J.3    Roberts, S.M.4    Brownell, J.E.5
  • 144
    • 0032504104 scopus 로고    scopus 로고
    • A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation
    • Grant, P. A., D. Schieltz, M. G. Pray-Grant, D. J. Steger, J. C. Reese et al., 1998a A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94: 45-53.
    • (1998) Cell , vol.94 , pp. 45-53
    • Grant, P.A.1    Schieltz, D.2    Pray-Grant, M.G.3    Steger, D.J.4    Reese, J.C.5
  • 145
    • 0032254147 scopus 로고    scopus 로고
    • The ATM-related cofactor Tra1 is a component of the purified SAGA complex
    • Grant, P. A., D. Schieltz, M. G. Pray-Grant, J. R. Yates III. and J. L. Workman, 1998b The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol. Cell 2: 863-867.
    • (1998) Mol. Cell , vol.2 , pp. 863-867
    • Grant, P.A.1    Schieltz, D.2    Pray-Grant, M.G.3    Yates, J.R.4    Workman, J.L.5
  • 146
    • 0033605238 scopus 로고    scopus 로고
    • Expanded lysine acetylation specificity of Gcn5 in native complexes
    • Grant, P. A., A. Eberharter, S. John, R. G. Cook, B. M. Turner et al., 1999 Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 274: 5895-5900.
    • (1999) J. Biol. Chem , vol.274 , pp. 5895-5900
    • Grant, P.A.1    Eberharter, A.2    John, S.3    Cook, R.G.4    Turner, B.M.5
  • 147
    • 0029656067 scopus 로고    scopus 로고
    • Isolation and analysis of the yeast TEA1 gene, which encodes a zinc cluster Ty enhancerbinding protein
    • Gray, W. M., and J. S. Fassler, 1996 Isolation and analysis of the yeast TEA1 gene, which encodes a zinc cluster Ty enhancerbinding protein. Mol. Cell. Biol. 16: 347-358.
    • (1996) Mol. Cell. Biol , vol.16 , pp. 347-358
    • Gray, W.M.1    Fassler, J.S.2
  • 148
    • 18944401160 scopus 로고    scopus 로고
    • Eukaryotic transcription activation: Right on target
    • Green, M. R., 2005 Eukaryotic transcription activation: right on target. Mol. Cell 18: 399-402.
    • (2005) Mol. Cell , vol.18 , pp. 399-402
    • Green, M.R.1
  • 149
    • 0034721892 scopus 로고    scopus 로고
    • Srb7p is essential for the activation of a subset of genes
    • Gromoller, A., and N. Lehming, 2000 Srb7p is essential for the activation of a subset of genes. FEBS Lett. 484: 48-54.
    • (2000) FEBS Lett , vol.484 , pp. 48-54
    • Gromoller, A.1    Lehming, N.2
  • 150
  • 152
    • 0033049803 scopus 로고    scopus 로고
    • A new class of repression modules is critical for heme regulation of the yeast transcriptional activator Hap1
    • Hach, A., T. Hon, and L. Zhang, 1999 A new class of repression modules is critical for heme regulation of the yeast transcriptional activator Hap1. Mol. Cell. Biol. 19: 4324-4333.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 4324-4333
    • Hach, A.1    Hon, T.2    Zhang, L.3
  • 153
    • 2942598422 scopus 로고    scopus 로고
    • Genome-wide analysis of the biology of stress responses through heat shock transcription factor
    • Hahn, J. S., Z. Hu, D. J. Thiele, and V. R. Iyer, 2004 Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol. Cell. Biol. 24: 5249-5256.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 5249-5256
    • Hahn, J.S.1    Hu, Z.2    Thiele, D.J.3    Iyer, V.R.4
  • 154
    • 0032450982 scopus 로고    scopus 로고
    • Activation and the role of reinitiation in the control of transcription by RNA polymerase II. Cold Spring Harb
    • Hahn, S., 1998 Activation and the role of reinitiation in the control of transcription by RNA polymerase II. Cold Spring Harb. Symp. Quant. Biol. 63: 181-188.
    • (1998) Symp. Quant. Biol , vol.63 , pp. 181-188
    • Hahn, S.1
  • 155
    • 2542428546 scopus 로고    scopus 로고
    • Structure and mechanism of the RNA polymerase II transcription machinery
    • Hahn, S., 2004 Structure and mechanism of the RNA polymerase II transcription machinery. Nat. Struct. Mol. Biol. 11: 394-403.
    • (2004) Nat. Struct. Mol. Biol , vol.11 , pp. 394-403
    • Hahn, S.1
  • 156
    • 44149099735 scopus 로고    scopus 로고
    • Classical NLS proteins from Saccharomyces cerevisiae
    • Hahn, S., P. Maurer, S. Caesar, and G. Schlenstedt, 2008 Classical NLS proteins from Saccharomyces cerevisiae. J. Mol. Biol. 379: 678-694.
    • (2008) J. Mol. Biol , vol.379 , pp. 678-694
    • Hahn, S.1    Maurer, P.2    Caesar, S.3    Schlenstedt, G.4
  • 157
    • 5644229499 scopus 로고    scopus 로고
    • Regulation of gene expression by a metabolic enzyme
    • Hall, D. A., H. Zhu, X. Zhu, T. Royce, M. Gerstein et al., 2004 Regulation of gene expression by a metabolic enzyme. Science 306: 482-484.
    • (2004) Science , vol.306 , pp. 482-484
    • Hall, D.A.1    Zhu, H.2    Zhu, X.3    Royce, T.4    Gerstein, M.5
  • 158
    • 0031840672 scopus 로고    scopus 로고
    • Molecular genetics of the RNA polymerase II general transcriptional machinery
    • Hampsey, M., 1998 Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. Mol. Biol. Rev. 62: 465-503.
    • (1998) Microbiol. Mol. Biol. Rev , vol.62 , pp. 465-503
    • Hampsey, M.1
  • 159
    • 0024261583 scopus 로고
    • Nucleosome loss activates yeast downstream promoters in vivo
    • Han, M., and M. Grunstein, 1988 Nucleosome loss activates yeast downstream promoters in vivo. Cell 55: 1137-1145.
    • (1988) Cell , vol.55 , pp. 1137-1145
    • Han, M.1    Grunstein, M.2
  • 160
    • 0024041468 scopus 로고
    • Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae
    • Han, M., U. J. Kim, P. Kayne, and M. Grunstein, 1988 Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae. EMBO J. 7: 2221-2228.
    • (1988) EMBO J , vol.7 , pp. 2221-2228
    • Han, M.1    Kim, U.J.2    Kayne, P.3    Grunstein, M.4
  • 161
    • 33645217322 scopus 로고    scopus 로고
    • Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation
    • Hashikawa, N., Y. Mizukami, H. Imazu, and H. Sakurai, 2006 Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation. J. Biol. Chem. 281: 3936-3942.
    • (2006) J. Biol. Chem , vol.281 , pp. 3936-3942
    • Hashikawa, N.1    Mizukami, Y.2    Imazu, H.3    Sakurai, H.4
  • 162
    • 56549083230 scopus 로고    scopus 로고
    • The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8
    • Helmlinger, D., S. Marguerat, J. Villen, S. P. Gygi, J. Bahler et al., 2008 The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes Dev. 22: 3184-3195.
    • (2008) Genes Dev , vol.22 , pp. 3184-3195
    • Helmlinger, D.1    Marguerat, S.2    Villen, J.3    Gygi, S.P.4    Bahler, J.5
  • 164
    • 22644436960 scopus 로고    scopus 로고
    • Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status
    • Herbig, A., A. J. Bird, S. Swierczek, K. McCall, M. Mooney et al., 2005 Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status. Mol. Microbiol. 57: 834-846.
    • (2005) Mol. Microbiol , vol.57 , pp. 834-846
    • Herbig, A.1    Bird, A.J.2    Swierczek, S.3    McCall, K.4    Mooney, M.5
  • 165
    • 77952005717 scopus 로고    scopus 로고
    • Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains
    • Herbig, E., L. Warfield, L. Fish, J. Fishburn, B. A. Knutson et al., 2010 Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains. Mol. Cell. Biol. 30: 2376-2390.
    • (2010) Mol. Cell. Biol , vol.30 , pp. 2376-2390
    • Herbig, E.1    Warfield, L.2    Fish, L.3    Fishburn, J.4    Knutson, B.A.5
  • 166
    • 0035871301 scopus 로고    scopus 로고
    • Recruitment of the transcriptional machinery through GAL11P: Structure and interactions of the GAL4 dimerization domain
    • Hidalgo, P., A. Z. Ansari, P. Schmidt, B. Hare, N. Simkovich et al., 2001 Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain. Genes Dev. 15: 1007-1020.
    • (2001) Genes Dev , vol.15 , pp. 1007-1020
    • Hidalgo, P.1    Ansari, A.Z.2    Schmidt, P.3    Hare, B.4    Simkovich, N.5
  • 167
    • 27144510561 scopus 로고    scopus 로고
    • Translational regulation of GCN4 and the general amino acid control of yeast
    • Hinnebusch, A. G., 2005 Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59: 407-450.
    • (2005) Annu. Rev. Microbiol , vol.59 , pp. 407-450
    • Hinnebusch, A.G.1
  • 168
    • 21944438071 scopus 로고    scopus 로고
    • Structure of the mediator subunit cyclin C and its implications for CDK8 function
    • Hoeppner, S., S. Baumli, and P. Cramer, 2005 Structure of the mediator subunit cyclin C and its implications for CDK8 function. J. Mol. Biol. 350: 833-842.
    • (2005) J. Mol. Biol , vol.350 , pp. 833-842
    • Hoeppner, S.1    Baumli, S.2    Cramer, P.3
  • 169
    • 0028321786 scopus 로고
    • A short element required for turning off heat shock transcription factor: Evidence that phosphorylation enhances deactivation
    • Hoj, A., and B. K. Jakobsen, 1994 A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J. 13: 2617-2624.
    • (1994) EMBO J , vol.13 , pp. 2617-2624
    • Hoj, A.1    Jakobsen, B.K.2
  • 170
    • 0035883741 scopus 로고    scopus 로고
    • Mechanisms controlling differential promoter-occupancy by the yeast forkhead proteins Fkh1p and Fkh2p: Implications for regulating the cell cycle and differentiation
    • Hollenhorst, P. C., G. Pietz, and C. A. Fox, 2001 Mechanisms controlling differential promoter-occupancy by the yeast forkhead proteins Fkh1p and Fkh2p: implications for regulating the cell cycle and differentiation. Genes Dev. 15: 2445-2456.
    • (2001) Genes Dev , vol.15 , pp. 2445-2456
    • Hollenhorst, P.C.1    Pietz, G.2    Fox, C.A.3
  • 172
    • 0031463993 scopus 로고    scopus 로고
    • Three transitions in the RNA polymerase II transcription complex during initiation
    • Holstege, F. C. P., U. Fiedler, and H. T. M. Timmers, 1997 Three transitions in the RNA polymerase II transcription complex during initiation. EMBO J. 16: 7468-7480.
    • (1997) EMBO J , vol.16 , pp. 7468-7480
    • Holstege, F.C.P.1    Fiedler, U.2    Timmers, H.T.M.3
  • 173
    • 0033873749 scopus 로고    scopus 로고
    • Functional analysis of heme regulatory elements of the transcriptional activator Hap1
    • Hon, T., A. Hach, H. C. Lee, T. Cheng, and L. Zhang, 2000 Functional analysis of heme regulatory elements of the transcriptional activator Hap1. Biochem. Biophys. Res. Commun. 273: 584-591.
    • (2000) Biochem. Biophys. Res. Commun , vol.273 , pp. 584-591
    • Hon, T.1    Hach, A.2    Lee, H.C.3    Cheng, T.4    Zhang, L.5
  • 174
    • 0035163058 scopus 로고    scopus 로고
    • The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme
    • Hon, T., H. C. Lee, A. Hach, J. L. Johnson, E. A. Craig et al., 2001 The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme. Mol. Cell. Biol. 21: 7923-7932.
    • (2001) Mol. Cell. Biol , vol.21 , pp. 7923-7932
    • Hon, T.1    Lee, H.C.2    Hach, A.3    Johnson, J.L.4    Craig, E.A.5
  • 175
    • 0022551258 scopus 로고
    • Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast
    • Hope, I. A., and K. Struhl, 1986 Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46: 885-894.
    • (1986) Cell , vol.46 , pp. 885-894
    • Hope, I.A.1    Struhl, K.2
  • 176
    • 0036894656 scopus 로고    scopus 로고
    • Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae
    • Horak, C. E., N. M. Luscombe, J. Qian, P. Bertone, S. Piccirrillo et al., 2002 Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev. 16: 3017-3033
    • (2002) Genes Dev , vol.16 , pp. 3017-3033
    • Horak, C.E.1    Luscombe, N.M.2    Qian, J.3    Bertone, P.4    Piccirrillo, S.5
  • 177
    • 77949916244 scopus 로고    scopus 로고
    • On the detection and refinement of transcription factor binding sites using ChIP-Seq data
    • Hu, M., J. Yu, J. Taylor, A. Chinnaiyan, and Z. Qin, 2010 On the detection and refinement of transcription factor binding sites using ChIP-Seq data. Nucleic Acids Res. 38: 2154-2167.
    • (2010) Nucleic Acids Res , vol.38 , pp. 2154-2167
    • Hu, M.1    Yu, J.2    Taylor, J.3    Chinnaiyan, A.4    Qin, Z.5
  • 178
    • 1542285166 scopus 로고    scopus 로고
    • A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae
    • Huisinga, K. L., and B. F. Pugh, 2004 A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell 13: 573-585.
    • (2004) Mol. Cell , vol.13 , pp. 573-585
    • Huisinga, K.L.1    Pugh, B.F.2
  • 179
    • 0030691041 scopus 로고    scopus 로고
    • Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR
    • Huth, J. R., C. A. Bewley, B. M. Jackson, A. G. Hinnebusch, G. M. Clore et al., 1997 Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR. Protein Sci. 6: 2359-2364.
    • (1997) Protein Sci , vol.6 , pp. 2359-2364
    • Huth, J.R.1    Bewley, C.A.2    Jackson, B.M.3    Hinnebusch, A.G.4    Clore, G.M.5
  • 180
    • 12844262945 scopus 로고    scopus 로고
    • H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex
    • Ingvarsdottir, K., N. J. Krogan, N. C. Emre, A. Wyce, N. J. Thompson et al., 2005 H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex. Mol. Cell. Biol. 25: 1162-1172.
    • (2005) Mol. Cell. Biol , vol.25 , pp. 1162-1172
    • Ingvarsdottir, K.1    Krogan, N.J.2    Emre, N.C.3    Wyce, A.4    Thompson, N.J.5
  • 181
    • 0028811353 scopus 로고
    • Mechanism of differential utilization of the his3 TR and TC TATA elements
    • Iyer, V., and K. Struhl, 1995a Mechanism of differential utilization of the his3 TR and TC TATA elements. Mol. Cell. Biol. 15: 7059-7066.
    • (1995) Mol. Cell. Biol , vol.15 , pp. 7059-7066
    • Iyer, V.1    Struhl, K.2
  • 182
    • 0029026719 scopus 로고
    • Poly (dA:DT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure
    • Iyer, V., and K. Struhl, 1995b Poly (dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 14: 2570-2579.
    • (1995) EMBO J , vol.14 , pp. 2570-2579
    • Iyer, V.1    Struhl, K.2
  • 183
    • 0025965063 scopus 로고
    • A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor
    • Jakobsen, B. K., and H. R. Pelham, 1991 A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J. 10: 369-375.
    • (1991) EMBO J , vol.10 , pp. 369-375
    • Jakobsen, B.K.1    Pelham, H.R.2
  • 184
    • 0023701108 scopus 로고
    • Constitutive binding of yeast heat shock factor to DNA in vivo
    • Jakobsen, B. K., and H. R. Pelham, 1988 Constitutive binding of yeast heat shock factor to DNA in vivo. Mol. Cell. Biol. 8: 5040-5042.
    • (1988) Mol. Cell. Biol , vol.8 , pp. 5040-5042
    • Jakobsen, B.K.1    Pelham, H.R.2
  • 185
    • 77449125295 scopus 로고    scopus 로고
    • Activator Gcn4 employs multiple segments of Med15/ Gal11, including the KIX domain, to recruit mediator to target genes in vivo
    • Jedidi, I., F. Zhang, H. Qiu, S. J. Stahl, I. Palmer et al., 2010 Activator Gcn4 employs multiple segments of Med15/ Gal11, including the KIX domain, to recruit mediator to target genes in vivo. J. Biol. Chem. 285: 2438-2455.
    • (2010) J. Biol. Chem , vol.285 , pp. 2438-2455
    • Jedidi, I.1    Zhang, F.2    Qiu, H.3    Stahl, S.J.4    Palmer, I.5
  • 186
    • 44949166705 scopus 로고    scopus 로고
    • Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast
    • Jenks, M. H., T. W. O'Rourke, and D. Reines, 2008 Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast. Mol. Cell. Biol. 28: 3883-3893.
    • (2008) Mol. Cell. Biol , vol.28 , pp. 3883-3893
    • Jenks, M.H.1    O'Rourke, T.W.2    Reines, D.3
  • 187
    • 60349089645 scopus 로고    scopus 로고
    • Nucleosome positioning and gene regulation: Advances through genomics
    • Jiang, C., and B. F. Pugh, 2009 Nucleosome positioning and gene regulation: advances through genomics. Nat. Rev. Genet. 10: 161-172.
    • (2009) Nat. Rev. Genet , vol.10 , pp. 161-172
    • Jiang, C.1    Pugh, B.F.2
  • 188
    • 70350457498 scopus 로고    scopus 로고
    • Gene activation by dissociation of an inhibitor from a transcriptional activation domain
    • Jiang, F., B. R. Frey, M. L. Evans, J. C. Friel, and J. E. Hopper, 2009 Gene activation by dissociation of an inhibitor from a transcriptional activation domain. Mol. Cell. Biol. 29: 5604-5610.
    • (2009) Mol. Cell. Biol , vol.29 , pp. 5604-5610
    • Jiang, F.1    Frey, B.R.2    Evans, M.L.3    Friel, J.C.4    Hopper, J.E.5
  • 189
    • 0000632439 scopus 로고
    • Regulation of carbon and phosphate utilization
    • in Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • Johnston, M., and M. Carlson, 1992 Regulation of carbon and phosphate utilization, pp. 193-281 in Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae, edited by E. Jones, J. R. Pringle, and J. R. Broach. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • (1992) E. Jones, J. R. Pringle, and J. R. Broach , pp. 193-281
    • Johnston, M.1    Carlson, M.2
  • 190
    • 0023643044 scopus 로고
    • Interaction of positive and negative regulatory proteins in the galactose regulon of yeast
    • Johnston, S. A., J. M. Salmeron Jr. and S. S. Dincher, 1987 Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50: 143-146.
    • (1987) Cell , vol.50 , pp. 143-146
    • Johnston, S.A.1    Salmeron Jr, J.M.2    Dincher, S.S.3
  • 191
    • 0027893401 scopus 로고
    • Nucleosome cores and histone H1 in the binding of GAL4 derivatives and the reactivation of transcription from nucleosome templates in vitro. Cold Spring Harb
    • Juan, L. J., P. P. Walter, I. C. Taylor, R. E. Kingston, and J. L. Workman, 1993 Nucleosome cores and histone H1 in the binding of GAL4 derivatives and the reactivation of transcription from nucleosome templates in vitro. Cold Spring Harb. Symp. Quant. Biol. 58: 213-223.
    • (1993) Symp. Quant. Biol , vol.58 , pp. 213-223
    • Juan, L.J.1    Walter, P.P.2    Taylor, I.C.3    Kingston, R.E.4    Workman, J.L.5
  • 192
    • 0036440853 scopus 로고    scopus 로고
    • Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase
    • Jung, U. S., A. K. Sobering, M. J. Romeo, and D. E. Levin, 2002 Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Mol. Microbiol. 46: 781-789.
    • (2002) Mol. Microbiol , vol.46 , pp. 781-789
    • Jung, U.S.1    Sobering, A.K.2    Romeo, M.J.3    Levin, D.E.4
  • 193
    • 77149174487 scopus 로고    scopus 로고
    • Regulation of gene expression via the core promoter and the basal transcriptional machinery
    • Juven-Gershon, T., and J. T. Kadonaga, 2010 Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev. Biol. 339: 225-229.
    • (2010) Dev. Biol , vol.339 , pp. 225-229
    • Juven-Gershon, T.1    Kadonaga, J.T.2
  • 194
    • 52449104560 scopus 로고    scopus 로고
    • Promoter binding by the Adr1 transcriptional activator may be regulated by phosphorylation in the DNA-binding region
    • Kacherovsky, N., C. Tachibana, E. Amos, D. Fox III. and E. T. Young, 2008 Promoter binding by the Adr1 transcriptional activator may be regulated by phosphorylation in the DNA-binding region. PLoS ONE 3: e3213
    • (2008) PLoS ONE , vol.3
    • Kacherovsky, N.1    Tachibana, C.2    Amos, E.3    Fox, D.4    Young, E.T.5
  • 195
    • 0343924289 scopus 로고    scopus 로고
    • Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters
    • Kadosh, D., and K. Struhl, 1997 Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89: 365-371.
    • (1997) Cell , vol.89 , pp. 365-371
    • Kadosh, D.1    Struhl, K.2
  • 196
    • 0031865050 scopus 로고    scopus 로고
    • Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo
    • Kadosh, D., and K. Struhl, 1998 Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell. Biol. 18: 5121-5127.
    • (1998) Mol. Cell. Biol , vol.18 , pp. 5121-5127
    • Kadosh, D.1    Struhl, K.2
  • 197
    • 0342614209 scopus 로고    scopus 로고
    • Unified nomenclature for the winged helix/forkhead transcription factors
    • Kaestner, K. H., W. Knochel, and D. E. Martinez, 2000 Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14: 142-146.
    • (2000) Genes Dev , vol.14 , pp. 142-146
    • Kaestner, K.H.1    Knochel, W.2    Martinez, D.E.3
  • 198
    • 78951488810 scopus 로고    scopus 로고
    • Functional dissection of IME1 transcription using quantitative promoter-reporter screening
    • Kahana, S., L. Pnueli, P. Kainth, H. E. Sassi, B. Andrews et al., 2010 Functional dissection of IME1 transcription using quantitative promoter-reporter screening. Genetics 186: 829-841.
    • (2010) Genetics , vol.186 , pp. 829-841
    • Kahana, S.1    Pnueli, L.2    Kainth, P.3    Sassi, H.E.4    Andrews, B.5
  • 199
    • 0023849463 scopus 로고
    • GAL4 activates gene expression in mammalian cells
    • Kakidani, H., and M. Ptashne, 1988 GAL4 activates gene expression in mammalian cells. Cell 52: 161-167.
    • (1988) Cell , vol.52 , pp. 161-167
    • Kakidani, H.1    Ptashne, M.2
  • 200
    • 0035834772 scopus 로고    scopus 로고
    • The structural and functional organization of the yeast mediator complex
    • Kang, J. S., S. H. Kim, M. S. Hwang, S. J. Han, Y. C. Lee et al., 2001 The structural and functional organization of the yeast mediator complex. J. Biol. Chem. 276: 42003-42010.
    • (2001) J. Biol. Chem , vol.276 , pp. 42003-42010
    • Kang, J.S.1    Kim, S.H.2    Hwang, M.S.3    Han, S.J.4    Lee, Y.C.5
  • 201
    • 34347241749 scopus 로고    scopus 로고
    • Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis
    • Kanin, E. I., R. T. Kipp, C. Kung, M. Slattery, A. Viale et al., 2007 Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc. Natl. Acad. Sci. USA 104: 5812-5817.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 5812-5817
    • Kanin, E.I.1    Kipp, R.T.2    Kung, C.3    Slattery, M.4    Viale, A.5
  • 203
    • 0032059111 scopus 로고    scopus 로고
    • Activator-mediated recruitment of the RNA polymerase II machinery is the predominant mechanism for transcriptional activation in yeast
    • Keaveney, M., and K. Struhl, 1998 Activator-mediated recruitment of the RNA polymerase II machinery is the predominant mechanism for transcriptional activation in yeast. Mol. Cell 1: 917-924.
    • (1998) Mol. Cell , vol.1 , pp. 917-924
    • Keaveney, M.1    Struhl, K.2
  • 204
    • 0038349948 scopus 로고    scopus 로고
    • Sequencing and comparison of yeast species to identify genes and regulatory elements
    • Kellis, M., N. Patterson, M. Endrizzi, B. Birren, and E. S. Lander, 2003 Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241-254.
    • (2003) Nature , vol.423 , pp. 241-254
    • Kellis, M.1    Patterson, N.2    Endrizzi, M.3    Birren, B.4    Lander, E.S.5
  • 205
    • 44349165718 scopus 로고    scopus 로고
    • Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization
    • Khaperskyy, D. A., M. L. Ammerman, R. C. Majovski, and A. S. Ponticelli, 2008 Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization. Mol. Cell. Biol. 28: 3757-3766.
    • (2008) Mol. Cell. Biol , vol.28 , pp. 3757-3766
    • Khaperskyy, D.A.1    Ammerman, M.L.2    Majovski, R.C.3    Ponticelli, A.S.4
  • 206
    • 0027483012 scopus 로고
    • Co-crystal structure of TBP recognizing the minor groove of a TATA element
    • Kim, J. L., D. B. Nikolov, and S. K. Burley, 1993 Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365: 520-527.
    • (1993) Nature , vol.365 , pp. 520-527
    • Kim, J.L.1    Nikolov, D.B.2    Burley, S.K.3
  • 207
    • 0034717308 scopus 로고    scopus 로고
    • Mechanism of ATP-dependent promoter melting by transcription factor IIH
    • Kim, T. K., R. H. Ebright, and D. Reinberg, 2000 Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288: 1418-1422.
    • (2000) Science , vol.288 , pp. 1418-1422
    • Kim, T.K.1    Ebright, R.H.2    Reinberg, D.3
  • 208
    • 0027504913 scopus 로고
    • Crystal structure of a yeast TBP/TATA-box complex
    • Kim, Y., J. H. Geiger, S. Hahn, and P. B. Sigler, 1993 Crystal structure of a yeast TBP/TATA-box complex. Nature 365: 512-520.
    • (1993) Nature , vol.365 , pp. 512-520
    • Kim, Y.1    Geiger, J.H.2    Hahn, S.3    Sigler, P.B.4
  • 209
    • 0028943781 scopus 로고
    • Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo
    • Klages, N., and M. Strubin, 1995 Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature 374: 822-823.
    • (1995) Nature , vol.374 , pp. 822-823
    • Klages, N.1    Strubin, M.2
  • 210
    • 79251584630 scopus 로고    scopus 로고
    • Domains of Tra1 important for Activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes
    • Knutson, B. A., and S. Hahn, 2011 Domains of Tra1 important for Activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes. Mol. Cell. Biol. 31: 818-831.
    • (2011) Mol. Cell. Biol , vol.31 , pp. 818-831
    • Knutson, B.A.1    Hahn, S.2
  • 211
    • 44649179312 scopus 로고    scopus 로고
    • Yeast ataxin-7 links histone deubiquitination with gene gating and mRNA export
    • Kohler, A., M. Schneider, G. G. Cabal, U. Nehrbass, and E. Hurt, 2008 Yeast ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat. Cell Biol. 10: 707-715.
    • (2008) Nat. Cell Biol , vol.10 , pp. 707-715
    • Kohler, A.1    Schneider, M.2    Cabal, G.G.3    Nehrbass, U.4    Hurt, E.5
  • 212
    • 0037338355 scopus 로고    scopus 로고
    • Leucine biosynthesis in fungi: Entering metabolism through the back door
    • Kohlhaw, G. B., 2003 Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol. Mol. Biol. Rev. 67: 1-15.
    • (2003) Microbiol. Mol. Biol. Rev , vol.67 , pp. 1-15
    • Kohlhaw, G.B.1
  • 213
    • 0027248516 scopus 로고
    • Identification of TFIID components required for transcriptional activation by upstream stimulatory factor
    • Kokubo, T., R. Takada, S. Yamashita, D. W. Gong, R. G. Roeder et al., 1993 Identification of TFIID components required for transcriptional activation by upstream stimulatory factor. J. Biol. Chem. 268: 17554-17558.
    • (1993) J. Biol. Chem , vol.268 , pp. 17554-17558
    • Kokubo, T.1    Takada, R.2    Yamashita, S.3    Gong, D.W.4    Roeder, R.G.5
  • 214
    • 0031883573 scopus 로고    scopus 로고
    • The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein
    • Kokubo, T., M. J. Swanson, J. I. Nishikawa, A. G. Hinnebusch, and Y. Nakatani, 1998 The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein. Mol. Cell. Biol. 18: 1003-1012.
    • (1998) Mol. Cell. Biol , vol.18 , pp. 1003-1012
    • Kokubo, T.1    Swanson, M.J.2    Nishikawa, J.I.3    Hinnebusch, A.G.4    Nakatani, Y.5
  • 215
    • 0034061186 scopus 로고    scopus 로고
    • Nuclear transport and transcription
    • Komeili, A., and E. K. O'Shea, 2000 Nuclear transport and transcription. Curr. Opin. Cell Biol. 12: 355-360.
    • (2000) Curr. Opin. Cell Biol , vol.12 , pp. 355-360
    • Komeili, A.1    O'Shea, E.K.2
  • 216
    • 58149351376 scopus 로고    scopus 로고
    • Identification, structure, and functional requirement of the Mediator submodule Med7N/31
    • Koschubs, T., M. Seizl, L. Lariviere, F. Kurth, S. Baumli et al., 2009 Identification, structure, and functional requirement of the Mediator submodule Med7N/31. EMBO J. 28: 69-80.
    • (2009) EMBO J , vol.28 , pp. 69-80
    • Koschubs, T.1    Seizl, M.2    Lariviere, L.3    Kurth, F.4    Baumli, S.5
  • 218
    • 70450171352 scopus 로고    scopus 로고
    • RNA polymerase II-TFIIB structure and mechanism of transcription initiation
    • Kostrewa, D., M. E. Zeller, K. J. Armache, M. Seizl, K. Leike et al., 2009 RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 462: 323-330.
    • (2009) Nature , vol.462 , pp. 323-330
    • Kostrewa, D.1    Zeller, M.E.2    Armache, K.J.3    Seizl, M.4    Leike, K.5
  • 219
    • 0037439997 scopus 로고    scopus 로고
    • Structural classification of zinc fingers: Survey and summary
    • Krishna, S. S., I. Majumdar, and N. V. Grishin, 2003 Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 31: 532-550.
    • (2003) Nucleic Acids Res , vol.31 , pp. 532-550
    • Krishna, S.S.1    Majumdar, I.2    Grishin, N.V.3
  • 220
    • 33744913056 scopus 로고    scopus 로고
    • Quantitative analysis of in vivo initiator selection by yeast RNA polymerase II supports a scanning model
    • Kuehner, J. N., and D. A. Brow, 2006 Quantitative analysis of in vivo initiator selection by yeast RNA polymerase II supports a scanning model. J. Biol. Chem. 281: 14119-14128.
    • (2006) J. Biol. Chem , vol.281 , pp. 14119-14128
    • Kuehner, J.N.1    Brow, D.A.2
  • 221
    • 47349099971 scopus 로고    scopus 로고
    • Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation
    • Kuehner, J. N., and D. A. Brow, 2008 Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol. Cell 31: 201-211.
    • (2008) Mol. Cell , vol.31 , pp. 201-211
    • Kuehner, J.N.1    Brow, D.A.2
  • 222
    • 0033542436 scopus 로고    scopus 로고
    • Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme
    • Kuras, L., and K. Struhl, 1999 Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399: 609-613.
    • (1999) Nature , vol.399 , pp. 609-613
    • Kuras, L.1    Struhl, K.2
  • 223
    • 0034686037 scopus 로고    scopus 로고
    • TAF-containing and TAF-independent forms of transcriptionally active TBP in vivo
    • Kuras, L., P. Kosa, M. Mencia, and K. Struhl, 2000 TAF-containing and TAF-independent forms of transcriptionally active TBP in vivo. Science 288: 1244-1248.
    • (2000) Science , vol.288 , pp. 1244-1248
    • Kuras, L.1    Kosa, P.2    Mencia, M.3    Struhl, K.4
  • 224
    • 0030575937 scopus 로고    scopus 로고
    • Structure of the MDM2 oncoprotien bound to the p53 tumor suppressor transactivation domain
    • Kussie, P., S. Gorina, V. Marechal, B. Elenbaas, J. Moreau et al., 1996 Structure of the MDM2 oncoprotien bound to the p53 tumor suppressor transactivation domain. Science 274: 948-953.
    • (1996) Science , vol.274 , pp. 948-953
    • Kussie, P.1    Gorina, S.2    Marechal, V.3    Elenbaas, B.4    Moreau, J.5
  • 225
    • 3042595446 scopus 로고    scopus 로고
    • A novel mode of chaperone action: Heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex
    • Lan, C., H. C. Lee, S. Tang, and L. Zhang, 2004 A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex. J. Biol. Chem. 279: 27607-27612.
    • (2004) J. Biol. Chem , vol.279 , pp. 27607-27612
    • Lan, C.1    Lee, H.C.2    Tang, S.3    Zhang, L.4
  • 226
    • 73649138940 scopus 로고    scopus 로고
    • Molecular evolution of multisubunit RNA polymerases: Sequence analysis
    • Lane, W. J., and S. A. Darst, 2010a Molecular evolution of multisubunit RNA polymerases: sequence analysis. J. Mol. Biol. 395: 671-685.
    • (2010) J. Mol. Biol , vol.395 , pp. 671-685
    • Lane, W.J.1    Darst, S.A.2
  • 227
    • 73649093377 scopus 로고    scopus 로고
    • Molecular evolution of multisubunit RNA polymerases: Structural analysis
    • Lane, W. J., and S. A. Darst, 2010b Molecular evolution of multisubunit RNA polymerases: structural analysis. J. Mol. Biol. 395: 686-704.
    • (2010) J. Mol. Biol , vol.395 , pp. 686-704
    • Lane, W.J.1    Darst, S.A.2
  • 228
    • 37248999781 scopus 로고    scopus 로고
    • Characterization of new Spt3 and TATA-binding protein mutants of Saccharomyces cerevisiae: Spt3 TBP allele-specific interactions and bypass of Spt8
    • Laprade, L., D. Rose, and F. Winston, 2007 Characterization of new Spt3 and TATA-binding protein mutants of Saccharomyces cerevisiae: Spt3 TBP allele-specific interactions and bypass of Spt8. Genetics 177: 2007-2017.
    • (2007) Genetics , vol.177 , pp. 2007-2017
    • Laprade, L.1    Rose, D.2    Winston, F.3
  • 230
    • 41649112169 scopus 로고    scopus 로고
    • Structure-system correlation identifies a gene regulatory Mediator submodule
    • Lariviere, L., M. Seizl, S. van Wageningen, S. Rother, L. van de Pasch et al., 2008 Structure-system correlation identifies a gene regulatory Mediator submodule. Genes Dev. 22: 872-877.
    • (2008) Genes Dev , vol.22 , pp. 872-877
    • Lariviere, L.1    Seizl, M.2    van Wageningen, S.3    Rother, S.4    van de Pasch, L.5
  • 231
    • 0035425099 scopus 로고    scopus 로고
    • The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4
    • Larschan, E., and F. Winston, 2001 The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev. 15: 1946-1956.
    • (2001) Genes Dev , vol.15 , pp. 1946-1956
    • Larschan, E.1    Winston, F.2
  • 232
    • 77950553742 scopus 로고    scopus 로고
    • Evolutionary tinkering with conserved components of a transcriptional regulatory network
    • Lavoie, H., H. Hogues, J. Mallick, A. Sellam, A. Nantel et al., 2010 Evolutionary tinkering with conserved components of a transcriptional regulatory network. PLoS Biol. 8: e1000329
    • (2010) PLoS Biol , vol.e1000329 , pp. 8
    • Lavoie, H.1    Hogues, H.2    Mallick, J.3    Sellam, A.4    Nantel, A.5
  • 233
    • 77952087752 scopus 로고    scopus 로고
    • Direct transactivatortranscription factor IID (TFIID) contacts drive yeast ribosomal protein gene transcription
    • Layer, J. H., S. G. Miller, and P. A. Weil, 2010 Direct transactivatortranscription factor IID (TFIID) contacts drive yeast ribosomal protein gene transcription. J. Biol. Chem. 285: 15489-15499.
    • (2010) J. Biol. Chem , vol.285 , pp. 15489-15499
    • Layer, J.H.1    Miller, S.G.2    Weil, P.A.3
  • 234
    • 3543023310 scopus 로고    scopus 로고
    • Evidence for nucleosome depletion at active regulatory regions genome-wide
    • Lee, C. K., Y. Shibata, B. Rao, B. D. Strahl, and J. D. Lieb, 2004 Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36: 900-905.
    • (2004) Nat. Genet , vol.36 , pp. 900-905
    • Lee, C.K.1    Shibata, Y.2    Rao, B.3    Strahl, B.D.4    Lieb, J.D.5
  • 235
    • 67650149024 scopus 로고    scopus 로고
    • A unique mechanism of chaperone action: Heme regulation of Hap1 activity involves separate control of repression and activation
    • Lee, H. C., and L. Zhang, 2009 A unique mechanism of chaperone action: heme regulation of Hap1 activity involves separate control of repression and activation. Protein Pept. Lett. 16: 642-649.
    • (2009) Protein Pept. Lett , vol.16 , pp. 642-649
    • Lee, H.C.1    Zhang, L.2
  • 236
    • 33947532026 scopus 로고    scopus 로고
    • Histone acetyltransferase complexes: One size doesn't fit all
    • Lee, K. K., and J. L. Workman, 2007 Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol. 8: 284-295.
    • (2007) Nat. Rev. Mol. Cell Biol , vol.8 , pp. 284-295
    • Lee, K.K.1    Workman, J.L.2
  • 237
    • 12844277462 scopus 로고    scopus 로고
    • The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex
    • Lee, K. K., L. Florens, S. K. Swanson, M. P. Washburn, and J. L. Workman, 2005 The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol. Cell. Biol. 25: 1173-1182.
    • (2005) Mol. Cell. Biol , vol.25 , pp. 1173-1182
    • Lee, K.K.1    Florens, L.2    Swanson, S.K.3    Washburn, M.P.4    Workman, J.L.5
  • 238
    • 79960080101 scopus 로고    scopus 로고
    • Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes
    • Lee, K. K., M. E. Sardiu, S. K. Swanson, J. M. Gilmore, M. Torok et al., 2011 Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol. Syst. Biol. 7: 1-12.
    • (2011) Mol. Syst. Biol , vol.7 , pp. 1-12
    • Lee, K.K.1    Sardiu, M.E.2    Swanson, S.K.3    Gilmore, J.M.4    Torok, M.5
  • 239
    • 0033886103 scopus 로고    scopus 로고
    • Genetic analysis of the role of pol II holoenzyme components in repression by the Cyc8-tup1 corepressor in yeast
    • Lee, M., S. Chatterjee, and K. Struhl, 2000 Genetic analysis of the role of pol II holoenzyme components in repression by the Cyc8-tup1 corepressor in yeast. Genetics 155: 1535-1542.
    • (2000) Genetics , vol.155 , pp. 1535-1542
    • Lee, M.1    Chatterjee, S.2    Struhl, K.3
  • 240
    • 0034108630 scopus 로고    scopus 로고
    • The yeast heat shock transcription factor changes conformation in response to superoxide and temperature
    • Lee, S., T. Carlson, N. Christian, K. Lea, J. Kedzie et al., 2000 The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Mol. Biol. Cell 11: 1753-1764.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 1753-1764
    • Lee, S.1    Carlson, T.2    Christian, N.3    Lea, K.4    Kedzie, J.5
  • 241
    • 76049086964 scopus 로고    scopus 로고
    • Dissection of combinatorial control by the Met4 transcriptional complex
    • Lee, T. A., P. Jorgensen, A. L. Bognar, C. Peyraud, D. Thomas et al., 2010 Dissection of combinatorial control by the Met4 transcriptional complex. Mol. Biol. Cell 21: 456-469.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 456-469
    • Lee, T.A.1    Jorgensen, P.2    Bognar, A.L.3    Peyraud, C.4    Thomas, D.5
  • 242
    • 0032523882 scopus 로고    scopus 로고
    • Regulation of gene expression by TBP-associated proteins
    • Lee, T. I., and R. A. Young, 1998 Regulation of gene expression by TBP-associated proteins. Genes Dev. 12: 1398-1408.
    • (1998) Genes Dev , vol.12 , pp. 1398-1408
    • Lee, T.I.1    Young, R.A.2
  • 243
    • 0001262663 scopus 로고    scopus 로고
    • Redundant roles for the TFIID and SAGA complexes in global transcription
    • Lee, T. I., H. C. Causton, F. C. Holstege, W. C. Shen, N. Hannett et al., 2000 Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405: 701-704.
    • (2000) Nature , vol.405 , pp. 701-704
    • Lee, T.I.1    Causton, H.C.2    Holstege, F.C.3    Shen, W.C.4    Hannett, N.5
  • 244
    • 34748826166 scopus 로고    scopus 로고
    • A high-resolution atlas of nucleosome occupancy in yeast
    • Lee, W., D. Tillo, N. Bray, R. H. Morse, R. W. Davis et al., 2007 A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39: 1235-1244.
    • (2007) Nat. Genet , vol.39 , pp. 1235-1244
    • Lee, W.1    Tillo, D.2    Bray, N.3    Morse, R.H.4    Davis, R.W.5
  • 246
    • 33847070442 scopus 로고    scopus 로고
    • The role of chromatin during transcription
    • Li, B., M. Carey, and J. L. Workman, 2007 The role of chromatin during transcription. Cell 128: 707-719.
    • (2007) Cell , vol.128 , pp. 707-719
    • Li, B.1    Carey, M.2    Workman, J.L.3
  • 247
    • 0034686001 scopus 로고    scopus 로고
    • Distinct classes of yeast promoters revealed by differential TAF recruitment
    • Li, X. Y., S. R. Bhaumik, and M. R. Green, 2000 Distinct classes of yeast promoters revealed by differential TAF recruitment. Science 288: 1242-1244.
    • (2000) Science , vol.288 , pp. 1242-1244
    • Li, X.Y.1    Bhaumik, S.R.2    Green, M.R.3
  • 248
    • 0033542484 scopus 로고    scopus 로고
    • Enhancement of TBP binding by activators and general transcription factors
    • Li, X. Y., A. Virbasius, X. Zhu, and M. R. Green, 1999 Enhancement of TBP binding by activators and general transcription factors. Nature 399: 605-609.
    • (1999) Nature , vol.399 , pp. 605-609
    • Li, X.Y.1    Virbasius, A.2    Zhu, X.3    Green, M.R.4
  • 249
    • 0037162292 scopus 로고    scopus 로고
    • Selective recruitment of TAFs by yeast upstream activating sequences: Implications for eukaryotic promoter structure
    • Li, X. Y., S. R. Bhaumik, X. Zhu, L. Li, W. C. Shen et al., 2002 Selective recruitment of TAFs by yeast upstream activating sequences: implications for eukaryotic promoter structure. Curr. Biol. 12: 1240-1244.
    • (2002) Curr. Biol , vol.12 , pp. 1240-1244
    • Li, X.Y.1    Bhaumik, S.R.2    Zhu, X.3    Li, L.4    Shen, W.C.5
  • 250
    • 0028937199 scopus 로고
    • A kinase-cyclin pair in the RNA polymerase II holoenzyme
    • Liao, S. M., J. Zhang, D. A. Jeffery, A. J. Koleske, C. M. Thompson et al., 1995 A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374: 193-196.
    • (1995) Nature , vol.374 , pp. 193-196
    • Liao, S.M.1    Zhang, J.2    Jeffery, D.A.3    Koleske, A.J.4    Thompson, C.M.5
  • 251
    • 0032483558 scopus 로고    scopus 로고
    • Solution structure of a TBP-TAF(II)230 complex: Protein mimicry of the minor groove surface of the TATA box unwound by TBP
    • Liu, D., R. Ishima, K. I. Tong, S. Bagby, T. Kokubo et al., 1998 Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94: 573-583.
    • (1998) Cell , vol.94 , pp. 573-583
    • Liu, D.1    Ishima, R.2    Tong, K.I.3    Bagby, S.4    Kokubo, T.5
  • 252
    • 38349074012 scopus 로고    scopus 로고
    • Structural changes in TAF4b-TFIID correlate with promoter selectivity
    • Liu, W. L., R. A. Coleman, P. Grob, D. S. King, L. Florens et al., 2008 Structural changes in TAF4b-TFIID correlate with promoter selectivity. Mol. Cell 29: 81-91.
    • (2008) Mol. Cell , vol.29 , pp. 81-91
    • Liu, W.L.1    Coleman, R.A.2    Grob, P.3    King, D.S.4    Florens, L.5
  • 253
    • 37549044715 scopus 로고    scopus 로고
    • STAGA recruits Mediator to the MYC oncoprotein to stimulate transcription and cell proliferation
    • Liu, X., M. Vorontchikhina, Y. L. Wang, F. Faiola, and E. Martinez, 2008 STAGA recruits Mediator to the MYC oncoprotein to stimulate transcription and cell proliferation. Mol. Cell. Biol. 28: 108-121.
    • (2008) Mol. Cell. Biol , vol.28 , pp. 108-121
    • Liu, X.1    Vorontchikhina, M.2    Wang, Y.L.3    Faiola, F.4    Martinez, E.5
  • 254
    • 74249102477 scopus 로고    scopus 로고
    • Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism
    • Liu, X., D. A. Bushnell, D. Wang, G. Calero, and R. D. Kornberg, 2010 Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism. Science 327: 206-209.
    • (2010) Science , vol.327 , pp. 206-209
    • Liu, X.1    Bushnell, D.A.2    Wang, D.3    Calero, G.4    Kornberg, R.D.5
  • 255
    • 0842347413 scopus 로고    scopus 로고
    • Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the Scaffold complex
    • Liu, Y., C. Kung, J. Fishburn, A. Z. Ansari, K. M. Shokat et al., 2004 Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the Scaffold complex. Mol. Cell. Biol. 24: 1721-1735.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 1721-1735
    • Liu, Y.1    Kung, C.2    Fishburn, J.3    Ansari, A.Z.4    Shokat, K.M.5
  • 256
    • 68849086180 scopus 로고    scopus 로고
    • Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex
    • Liu, Y., L. Warfield, C. Zhang, J. Luo, J. Allen et al., 2009 Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol. Cell. Biol. 29: 4852-4863.
    • (2009) Mol. Cell. Biol , vol.29 , pp. 4852-4863
    • Liu, Y.1    Warfield, L.2    Zhang, C.3    Luo, J.4    Allen, J.5
  • 258
    • 0023643078 scopus 로고
    • The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80
    • Ma, J., and M. Ptashne, 1987a The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50: 137-142.
    • (1987) Cell , vol.50 , pp. 137-142
    • Ma, J.1    Ptashne, M.2
  • 259
    • 0023652389 scopus 로고
    • Deletion analysis of GAL4 defines two transcriptional activating segments
    • Ma, J., and M. Ptashne, 1987b Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48: 847-853.
    • (1987) Cell , vol.48 , pp. 847-853
    • Ma, J.1    Ptashne, M.2
  • 260
    • 0024277919 scopus 로고
    • Converting a eukaryotic transcriptional inhibitor into an activator
    • Ma, J., and M. Ptashne, 1988 Converting a eukaryotic transcriptional inhibitor into an activator. Cell 55: 443-446.
    • (1988) Cell , vol.55 , pp. 443-446
    • Ma, J.1    Ptashne, M.2
  • 261
    • 0024291280 scopus 로고
    • Yeast activators stimulate plant gene expression
    • Ma, J., E. Przibilla, J. Hu, L. Bogorad, and M. Ptashne, 1988 Yeast activators stimulate plant gene expression. Nature 334: 631-633.
    • (1988) Nature , vol.334 , pp. 631-633
    • Ma, J.1    Przibilla, E.2    Hu, J.3    Bogorad, L.4    Ptashne, M.5
  • 262
    • 33749236250 scopus 로고    scopus 로고
    • A fungal family of transcriptional regulators: The zinc cluster proteins
    • MacPherson, S., M. Larochelle, and B. Turcotte, 2006 A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol. Mol. Biol. Rev. 70: 583-604.
    • (2006) Microbiol. Mol. Biol. Rev , vol.70 , pp. 583-604
    • Macpherson, S.1    Larochelle, M.2    Turcotte, B.3
  • 263
    • 0031014943 scopus 로고    scopus 로고
    • Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TBP to confer promoterspecific transcriptional control in S
    • Madison, J. M., and F. Winston, 1997 Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TBP to confer promoterspecific transcriptional control in S. Cerevisiae. Mol. Cell. Biol. 17: 287-295.
    • (1997) Cerevisiae. Mol. Cell. Biol , vol.17 , pp. 287-295
    • Madison, J.M.1    Winston, F.2
  • 264
    • 70349929154 scopus 로고    scopus 로고
    • A high-resolution interaction map of three transcriptional activation domains with a key coactivator from photo-cross-linking and multiplexed mass spectrometry
    • Majmudar, C. Y., B. Wang, J. K. Lum, K. Hakansson, and A. K. Mapp, 2009 A high-resolution interaction map of three transcriptional activation domains with a key coactivator from photo-cross-linking and multiplexed mass spectrometry. Angew. Chem. Int. Ed. Engl. 48: 7021-7024.
    • (2009) Angew. Chem. Int. Ed. Engl
    • Majmudar, C.Y.1    Wang, B.2    Lum, J.K.3    Hakansson, K.4    Mapp, A.K.5
  • 265
    • 18844394569 scopus 로고    scopus 로고
    • Dynamic regulation of pol II transcription by the mammalian Mediator complex
    • Malik, S., and R. G. Roeder, 2005 Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci. 30: 256-263.
    • (2005) Trends Biochem. Sci , vol.30 , pp. 256-263
    • Malik, S.1    Roeder, R.G.2
  • 266
    • 33847232569 scopus 로고    scopus 로고
    • Transcriptional activation domains of the Candida albicans Gcn4p and Gal4p homologs
    • Martchenko, M., A. Levitin, and M. Whiteway, 2007 Transcriptional activation domains of the Candida albicans Gcn4p and Gal4p homologs. Eukaryot. Cell 6: 291-301.
    • (2007) Eukaryot. Cell , vol.6 , pp. 291-301
    • Martchenko, M.1    Levitin, A.2    Whiteway, M.3
  • 267
    • 0029610077 scopus 로고
    • Core promoter-specific function of a mutant transcription factor TFIID defective in TATA-box binding
    • Martinez, E., Q. Zhou, N. D. L'Etoile, T. Oelgeschlager, A. J. Berk et al., 1995 Core promoter-specific function of a mutant transcription factor TFIID defective in TATA-box binding. Proc. Natl. Acad. Sci. USA 92: 11864-11868.
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 11864-11868
    • Martinez, E.1    Zhou, Q.2    L'etoile, N.D.3    Oelgeschlager, T.4    Berk, A.J.5
  • 270
    • 0019333274 scopus 로고
    • Multiple factors required for accurate initiation of transcription by purified RNA polymerase II
    • Matsui, T., J. Segall, P. A. Weil, and R. G. Roeder, 1980 Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem. 255: 11992-11996.
    • (1980) J. Biol. Chem , vol.255 , pp. 11992-11996
    • Matsui, T.1    Segall, J.2    Weil, P.A.3    Roeder, R.G.4
  • 271
    • 0035852756 scopus 로고    scopus 로고
    • Ash1p is a site-specific DNA-binding protein that actively represses transcription
    • Maxon, M. E., and I. Herskowitz, 2001 Ash1p is a site-specific DNA-binding protein that actively represses transcription. Proc. Natl. Acad. Sci. USA 98: 1495-1500.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 1495-1500
    • Maxon, M.E.1    Herskowitz, I.2
  • 273
    • 0023651185 scopus 로고
    • A transcriptional activator is located in the coding region of the yeast PGK gene
    • Mellor, J., M. J. Dobson, A. J. Kingsman, and S. M. Kingsman, 1987 A transcriptional activator is located in the coding region of the yeast PGK gene. Nucleic Acids Res. 15: 6243-6259.
    • (1987) Nucleic Acids Res , vol.15 , pp. 6243-6259
    • Mellor, J.1    Dobson, M.J.2    Kingsman, A.J.3    Kingsman, S.M.4
  • 274
    • 17644419993 scopus 로고    scopus 로고
    • Reverse recruitment: The Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional activation
    • Menon, B. B., N. J. Sarma, S. Pasula, S. J. Deminoff, K. A. Willis et al., 2005 Reverse recruitment: the Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional activation. Proc. Natl. Acad. Sci. USA 102: 5749-5754.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 5749-5754
    • Menon, B.B.1    Sarma, N.J.2    Pasula, S.3    Deminoff, S.J.4    Willis, K.A.5
  • 275
  • 276
    • 33745842952 scopus 로고    scopus 로고
    • A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex
    • Miller, G., and S. Hahn, 2006 A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex. Nat. Struct. Mol. Biol. 13: 603-610.
    • (2006) Nat. Struct. Mol. Biol , vol.13 , pp. 603-610
    • Miller, G.1    Hahn, S.2
  • 277
    • 33845223334 scopus 로고    scopus 로고
    • A large-scale full-length cDNA analysis to explore the budding yeast transcriptome
    • Miura, F., N. Kawaguchi, J. Sese, A. Toyoda, M. Hattori et al., 2006 A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc. Natl. Acad. Sci. USA 103: 17846-17851.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 17846-17851
    • Miura, F.1    Kawaguchi, N.2    Sese, J.3    Toyoda, A.4    Hattori, M.5
  • 278
    • 0036135629 scopus 로고    scopus 로고
    • Identification of a multifunctional domain in autonomously replicating sequence-binding factor 1 required for transcriptional activation, DNA replication, and gene silencing
    • Miyake, T., C. M. Loch, and R. Li, 2002 Identification of a multifunctional domain in autonomously replicating sequence-binding factor 1 required for transcriptional activation, DNA replication, and gene silencing. Mol. Cell. Biol. 22: 505-516.
    • (2002) Mol. Cell. Biol , vol.22 , pp. 505-516
    • Miyake, T.1    Loch, C.M.2    Li, R.3
  • 279
    • 0030447943 scopus 로고    scopus 로고
    • The TAF(II)250 subunit of TFIID has histone acetyltransferase activity
    • Mizzen, C. A., X. J. Yang, T. Kokubo, J. E. Brownell, A. J. Bannister et al., 1996 The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261-1270.
    • (1996) Cell , vol.87 , pp. 1261-1270
    • Mizzen, C.A.1    Yang, X.J.2    Kokubo, T.3    Brownell, J.E.4    Bannister, A.J.5
  • 280
    • 55749095055 scopus 로고    scopus 로고
    • Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3
    • Mohibullah, N., and S. Hahn, 2008 Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Genes Dev. 22: 2994-3006.
    • (2008) Genes Dev , vol.22 , pp. 2994-3006
    • Mohibullah, N.1    Hahn, S.2
  • 281
    • 38549135468 scopus 로고    scopus 로고
    • YEASTRACT-DISCOVERER: New tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae
    • Monteiro, P. T., N. D. Mendes, M. C. Teixeira, S. d'Orey, S. Tenreiro et al., 2008 YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res. 36: D132-136.
    • (2008) Nucleic Acids Res , vol.36
    • Monteiro, P.T.1    Mendes, N.D.2    Teixeira, M.C.3    D'orey, S.4    Tenreiro, S.5
  • 282
    • 0029811986 scopus 로고    scopus 로고
    • TBP-associated factors are not generally required for transcriptional activation in yeast
    • Moqtaderi, Z., Y. Bai, D. Poon, P. A. Weil, and K. Struhl, 1996 TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383: 188-191.
    • (1996) Nature , vol.383 , pp. 188-191
    • Moqtaderi, Z.1    Bai, Y.2    Poon, D.3    Weil, P.A.4    Struhl, K.5
  • 283
    • 4143087157 scopus 로고    scopus 로고
    • Transcriptional control of multidrug resistance in the yeast Saccharomyces
    • Moye-Rowley, W. S., 2003 Transcriptional control of multidrug resistance in the yeast Saccharomyces. Prog. Nucleic Acid Res. Mol. Biol. 73: 251-279.
    • (2003) Prog. Nucleic Acid Res. Mol. Biol , vol.73 , pp. 251-279
    • Moye-Rowley, W.S.1
  • 284
    • 0037308665 scopus 로고    scopus 로고
    • Bacterial RNA polymerases: The wholo story
    • Murakami, K. S., and S. A. Darst, 2003 Bacterial RNA polymerases: the wholo story. Curr. Opin. Struct. Biol. 13: 31-39.
    • (2003) Curr. Opin. Struct. Biol , vol.13 , pp. 31-39
    • Murakami, K.S.1    Darst, S.A.2
  • 285
    • 35048820512 scopus 로고    scopus 로고
    • Structure/function analysis of the phosphatidylinositol-3-kinase domain of yeast tra1
    • Mutiu, A. I., S. M. Hoke, J. Genereaux, C. Hannam, K. MacKenzie et al., 2007 Structure/function analysis of the phosphatidylinositol-3-kinase domain of yeast tra1. Genetics 177: 151-166.
    • (2007) Genetics , vol.177 , pp. 151-166
    • Mutiu, A.I.1    Hoke, S.M.2    Genereaux, J.3    Hannam, C.4    Mackenzie, K.5
  • 286
    • 45549088326 scopus 로고    scopus 로고
    • The transcriptional landscape of the yeast genome defined by RNA sequencing
    • Nagalakshmi, U., Z. Wang, K. Waern, C. Shou, D. Raha et al., 2008 The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320: 1344-1349.
    • (2008) Science , vol.320 , pp. 1344-1349
    • Nagalakshmi, U.1    Wang, Z.2    Waern, K.3    Shou, C.4    Raha, D.5
  • 287
    • 0037154963 scopus 로고    scopus 로고
    • Cooperation between complexes that regulate chromatin structure and transcription
    • Narlikar, G. J., H. Y. Fan, and R. E. Kingston, 2002 Cooperation between complexes that regulate chromatin structure and transcription. Cell 108: 475-487.
    • (2002) Cell , vol.108 , pp. 475-487
    • Narlikar, G.J.1    Fan, H.Y.2    Kingston, R.E.3
  • 288
    • 36949023082 scopus 로고    scopus 로고
    • A nucleosomeguided map of transcription factor binding sites in yeast
    • Narlikar, L., R. Gordan, and A. J. Hartemink, 2007 A nucleosomeguided map of transcription factor binding sites in yeast. PLoS Comput. Biol. 3: e215
    • (2007) PLoS Comput. Biol , vol.e215 , pp. 3
    • Narlikar, L.1    Gordan, R.2    Hartemink, A.J.3
  • 289
    • 74549132843 scopus 로고    scopus 로고
    • Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila
    • Nechaev, S., D. C. Fargo, G. dos Santos, L. Liu, Y. Gao et al., 2010 Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327: 335-338.
    • (2010) Science , vol.327 , pp. 335-338
    • Nechaev, S.1    Fargo, D.C.2    dos Santos, G.3    Liu, L.4    Gao, Y.5
  • 290
    • 66149163332 scopus 로고    scopus 로고
    • Dynamic and complex transcription factor binding during an inducible response in yeast
    • Ni, L., C. Bruce, C. Hart, J. Leigh-Bell, D. Gelperin et al., 2009 Dynamic and complex transcription factor binding during an inducible response in yeast. Genes Dev. 23: 1351-1363.
    • (2009) Genes Dev , vol.23 , pp. 1351-1363
    • Ni, L.1    Bruce, C.2    Hart, C.3    Leigh-Bell, J.4    Gelperin, D.5
  • 291
    • 0025122831 scopus 로고
    • The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions
    • Nieto-Sotelo, J., G. Wiederrecht, A. Okuda, and C. S. Parker, 1990 The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62: 807-817.
    • (1990) Cell , vol.62 , pp. 807-817
    • Nieto-Sotelo, J.1    Wiederrecht, G.2    Okuda, A.3    Parker, C.S.4
  • 292
    • 0030066498 scopus 로고    scopus 로고
    • Functional domains in the Mig1 repressor
    • Ostling, J., M. Carlberg, and H. Ronne, 1996 Functional domains in the Mig1 repressor. Mol. Cell. Biol. 16: 753-761.
    • (1996) Mol. Cell. Biol , vol.16 , pp. 753-761
    • Ostling, J.1    Carlberg, M.2    Ronne, H.3
  • 293
    • 61449229714 scopus 로고    scopus 로고
    • Mapping the initiator binding Taf2 subunit in the structure of hydrated yeast TFIID
    • Papai, G., M. K. Tripathi, C. Ruhlmann, S. Werten, C. Crucifix et al., 2009 Mapping the initiator binding Taf2 subunit in the structure of hydrated yeast TFIID. Structure 17: 363-373.
    • (2009) Structure , vol.17 , pp. 363-373
    • Papai, G.1    Tripathi, M.K.2    Ruhlmann, C.3    Werten, S.4    Crucifix, C.5
  • 294
    • 77953711351 scopus 로고    scopus 로고
    • TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation
    • Papai, G., M. K. Tripathi, C. Ruhlmann, J. H. Layer, P. A. Weil et al., 2010 TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation. Nature 465: 956-960.
    • (2010) Nature , vol.465 , pp. 956-960
    • Papai, G.1    Tripathi, M.K.2    Ruhlmann, C.3    Layer, J.H.4    Weil, P.A.5
  • 296
    • 38549176698 scopus 로고    scopus 로고
    • CFGP: A webbased, comparative fungal genomics platform
    • Park, J., B. Park, K. Jung, S. Jang, K. Yu et al., 2008 CFGP: a webbased, comparative fungal genomics platform. Nucleic Acids Res. 36: D562-571.
    • (2008) Nucleic Acids Res , vol.36
    • Park, J.1    Park, B.2    Jung, K.3    Jang, S.4    Yu, K.5
  • 297
    • 0034459504 scopus 로고    scopus 로고
    • In vivo requirement of activator-specific binding targets of mediator
    • Park, J. M., H. S. Kim, S. J. Han, M. S. Hwang, Y. C. Lee et al., 2000 In vivo requirement of activator-specific binding targets of mediator. Mol. Cell. Biol. 20: 8709-8719.
    • (2000) Mol. Cell. Biol , vol.20 , pp. 8709-8719
    • Park, J.M.1    Kim, H.S.2    Han, S.J.3    Hwang, M.S.4    Lee, Y.C.5
  • 298
    • 0026730183 scopus 로고
    • A transcriptionally active form of GAL4 is phosphorylated and associated with GAL80
    • Parthun, M. R., and J. A. Jaehning, 1992 A transcriptionally active form of GAL4 is phosphorylated and associated with GAL80. Mol. Cell. Biol. 12: 4981-4987.
    • (1992) Mol. Cell. Biol , vol.12 , pp. 4981-4987
    • Parthun, M.R.1    Jaehning, J.A.2
  • 299
    • 78649598716 scopus 로고    scopus 로고
    • Proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain
    • Parua, P. K., S. Ratnakumar, K. A. Braun, K. M. Dombek, E. Arms et al., 2010 14-3-3 (Bmh) Proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. Mol. Cell. Biol. 30: 5273-5283.
    • Mol. Cell. Biol , vol.30 , pp. 5273-5283
    • Parua, P.K.1    Ratnakumar, S.2    Braun, K.A.3    Dombek, K.M.4    Arms, E.5
  • 300
    • 0033573008 scopus 로고    scopus 로고
    • TATA element recognition by the TATA box-binding protein has been conserved throughout evolution
    • Patikoglou, G. A., J. L. Kim, L. Sun, S. H. Yang, T. Kodadek et al., 1999 TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev. 13: 3217-3230.
    • (1999) Genes Dev , vol.13 , pp. 3217-3230
    • Patikoglou, G.A.1    Kim, J.L.2    Sun, L.3    Yang, S.H.4    Kodadek, T.5
  • 301
    • 33746364784 scopus 로고    scopus 로고
    • Structure and mechanism of the Hsp90 molecular chaperone machinery
    • Pearl, L. H., and C. Prodromou, 2006 Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75: 271-294.
    • (2006) Annu. Rev. Biochem , vol.75 , pp. 271-294
    • Pearl, L.H.1    Prodromou, C.2
  • 302
    • 0033625679 scopus 로고    scopus 로고
    • Evidence for Gal3p's cytoplasmic location and Gal80p's dual cytoplasmic-nuclear location implicates new mechanisms for controlling Gal4p activity in Saccharomyces cerevisiae
    • Peng, G., and J. E. Hopper, 2000 Evidence for Gal3p's cytoplasmic location and Gal80p's dual cytoplasmic-nuclear location implicates new mechanisms for controlling Gal4p activity in Saccharomyces cerevisiae. Mol. Cell. Biol. 20: 5140-5148.
    • (2000) Mol. Cell. Biol , vol.20 , pp. 5140-5148
    • Peng, G.1    Hopper, J.E.2
  • 303
    • 0037173045 scopus 로고    scopus 로고
    • Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein
    • Peng, G., and J. E. Hopper, 2002 Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc. Natl. Acad. Sci. USA 99: 8548-8553.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 8548-8553
    • Peng, G.1    Hopper, J.E.2
  • 304
    • 18844390000 scopus 로고    scopus 로고
    • Gal80 dimerization and the yeast GAL gene switch
    • Pilauri, V., M. Bewley, C. Diep, and J. Hopper, 2005 Gal80 dimerization and the yeast GAL gene switch. Genetics 169: 1903-1914.
    • (2005) Genetics , vol.169 , pp. 1903-1914
    • Pilauri, V.1    Bewley, M.2    Diep, C.3    Hopper, J.4
  • 305
    • 0032527810 scopus 로고    scopus 로고
    • The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex
    • Platt, A., and R. J. Reece, 1998 The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J. 17: 4086-4091.
    • (1998) EMBO J , vol.17 , pp. 4086-4091
    • Platt, A.1    Reece, R.J.2
  • 306
    • 15544364487 scopus 로고    scopus 로고
    • How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose
    • Polish, J. A., J. H. Kim, and M. Johnston, 2005 How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 169: 583-594.
    • (2005) Genetics , vol.169 , pp. 583-594
    • Polish, J.A.1    Kim, J.H.2    Johnston, M.3
  • 308
    • 18744374136 scopus 로고    scopus 로고
    • The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway
    • Pray-Grant, M. G., D. Schieltz, S. J. McMahon, J. M. Wood, E. L. Kennedy et al., 2002 The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol. Cell. Biol. 22: 8774-8786.
    • (2002) Mol. Cell. Biol , vol.22 , pp. 8774-8786
    • Pray-Grant, M.G.1    Schieltz, D.2    McMahon, S.J.3    Wood, J.M.4    Kennedy, E.L.5
  • 309
    • 0242334110 scopus 로고    scopus 로고
    • Targeting activity is required for SWI/SNF function in vivo and is accomplished through two partially redundant activator-interaction domains
    • Prochasson, P., K. E. Neely, A. H. Hassan, B. Li, and J. L. Workman, 2003 Targeting activity is required for SWI/SNF function in vivo and is accomplished through two partially redundant activator-interaction domains. Mol. Cell 12: 983-990.
    • (2003) Mol. Cell , vol.12 , pp. 983-990
    • Prochasson, P.1    Neely, K.E.2    Hassan, A.H.3    Li, B.4    Workman, J.L.5
  • 310
    • 0023683667 scopus 로고
    • How eukaryotic transcriptional activators work
    • Ptashne, M., 1988 How eukaryotic transcriptional activators work. Nature 335: 683-689.
    • (1988) Nature , vol.335 , pp. 683-689
    • Ptashne, M.1
  • 311
    • 0025369859 scopus 로고
    • Activators and targets
    • Ptashne, M., and A. A. F. Gann, 1990 Activators and targets. Nature 346: 329-331.
    • (1990) Nature , vol.346 , pp. 329-331
    • Ptashne, M.1    Gann, A.A.F.2
  • 312
    • 0030960672 scopus 로고    scopus 로고
    • Transcriptional activation by recruitment
    • Ptashne, M., and A. Gann, 1997 Transcriptional activation by recruitment. Nature 386: 569-577.
    • (1997) Nature , vol.386 , pp. 569-577
    • Ptashne, M.1    Gann, A.2
  • 313
    • 0004211673 scopus 로고    scopus 로고
    • Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • Ptashne, M., and A. Gann, 2002 Genes and Signals. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • (2002) Genes and Signals
    • Ptashne, M.1    Gann, A.2
  • 314
    • 2942594663 scopus 로고    scopus 로고
    • An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter-bound Gcn4p
    • Qiu, H., C. Hu, S. Yoon, K. Natarajan, M. J. Swanson et al., 2004 An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter-bound Gcn4p. Mol. Cell. Biol. 24: 4104-4117.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 4104-4117
    • Qiu, H.1    Hu, C.2    Yoon, S.3    Natarajan, K.4    Swanson, M.J.5
  • 315
    • 17644397037 scopus 로고    scopus 로고
    • Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p
    • Qiu, H., C. Hu, F. Zhang, G. J. Hwang, M. J. Swanson et al., 2005 Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p. Mol. Cell. Biol. 25: 3461-3474.
    • (2005) Mol. Cell. Biol , vol.25 , pp. 3461-3474
    • Qiu, H.1    Hu, C.2    Zhang, F.3    Hwang, G.J.4    Swanson, M.J.5
  • 316
    • 62549104640 scopus 로고    scopus 로고
    • Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters
    • Qiu, H., C. Hu, and A. G. Hinnebusch, 2009 Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol. Cell 33: 752-762.
    • (2009) Mol. Cell , vol.33 , pp. 752-762
    • Qiu, H.1    Hu, C.2    Hinnebusch, A.G.3
  • 317
    • 0344936739 scopus 로고    scopus 로고
    • Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: A model for activator:Coactivator interactions
    • Radhakrishnan, I., G. C. Perez-Alvarado, D. Parker, H. J. Dyson, M. R. Montminy et al., 1997 Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91: 741-752.
    • (1997) Cell , vol.91 , pp. 741-752
    • Radhakrishnan, I.1    Perez-Alvarado, G.C.2    Parker, D.3    Dyson, H.J.4    Montminy, M.R.5
  • 318
    • 52049091534 scopus 로고    scopus 로고
    • Hsp90/Hsp70 chaperone machine regulation of the Saccharomyces MAL-activator as determined in vivo using noninducible and constitutive mutant alleles
    • Ran, F., M. Bali, and C. A. Michels, 2008 Hsp90/Hsp70 chaperone machine regulation of the Saccharomyces MAL-activator as determined in vivo using noninducible and constitutive mutant alleles. Genetics 179: 331-343.
    • (2008) Genetics , vol.179 , pp. 331-343
    • Ran, F.1    Bali, M.2    Michels, C.A.3
  • 319
    • 77951589707 scopus 로고    scopus 로고
    • Hsp90 cochaperone Aha1 is a negative regulator of the Saccharomyces MAL activator and acts early in the chaperone activation pathway
    • Ran, F., N. Gadura, and C. A. Michels, 2010 Hsp90 cochaperone Aha1 is a negative regulator of the Saccharomyces MAL activator and acts early in the chaperone activation pathway. J. Biol. Chem. 285: 13850-13862.
    • (2010) J. Biol. Chem , vol.285 , pp. 13850-13862
    • Ran, F.1    Gadura, N.2    Michels, C.A.3
  • 320
    • 0032900980 scopus 로고    scopus 로고
    • Intermediates in formation and activity of the RNA polymerase II preinitiation complex: Holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB
    • Ranish, J. A., N. Yudkovsky, and S. Hahn, 1999 Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev. 13: 49-63.
    • (1999) Genes Dev , vol.13 , pp. 49-63
    • Ranish, J.A.1    Yudkovsky, N.2    Hahn, S.3
  • 321
    • 70349310032 scopus 로고    scopus 로고
    • Snf1 controls the activity of adr1 through dephosphorylation of Ser230
    • Ratnakumar, S., N. Kacherovsky, E. Arms, and E. T. Young, 2009 Snf1 controls the activity of adr1 through dephosphorylation of Ser230. Genetics 182: 735-745.
    • (2009) Genetics , vol.182 , pp. 735-745
    • Ratnakumar, S.1    Kacherovsky, N.2    Arms, E.3    Young, E.T.4
  • 322
    • 77951245389 scopus 로고    scopus 로고
    • Snf1 dependence of peroxisomal gene expression is mediated by Adr1
    • Ratnakumar, S., and E. T. Young, 2010 Snf1 dependence of peroxisomal gene expression is mediated by Adr1. J. Biol. Chem. 285: 10703-10714.
    • (2010) J. Biol. Chem , vol.285 , pp. 10703-10714
    • Ratnakumar, S.1    Young, E.T.2
  • 323
    • 0027218382 scopus 로고
    • Determinants of binding-site specificity among yeast C6 zinc cluster proteins
    • Reece, R. J., and M. Ptashne, 1993 Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science 261: 909-911.
    • (1993) Science , vol.261 , pp. 909-911
    • Reece, R.J.1    Ptashne, M.2
  • 324
    • 0028169339 scopus 로고
    • Yeast TAFIIs in a multisubunit complex required for activated transcription
    • Reese, J. C., L. Apone, S. S. Walker, L. A. Griffin, and M. R. Green, 1994 Yeast TAFIIs in a multisubunit complex required for activated transcription. Nature 371: 523-527.
    • (1994) Nature , vol.371 , pp. 523-527
    • Reese, J.C.1    Apone, L.2    Walker, S.S.3    Griffin, L.A.4    Green, M.R.5
  • 325
    • 26444507919 scopus 로고    scopus 로고
    • Targets of the Gal4 transcription activator in functional transcription complexes
    • Reeves, W. M., and S. Hahn, 2005 Targets of the Gal4 transcription activator in functional transcription complexes. Mol. Cell. Biol. 25: 9092-9102.
    • (2005) Mol. Cell. Biol , vol.25 , pp. 9092-9102
    • Reeves, W.M.1    Hahn, S.2
  • 326
    • 77349099959 scopus 로고    scopus 로고
    • Variable structure motifs for transcription factor binding sites
    • Reid, J. E., K. J. Evans, N. Dyer, L. Wernisch, and S. Ott, 2010 Variable structure motifs for transcription factor binding sites. BMC Genomics 11: 30
    • (2010) BMC Genomics , vol.11 , pp. 30
    • Reid, J.E.1    Evans, K.J.2    Dyer, N.3    Wernisch, L.4    Ott, S.5
  • 327
    • 1842788676 scopus 로고    scopus 로고
    • Promoter unwinding and promoter clearance by RNA polymerase: Detection by single-molecule DNA nanomanipulation
    • Revyakin, A., R. Ebright, and T. R. Strick, 2004 Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. Proc. Natl. Acad. Sci. USA 101: 4776-4780.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 4776-4780
    • Revyakin, A.1    Ebright, R.2    Strick, T.R.3
  • 328
    • 0034164664 scopus 로고    scopus 로고
    • SURVEY AND SUMMARY: Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes
    • Robinson, K. A., and J. M. Lopes, 2000 SURVEY AND SUMMARY: Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes. Nucleic Acids Res. 28: 1499-1505.
    • (2000) Nucleic Acids Res , vol.28 , pp. 1499-1505
    • Robinson, K.A.1    Lopes, J.M.2
  • 329
    • 10744233477 scopus 로고    scopus 로고
    • Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery
    • Rodriguez-Navarro, S., T. Fischer, M. J. Luo, O. Antunez, S. Brettschneider et al., 2004 Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116: 75-86.
    • (2004) Cell , vol.116 , pp. 75-86
    • Rodriguez-Navarro, S.1    Fischer, T.2    Luo, M.J.3    Antunez, O.4    Brettschneider, S.5
  • 330
    • 0030839873 scopus 로고    scopus 로고
    • Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains
    • Rothermel, B. A., J. L. Thornton, and R. A. Butow, 1997 Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains. J. Biol. Chem. 272: 19801-19807.
    • (1997) J. Biol. Chem , vol.272 , pp. 19801-19807
    • Rothermel, B.A.1    Thornton, J.L.2    Butow, R.A.3
  • 331
    • 0029990949 scopus 로고    scopus 로고
    • Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1
    • Rubin-Bejerano, I., S. Mandel, K. Robzyk, and Y. Kassir, 1996 Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1. Mol. Cell. Biol. 16: 2518-2526.
    • (1996) Mol. Cell. Biol , vol.16 , pp. 2518-2526
    • Rubin-Bejerano, I.1    Mandel, S.2    Robzyk, K.3    Kassir, Y.4
  • 333
    • 0033868319 scopus 로고    scopus 로고
    • Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling
    • Ryan, M. P., G. A. Stafford, L. Yu, and R. H. Morse, 2000 Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling. Mol. Cell. Biol. 20: 5847-5857.
    • (2000) Mol. Cell. Biol , vol.20 , pp. 5847-5857
    • Ryan, M.P.1    Stafford, G.A.2    Yu, L.3    Morse, R.H.4
  • 334
    • 0032500640 scopus 로고    scopus 로고
    • Tra1p is a component of the yeast Ada.Spt transcriptional regulatory complexes
    • Saleh, A., D. Schieltz, N. Ting, S. B. McMahon, D. W. Litchfield et al., 1998 Tra1p is a component of the yeast Ada.Spt transcriptional regulatory complexes. J. Biol. Chem. 273: 26559-26565.
    • (1998) J. Biol. Chem , vol.273 , pp. 26559-26565
    • Saleh, A.1    Schieltz, D.2    Ting, N.3    McMahon, S.B.4    Litchfield, D.W.5
  • 336
    • 0036318573 scopus 로고    scopus 로고
    • Molecular characterization of Saccharomyces cerevisiae TFIID
    • Sanders, S. L., K. A. Garbett, and P. A. Weil, 2002 Molecular characterization of Saccharomyces cerevisiae TFIID. Mol. Cell. Biol. 22: 6000-6013.
    • (2002) Mol. Cell. Biol , vol.22 , pp. 6000-6013
    • Sanders, S.L.1    Garbett, K.A.2    Weil, P.A.3
  • 337
    • 34249003318 scopus 로고    scopus 로고
    • Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism
    • Sarma, N. J., T. M. Haley, K. E. Barbara, T. D. Buford, K. A. Willis et al., 2007 Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism. Genetics 175: 1127-1135.
    • (2007) Genetics , vol.175 , pp. 1127-1135
    • Sarma, N.J.1    Haley, T.M.2    Barbara, K.E.3    Buford, T.D.4    Willis, K.A.5
  • 338
  • 339
    • 0028963304 scopus 로고
    • Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae
    • Schwank, S., R. Ebbert, K. Rautenstrauss, E. Schweizer, and H. J. Schuller, 1995 Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res. 23: 230-237.
    • (1995) Nucleic Acids Res , vol.23 , pp. 230-237
    • Schwank, S.1    Ebbert, R.2    Rautenstrauss, K.3    Schweizer, E.4    Schuller, H.J.5
  • 340
    • 0034613178 scopus 로고    scopus 로고
    • Roles of the Dal82p domains in allophanate/oxalurate-dependent gene expression in Saccharomyces cerevisiae
    • Scott, S., A. T. Abul-Hamd, and T. G. Cooper, 2000 Roles of the Dal82p domains in allophanate/oxalurate-dependent gene expression in Saccharomyces cerevisiae. J. Biol. Chem. 275: 30886-30893.
    • (2000) J. Biol. Chem , vol.275 , pp. 30886-30893
    • Scott, S.1    Abul-Hamd, A.T.2    Cooper, T.G.3
  • 341
    • 69249215400 scopus 로고    scopus 로고
    • Divergent transcription: A new feature of active promoters
    • Seila, A. C., L. J. Core, J. T. Lis, and P. A. Sharp, 2009 Divergent transcription: a new feature of active promoters. Cell Cycle 8: 2557-2564.
    • (2009) Cell Cycle , vol.8 , pp. 2557-2564
    • Seila, A.C.1    Core, L.J.2    Lis, J.T.3    Sharp, P.A.4
  • 342
    • 20444403749 scopus 로고    scopus 로고
    • Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast
    • Sekinger, E. A., Z. Moqtaderi, and K. Struhl, 2005 Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol. Cell 18: 735-748.
    • (2005) Mol. Cell , vol.18 , pp. 735-748
    • Sekinger, E.A.1    Moqtaderi, Z.2    Struhl, K.3
  • 343
    • 0141865494 scopus 로고    scopus 로고
    • Modulation of transcription factor function by an amino acid: Activation of Put3p by proline
    • Sellick, C. A., and R. J. Reece, 2003 Modulation of transcription factor function by an amino acid: activation of Put3p by proline. EMBO J. 22: 5147-5153.
    • (2003) EMBO J , vol.22 , pp. 5147-5153
    • Sellick, C.A.1    Reece, R.J.2
  • 344
    • 21744441769 scopus 로고    scopus 로고
    • Eukaryotic transcription factors as direct nutrient sensors
    • Sellick, C. A., and R. J. Reece, 2005 Eukaryotic transcription factors as direct nutrient sensors. Trends Biochem. Sci. 30: 405-412.
    • (2005) Trends Biochem. Sci , vol.30 , pp. 405-412
    • Sellick, C.A.1    Reece, R.J.2
  • 345
    • 0009627625 scopus 로고
    • Yeast nuclear RNA polymerases and their role in transcription
    • in The Molecular Biology of the Yeast Saccharomyces, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • Sentenac, A., and B. Hall, 1982 Yeast nuclear RNA polymerases and their role in transcription, pp. 561-606 in The Molecular Biology of the Yeast Saccharomyces, edited by J. Strathern, E. Jones, and J. Broach. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • (1982) J. Strathern, E. Jones, and J. Broach , pp. 561-606
    • Sentenac, A.1    Hall, B.2
  • 346
    • 33748065020 scopus 로고    scopus 로고
    • SAGA binds TBP via its Spt8 subunit in competition with DNA: Implications for TBP recruitment
    • Sermwittayawong, D., and S. Tan, 2006 SAGA binds TBP via its Spt8 subunit in competition with DNA: implications for TBP recruitment. EMBO J. 25: 3791-3800.
    • (2006) EMBO J , vol.25 , pp. 3791-3800
    • Sermwittayawong, D.1    Tan, S.2
  • 347
    • 0030793327 scopus 로고    scopus 로고
    • Yeast TAFII145 functions as a core promoter selectivity factor, not a general coactivator
    • Shen, W.-C., and M. R. Green, 1997 Yeast TAFII145 functions as a core promoter selectivity factor, not a general coactivator. Cell 90: 615-624.
    • (1997) Cell , vol.90 , pp. 615-624
    • Shen, W.-C.1    Green, M.R.2
  • 348
    • 0038601937 scopus 로고    scopus 로고
    • Systematic analysis of essential yeast TAFs in genomewide transcription and preinitiation complex assembly
    • Shen, W.-C., S. R. Bhaumik, H. C. Causton, I. Simon, X. Zhu et al., 2003 Systematic analysis of essential yeast TAFs in genomewide transcription and preinitiation complex assembly. EMBO J. 22: 3395-3402.
    • (2003) EMBO J , vol.22 , pp. 3395-3402
    • Shen, W.-C.1    Bhaumik, S.R.2    Causton, H.C.3    Simon, I.4    Zhu, X.5
  • 349
    • 33646248115 scopus 로고    scopus 로고
    • Ubp8p, a histone deubiquitinase whose association with SAGA is mediated by Sgf11p, differentially regulates lysine 4 methylation of histone H3 in vivo
    • Shukla, A., N. Stanojevic, Z. Duan, P. Sen, and S. R. Bhaumik, 2006 Ubp8p, a histone deubiquitinase whose association with SAGA is mediated by Sgf11p, differentially regulates lysine 4 methylation of histone H3 in vivo. Mol. Cell. Biol. 26: 3339-3352.
    • (2006) Mol. Cell. Biol , vol.26 , pp. 3339-3352
    • Shukla, A.1    Stanojevic, N.2    Duan, Z.3    Sen, P.4    Bhaumik, S.R.5
  • 350
    • 0027500140 scopus 로고
    • Analysis of the SWI4/SWI6 protein complex, which directs G1/S-specific transcription in Saccharomyces cerevisiae
    • Sidorova, J., and L. Breeden, 1993 Analysis of the SWI4/SWI6 protein complex, which directs G1/S-specific transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 1069-1077.
    • (1993) Mol. Cell. Biol , vol.13 , pp. 1069-1077
    • Sidorova, J.1    Breeden, L.2
  • 351
    • 0000976047 scopus 로고
    • Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization
    • Silver, P. A., L. P. Keegan, and M. Ptashne, 1984 Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization. Proc. Natl. Acad. Sci. USA 81: 5951-5955.
    • (1984) Proc. Natl. Acad. Sci. USA , vol.81 , pp. 5951-5955
    • Silver, P.A.1    Keegan, L.P.2    Ptashne, M.3
  • 352
    • 0023004305 scopus 로고
    • DNA binding is not sufficient for nuclear localization of regulatory proteins in Saccharomyces cerevisiae
    • Silver, P. A., R. Brent, and M. Ptashne, 1986 DNA binding is not sufficient for nuclear localization of regulatory proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 6: 4763-4766.
    • (1986) Mol. Cell. Biol , vol.6 , pp. 4763-4766
    • Silver, P.A.1    Brent, R.2    Ptashne, M.3
  • 353
    • 0024432012 scopus 로고
    • Yeast proteins that recognize nuclear localization sequences
    • Silver, P., I. Sadler, and M. A. Osborne, 1989 Yeast proteins that recognize nuclear localization sequences. J. Cell Biol. 109: 983-989.
    • (1989) J. Cell Biol , vol.109 , pp. 983-989
    • Silver, P.1    Sadler, I.2    Osborne, M.A.3
  • 354
    • 17944372930 scopus 로고    scopus 로고
    • Serial regulation of transcriptional regulators in the yeast cell cycle
    • Simon, I., J. Barnett, N. Hannett, C. T. Harbison, N. J. Rinaldi et al., 2001 Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106: 697-708.
    • (2001) Cell , vol.106 , pp. 697-708
    • Simon, I.1    Barnett, J.2    Hannett, N.3    Harbison, C.T.4    Rinaldi, N.J.5
  • 355
    • 0033621393 scopus 로고    scopus 로고
    • Post-translational regulation of Adr1 activity is mediated by its DNA binding domain
    • Sloan, J. S., K. M. Dombek, and E. T. Young, 1999 Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. J. Biol. Chem. 274: 37575-37582.
    • (1999) J. Biol. Chem , vol.274 , pp. 37575-37582
    • Sloan, J.S.1    Dombek, K.M.2    Young, E.T.3
  • 356
    • 0043269205 scopus 로고    scopus 로고
    • The RNA polymerase II core promoter
    • Smale, S. T., and J. T. Kadonaga, 2003 The RNA polymerase II core promoter. Annu. Rev. Biochem. 72: 449-479.
    • (2003) Annu. Rev. Biochem , vol.72 , pp. 449-479
    • Smale, S.T.1    Kadonaga, J.T.2
  • 357
    • 0027516052 scopus 로고
    • Genetic evidence for transcriptional activation by the yeast IME1 gene product
    • Smith, H. E., S. E. Driscoll, R. A. Sia, H. E. Yuan, and A. P. Mitchell, 1993 Genetic evidence for transcriptional activation by the yeast IME1 gene product. Genetics 133: 775-784.
    • (1993) Genetics , vol.133 , pp. 775-784
    • Smith, H.E.1    Driscoll, S.E.2    Sia, R.A.3    Yuan, H.E.4    Mitchell, A.P.5
  • 358
    • 0034234638 scopus 로고    scopus 로고
    • Turning genes off by Ssn6-Tup1: A conserved system of transcriptional repression in eukaryotes
    • Smith, R. L., and A. D. Johnson, 2000 Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem. Sci. 25: 325-330.
    • (2000) Trends Biochem. Sci , vol.25 , pp. 325-330
    • Smith, R.L.1    Johnson, A.D.2
  • 359
    • 0028843868 scopus 로고
    • The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2
    • Smith, R. L., M. J. Redd, and A. D. Johnson, 1995 The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2. Genes Dev. 9: 2903-2910.
    • (1995) Genes Dev , vol.9 , pp. 2903-2910
    • Smith, R.L.1    Redd, M.J.2    Johnson, A.D.3
  • 360
    • 31544482407 scopus 로고    scopus 로고
    • Mapping pathways and phenotypes by systematic gene overexpression
    • Sopko, R., D. Huang, N. Preston, G. Chua, B. Papp et al., 2006 Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell 21: 319-330.
    • (2006) Mol. Cell , vol.21 , pp. 319-330
    • Sopko, R.1    Huang, D.2    Preston, N.3    Chua, G.4    Papp, B.5
  • 361
    • 0024989583 scopus 로고
    • Yeast heat shock factor contains separable transient and sustained response transcriptional activators
    • Sorger, P. K., 1990 Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62: 793-805.
    • (1990) Cell , vol.62 , pp. 793-805
    • Sorger, P.K.1
  • 362
    • 15444371723 scopus 로고    scopus 로고
    • Identification, mutational analysis, and coactivator requirements of two distinct transcriptional activation domains of the Saccharomyces cerevisiae Hap4 protein
    • Stebbins, J. L., and S. J. Triezenberg, 2004 Identification, mutational analysis, and coactivator requirements of two distinct transcriptional activation domains of the Saccharomyces cerevisiae Hap4 protein. Eukaryot. Cell 3: 339-347.
    • (2004) Eukaryot. Cell , vol.3 , pp. 339-347
    • Stebbins, J.L.1    Triezenberg, S.J.2
  • 363
    • 33751504083 scopus 로고    scopus 로고
    • Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase
    • Steinmetz, E. J., C. L. Warren, J. N. Kuehner, B. Panbehi, A. Z. Ansari et al., 2006 Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 24: 735-746.
    • (2006) Mol. Cell , vol.24 , pp. 735-746
    • Steinmetz, E.J.1    Warren, C.L.2    Kuehner, J.N.3    Panbehi, B.4    Ansari, A.Z.5
  • 364
    • 0032911635 scopus 로고    scopus 로고
    • Functional organization of the yeast SAGA complex: Distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction
    • Sterner, D. E., P. A. Grant, S. M. Roberts, L. J. Duggan, R. Belotserkovskaya et al., 1999 Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19: 86-98.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 86-98
    • Sterner, D.E.1    Grant, P.A.2    Roberts, S.M.3    Duggan, L.J.4    Belotserkovskaya, R.5
  • 365
    • 0037177573 scopus 로고    scopus 로고
    • Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit
    • Stevens, J. L., G. T. Cantin, G. Wang, A. Shevchenko, and A. J. Berk, 2002 Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296: 755-758.
    • (2002) Science , vol.296 , pp. 755-758
    • Stevens, J.L.1    Cantin, G.T.2    Wang, G.3    Shevchenko, A.4    Berk, A.J.5
  • 366
    • 0028297156 scopus 로고
    • Epistasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SW15 transcriptional activator
    • Stillman, D. J., S. Dorland, and Y. Yu, 1994 Epistasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SW15 transcriptional activator. Genetics 136: 781-788.
    • (1994) Genetics , vol.136 , pp. 781-788
    • Stillman, D.J.1    Dorland, S.2    Yu, Y.3
  • 367
    • 0011031885 scopus 로고
    • Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast
    • Struhl, K., 1985 Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc. Natl. Acad. Sci. USA 82: 8419-8423.
    • (1985) Proc. Natl. Acad. Sci. USA , vol.82 , pp. 8419-8423
    • Struhl, K.1
  • 368
    • 0024315267 scopus 로고
    • Molecular mechanisms of transcriptional regulation in yeast
    • Struhl, K., 1989 Molecular mechanisms of transcriptional regulation in yeast. Annu. Rev. Biochem. 58: 1051-1077.
    • (1989) Annu. Rev. Biochem , vol.58 , pp. 1051-1077
    • Struhl, K.1
  • 369
    • 0029559463 scopus 로고
    • Yeast transcriptional regulatory mechanisms
    • Struhl, K., 1995 Yeast transcriptional regulatory mechanisms. Annu. Rev. Genet. 29: 651-674.
    • (1995) Annu. Rev. Genet , vol.29 , pp. 651-674
    • Struhl, K.1
  • 370
    • 0033538531 scopus 로고    scopus 로고
    • Fundamentally different logic of gene regulation in eukaryotes and prokaryotes
    • Struhl, K., 1999 Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell 98: 1-4.
    • (1999) Cell , vol.98 , pp. 1-4
    • Struhl, K.1
  • 371
    • 78651343432 scopus 로고    scopus 로고
    • Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae
    • Sugihara, F., K. Kasahara and T. Kokubo, 2011 Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae. Nucleic Acids Res. 39: 59-75.
    • (2011) Nucleic Acids Res , vol.39 , pp. 59-75
    • Sugihara, F.1    Kasahara, K.2    Kokubo, T.3
  • 372
    • 0029963566 scopus 로고    scopus 로고
    • Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: Interaction between Gal3p and Gal80p
    • Suzuki-Fujimoto, T., M. Fukuma, K. I. Yano, H. Sakurai, A. Vonika et al., 1996 Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Mol. Cell. Biol. 16: 2504-2508.
    • (1996) Mol. Cell. Biol , vol.16 , pp. 2504-2508
    • Suzuki-Fujimoto, T.1    Fukuma, M.2    Yano, K.I.3    Sakurai, H.4    Vonika, A.5
  • 373
    • 0031106575 scopus 로고    scopus 로고
    • Transcription factors vs. nucleosomes: Regulation of the PHO5 promoter in yeast
    • Svaren, J., and W. Horz, 1997 Transcription factors vs. nucleosomes: regulation of the PHO5 promoter in yeast. Trends Biochem. Sci. 22: 93-97.
    • (1997) Trends Biochem. Sci , vol.22 , pp. 93-97
    • Svaren, J.1    Horz, W.2
  • 374
    • 75349111445 scopus 로고    scopus 로고
    • Impact of DNA-binding position variants on yeast gene expression
    • Swamy, K. B., C. Y. Cho, S. Chiang, Z. T. Tsai, and H. K. Tsai, 2009 Impact of DNA-binding position variants on yeast gene expression. Nucleic Acids Res. 37: 6991-7001.
    • (2009) Nucleic Acids Res , vol.37 , pp. 6991-7001
    • Swamy, K.B.1    Cho, C.Y.2    Chiang, S.3    Tsai, Z.T.4    Tsai, H.K.5
  • 375
    • 77954759030 scopus 로고    scopus 로고
    • The human Mediator complex: A versatile, genome-wide regulator of transcription
    • Taatjes, D. J., 2010 The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem. Sci. 35: 315-322.
    • (2010) Trends Biochem. Sci , vol.35 , pp. 315-322
    • Taatjes, D.J.1
  • 376
    • 0037039776 scopus 로고    scopus 로고
    • Structure, function, and activator-induced conformations of the CRSP coactivator
    • Taatjes, D. J., A. M. Naar, F. Andel III. E. Nogales, and R. Tjian, 2002 Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295: 1058-1062.
    • (2002) Science , vol.295 , pp. 1058-1062
    • Taatjes, D.J.1    Naar, A.M.2    Andel, E.3    Tjian, R.4
  • 377
    • 3042692982 scopus 로고    scopus 로고
    • Distinct conformational states of nuclear receptor-bound CRSP-Med complexes
    • Taatjes, D. J., T. Schneider-Poetsch, and R. Tjian, 2004 Distinct conformational states of nuclear receptor-bound CRSP-Med complexes. Nat. Struct. Mol. Biol. 11: 664-671.
    • (2004) Nat. Struct. Mol. Biol , vol.11 , pp. 664-671
    • Taatjes, D.J.1    Schneider-Poetsch, T.2    Tjian, R.3
  • 378
    • 14844338858 scopus 로고    scopus 로고
    • Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8
    • Tachibana, C., J. Y. Yoo, J. B. Tagne, N. Kacherovsky, T. I. Lee et al., 2005 Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol. Cell. Biol. 25: 2138-2146.
    • (2005) Mol. Cell. Biol , vol.25 , pp. 2138-2146
    • Tachibana, C.1    Yoo, J.Y.2    Tagne, J.B.3    Kacherovsky, N.4    Lee, T.I.5
  • 379
    • 38049156447 scopus 로고    scopus 로고
    • A poised initiation complex is activated by SNF1
    • Tachibana, C., R. Biddick, G. L. Law, and E. T. Young, 2007 A poised initiation complex is activated by SNF1. J. Biol. Chem. 282: 37308-37315
    • (2007) J. Biol. Chem , vol.282 , pp. 37308-37315
    • Tachibana, C.1    Biddick, R.2    Law, G.L.3    Young, E.T.4
  • 381
    • 42949156828 scopus 로고    scopus 로고
    • A systems approach to delineate functions of paralogous transcription factors: Role of the Yap family in the DNA damage response
    • Tan, K., H. Feizi, C. Luo, S. H. Fan, T. Ravasi et al., 2008 A systems approach to delineate functions of paralogous transcription factors: role of the Yap family in the DNA damage response. Proc. Natl. Acad. Sci. USA 105: 2934-2939.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 2934-2939
    • Tan, K.1    Feizi, H.2    Luo, C.3    Fan, S.H.4    Ravasi, T.5
  • 382
    • 0032509980 scopus 로고    scopus 로고
    • Crystal structure of the yeast MATalpha2/MCM1/DNA ternary complex
    • Tan, S., and T. J. Richmond, 1998 Crystal structure of the yeast MATalpha2/MCM1/DNA ternary complex. Nature 391: 660-666.
    • (1998) Nature , vol.391 , pp. 660-666
    • Tan, S.1    Richmond, T.J.2
  • 383
    • 33644873683 scopus 로고    scopus 로고
    • The YEASTRACT database: A tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae
    • Teixeira, M. C., P. Monteiro, P. Jain, S. Tenreiro, A. R. Fernandes et al., 2006 The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res. 34: D446-D451
    • (2006) Nucleic Acids Res , vol.34
    • Teixeira, M.C.1    Monteiro, P.2    Jain, P.3    Tenreiro, S.4    Fernandes, A.R.5
  • 384
    • 63249102415 scopus 로고    scopus 로고
    • Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p
    • Thakur, J. K., H. Arthanari, F. Yang, K. H. Chau, G. Wagner et al., 2009 Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p. J. Biol. Chem. 284: 4422-4428.
    • (2009) J. Biol. Chem , vol.284 , pp. 4422-4428
    • Thakur, J.K.1    Arthanari, H.2    Yang, F.3    Chau, K.H.4    Wagner, G.5
  • 385
    • 33847291392 scopus 로고    scopus 로고
    • Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p
    • Thoden, J. B., C. A. Sellick, R. J. Reece, and H. M. Holden, 2007 Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. J. Biol. Chem. 282: 1534-1538.
    • (2007) J. Biol. Chem , vol.282 , pp. 1534-1538
    • Thoden, J.B.1    Sellick, C.A.2    Reece, R.J.3    Holden, H.M.4
  • 386
    • 0026546494 scopus 로고
    • MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae
    • Thomas, D., I. Jacquemin, and Y. Surdin-Kerjan, 1992 MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 1719-1727.
    • (1992) Mol. Cell. Biol , vol.12 , pp. 1719-1727
    • Thomas, D.1    Jacquemin, I.2    Surdin-Kerjan, Y.3
  • 387
    • 33747881750 scopus 로고    scopus 로고
    • The general transcription machinery and general cofactors
    • Thomas, M. C., and C. M. Chiang, 2006 The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41: 105-178.
    • (2006) Crit. Rev. Biochem. Mol. Biol , vol.41 , pp. 105-178
    • Thomas, M.C.1    Chiang, C.M.2
  • 388
    • 0242400631 scopus 로고
    • A multisubunit complex associated with TATA binding protein and the RNA polymerase II CTD in yeast
    • Thompson, C. M., A. J. Koleske, D. M. Chao, and R. A. Young, 1993 A multisubunit complex associated with TATA binding protein and the RNA polymerase II CTD in yeast. Cell 73: 1367-1375.
    • (1993) Cell , vol.73 , pp. 1367-1375
    • Thompson, C.M.1    Koleske, A.J.2    Chao, D.M.3    Young, R.A.4
  • 389
    • 37749053887 scopus 로고    scopus 로고
    • Fuzzy complexes: Polymorphism and structural disorder in protein-protein interactions
    • Tompa, P., and M. Fuxreiter, 2008 Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33: 2-8.
    • (2008) Trends Biochem. Sci , vol.33 , pp. 2-8
    • Tompa, P.1    Fuxreiter, M.2
  • 390
    • 0037087628 scopus 로고    scopus 로고
    • A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription
    • Tora, L., 2002 A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription. Genes Dev. 16: 673-675.
    • (2002) Genes Dev , vol.16 , pp. 673-675
    • Tora, L.1
  • 391
    • 0027189756 scopus 로고
    • GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain
    • Tornow, J., X. Zeng, W. Gao, and G. M. Santangelo, 1993 GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain. EMBO J. 12: 2431-2437.
    • (1993) EMBO J , vol.12 , pp. 2431-2437
    • Tornow, J.1    Zeng, X.2    Gao, W.3    Santangelo, G.M.4
  • 393
    • 0344827287 scopus 로고    scopus 로고
    • Evolution of a combinatorial transcriptional circuit: A case study in yeasts
    • Tsong, A. E., M. G. Miller, R. M. Raisner, and A. D. Johnson, 2003 Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115: 389-399.
    • (2003) Cell , vol.115 , pp. 389-399
    • Tsong, A.E.1    Miller, M.G.2    Raisner, R.M.3    Johnson, A.D.4
  • 394
    • 33749173831 scopus 로고    scopus 로고
    • Evolution of alternative transcriptional circuits with identical logic
    • Tsong, A. E., B. B. Tuch, H. Li, and A. D. Johnson, 2006 Evolution of alternative transcriptional circuits with identical logic. Nature 443: 415-420.
    • (2006) Nature , vol.443 , pp. 415-420
    • Tsong, A.E.1    Tuch, B.B.2    Li, H.3    Johnson, A.D.4
  • 396
    • 0030756675 scopus 로고    scopus 로고
    • Induced alpha helix in the VP16 activation domain upon binding to a human TAF
    • Uesugi, M., O. Nyanguile, H. Lu, A. J. Levine, and G. L. Verdine, 1997 Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science 277: 1310-1313.
    • (1997) Science , vol.277 , pp. 1310-1313
    • Uesugi, M.1    Nyanguile, O.2    Lu, H.3    Levine, A.J.4    Verdine, G.L.5
  • 397
    • 23744490065 scopus 로고    scopus 로고
    • Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets
    • van de Peppel, J., N. Kettelarij, H. van Bakel, T. T. Kockelkorn, D. van Leenen et al., 2005 Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol. Cell 19: 511-522.
    • (2005) Mol. Cell , vol.19 , pp. 511-522
    • van de Peppel, J.1    Kettelarij, N.2    van Bakel, H.3    Kockelkorn, T.T.4    van Leenen, D.5
  • 398
    • 33645123390 scopus 로고    scopus 로고
    • Yeast 14-3-3 proteins
    • van Heusden, G. P., and H. Y. Steensma, 2006 Yeast 14-3-3 proteins. Yeast 23: 159-171.
    • (2006) Yeast , vol.23 , pp. 159-171
    • van Heusden, G.P.1    Steensma, H.Y.2
  • 399
    • 0036500258 scopus 로고    scopus 로고
    • Hyperacetylation of chromatin at the ADH2 promoter allows Adr1 to bind in repressed conditions
    • Verdone, L., J. Wu, K. van Riper, N. Kacherovsky, M. Vogelauer et al., 2002 Hyperacetylation of chromatin at the ADH2 promoter allows Adr1 to bind in repressed conditions. EMBO J. 21: 1101-1111.
    • (2002) EMBO J , vol.21 , pp. 1101-1111
    • Verdone, L.1    Wu, J.2    van Riper, K.3    Kacherovsky, N.4    Vogelauer, M.5
  • 400
    • 35348860237 scopus 로고    scopus 로고
    • Forkhead proteins control the outcome of transcription factor binding by antiactivation
    • Voth, W. P., Y. Yu, S. Takahata, K. L. Kretschmann, J. D. Lieb et al., 2007 Forkhead proteins control the outcome of transcription factor binding by antiactivation. EMBO J. 26: 4324-4334.
    • (2007) EMBO J , vol.26 , pp. 4324-4334
    • Voth, W.P.1    Yu, Y.2    Takahata, S.3    Kretschmann, K.L.4    Lieb, J.D.5
  • 401
    • 0029787072 scopus 로고    scopus 로고
    • Transcription activation in cells lacking TAFIIs
    • Walker, S. S., J. C. Reese, L. M. Apone, and M. R. Green, 1996 Transcription activation in cells lacking TAFIIs. Nature 383: 185-188.
    • (1996) Nature , vol.383 , pp. 185-188
    • Walker, S.S.1    Reese, J.C.2    Apone, L.M.3    Green, M.R.4
  • 403
    • 0030742578 scopus 로고    scopus 로고
    • Evidence that intramolecular interactions are involved in masking the activation domain of transcriptional activator Leu3p
    • Wang, D., Y. Hu, F. Zheng, K. Zhou, and G. B. Kohlhaw, 1997 Evidence that intramolecular interactions are involved in masking the activation domain of transcriptional activator Leu3p. J. Biol. Chem. 272: 19383-19392.
    • (1997) J. Biol. Chem , vol.272 , pp. 19383-19392
    • Wang, D.1    Hu, Y.2    Zheng, F.3    Zhou, K.4    Kohlhaw, G.B.5
  • 404
    • 0033516476 scopus 로고    scopus 로고
    • Yeast transcriptional regulator Leu3p. Self-masking, specificity of masking, and evidence for regulation by the intracellular level of Leu3p
    • Wang, D., F. Zheng, S. Holmberg, and G. B. Kohlhaw, 1999 Yeast transcriptional regulator Leu3p. Self-masking, specificity of masking, and evidence for regulation by the intracellular level of Leu3p. J. Biol. Chem. 274: 19017-19024.
    • (1999) J. Biol. Chem , vol.274 , pp. 19017-19024
    • Wang, D.1    Zheng, F.2    Holmberg, S.3    Kohlhaw, G.B.4
  • 405
    • 0026577264 scopus 로고
    • Polymerase II promoter activation: Closed complex formation and ATP-driven start site opening
    • Wang, W., M. Carey, and J. D. Gralla, 1992 Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. Science 255: 450-453.
    • (1992) Science , vol.255 , pp. 450-453
    • Wang, W.1    Carey, M.2    Gralla, J.D.3
  • 406
    • 77953322730 scopus 로고    scopus 로고
    • Proteolytic instability and the action of nonclassical transcriptional activators
    • Wang, X., M. Muratani, W. P. Tansey, and M. Ptashne, 2010 Proteolytic instability and the action of nonclassical transcriptional activators. Curr. Biol. 20: 868-871.
    • (2010) Curr. Biol , vol.20 , pp. 868-871
    • Wang, X.1    Muratani, M.2    Tansey, W.P.3    Ptashne, M.4
  • 407
    • 33644828992 scopus 로고    scopus 로고
    • Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae
    • Wang, Z., L. S. Feng, V. Matskevich, K. Venkataraman, P. Parasuram et al., 2006 Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae. J. Mol. Biol. 357: 1167-1183.
    • (2006) J. Mol. Biol , vol.357 , pp. 1167-1183
    • Wang, Z.1    Feng, L.S.2    Matskevich, V.3    Venkataraman, K.4    Parasuram, P.5
  • 408
    • 2442630488 scopus 로고    scopus 로고
    • Positive and negative functions of the SAGA complex mediated through interaction of Spt8 with TBP and the N-terminal domain of TFIIA
    • Warfield, L., J. A. Ranish, and S. Hahn, 2004 Positive and negative functions of the SAGA complex mediated through interaction of Spt8 with TBP and the N-terminal domain of TFIIA. Genes Dev. 18: 1022-1034.
    • (2004) Genes Dev , vol.18 , pp. 1022-1034
    • Warfield, L.1    Ranish, J.A.2    Hahn, S.3
  • 409
    • 33744960022 scopus 로고    scopus 로고
    • Structural diversity in p160/CREB-binding protein coactivator complexes
    • Waters, L., B. Yue, V. Veverka, P. Renshaw, J. Bramham et al., 2006 Structural diversity in p160/CREB-binding protein coactivator complexes. J. Biol. Chem. 281: 14787-14795.
    • (2006) J. Biol. Chem , vol.281 , pp. 14787-14795
    • Waters, L.1    Yue, B.2    Veverka, V.3    Renshaw, P.4    Bramham, J.5
  • 410
    • 77952569347 scopus 로고    scopus 로고
    • Inducible gene expression: Diverse regulatory mechanisms
    • Weake, V. M., and J. L. Workman, 2010 Inducible gene expression: diverse regulatory mechanisms. Nat. Rev. Genet. 11: 426-437.
    • (2010) Nat. Rev. Genet , vol.11 , pp. 426-437
    • Weake, V.M.1    Workman, J.L.2
  • 411
    • 0024299083 scopus 로고
    • The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the GAL4 trans-activator
    • Webster, N., J. R. Jin, S. Green, M. Hollis, and P. Chambon, 1988 The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the GAL4 trans-activator. Cell 52: 169-178.
    • (1988) Cell , vol.52 , pp. 169-178
    • Webster, N.1    Jin, J.R.2    Green, S.3    Hollis, M.4    Chambon, P.5
  • 412
    • 78651504121 scopus 로고    scopus 로고
    • Evolution of multisubunit RNA polymerases in the three domains of life
    • Werner, F., and D. Grohmann, 2011 Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 9: 85-98.
    • (2011) Nat. Rev. Microbiol , vol.9 , pp. 85-98
    • Werner, F.1    Grohmann, D.2
  • 413
    • 57349155872 scopus 로고    scopus 로고
    • Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae
    • Wightman, R., R. Bell, and R. J. Reece, 2008 Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae. Eukaryot. Cell 7: 2061-2068.
    • (2008) Eukaryot. Cell , vol.7 , pp. 2061-2068
    • Wightman, R.1    Bell, R.2    Reece, R.J.3
  • 414
    • 0029960055 scopus 로고    scopus 로고
    • TRANSFAC: A database on transcription factors and their DNA binding sites
    • Wingender, E., P. Dietze, H. Karas, and R. Knuppel, 1996 TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 24: 238-241.
    • (1996) Nucleic Acids Res , vol.24 , pp. 238-241
    • Wingender, E.1    Dietze, P.2    Karas, H.3    Knuppel, R.4
  • 415
    • 0021749263 scopus 로고
    • The SPT3 gene is required for normal transcription of Ty elements in S
    • Winston, F., K. J. Durbin, and G. R. Fink, 1984 The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39: 675-682.
    • (1984) Cerevisiae. Cell , vol.39 , pp. 675-682
    • Winston, F.1    Durbin, K.J.2    Fink, G.R.3
  • 416
    • 0035105035 scopus 로고    scopus 로고
    • TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast
    • Wu, J., N. Suka, M. Carlson, and M. Grunstein, 2001 TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol. Cell 7: 117-126.
    • (2001) Mol. Cell , vol.7 , pp. 117-126
    • Wu, J.1    Suka, N.2    Carlson, M.3    Grunstein, M.4
  • 417
    • 0036311179 scopus 로고    scopus 로고
    • Analysis of Spt7 function in the Saccharomyces cerevisiae SAGA coactivator complex
    • Wu, P. Y., and F. Winston, 2002 Analysis of Spt7 function in the Saccharomyces cerevisiae SAGA coactivator complex. Mol. Cell. Biol. 22: 5367-5379.
    • (2002) Mol. Cell. Biol , vol.22 , pp. 5367-5379
    • Wu, P.Y.1    Winston, F.2
  • 418
    • 3242680774 scopus 로고    scopus 로고
    • Molecular architecture of the S. cerevisiae SAGA complex
    • Wu, P. Y., C. Ruhlmann, F. Winston, and P. Schultz, 2004 Molecular architecture of the S. cerevisiae SAGA complex. Mol. Cell 15: 199-208.
    • (2004) Mol. Cell , vol.15 , pp. 199-208
    • Wu, P.Y.1    Ruhlmann, C.2    Winston, F.3    Schultz, P.4
  • 419
    • 0033604609 scopus 로고    scopus 로고
    • Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast
    • Wyrick, J. J., F. C. Holstege, E. G. Jennings, H. C. Causton, D. Shore et al., 1999 Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402: 418-421.
    • (1999) Nature , vol.402 , pp. 418-421
    • Wyrick, J.J.1    Holstege, F.C.2    Jennings, E.G.3    Causton, H.C.4    Shore, D.5
  • 420
    • 0029118222 scopus 로고
    • Recruiting TATA-binding protein to a promoter: Transcription activation without an upstream activator
    • Xiao, H., J. D. Friesen, and J. T. Lis, 1995 Recruiting TATA-binding protein to a promoter: transcription activation without an upstream activator. Mol. Cell. Biol. 15: 5757-5761.
    • (1995) Mol. Cell. Biol , vol.15 , pp. 5757-5761
    • Xiao, H.1    Friesen, J.D.2    Lis, J.T.3
  • 421
    • 60549108380 scopus 로고    scopus 로고
    • Bidirectional promoters generate pervasive transcription in yeast
    • Xu, Z., W. Wei, J. Gagneur, F. Perocchi, S. Clauder-Munster et al., 2009 Bidirectional promoters generate pervasive transcription in yeast. Nature 457: 1033-1037.
    • (2009) Nature , vol.457 , pp. 1033-1037
    • Xu, Z.1    Wei, W.2    Gagneur, J.3    Perocchi, F.4    Clauder-Munster, S.5
  • 422
    • 1542609586 scopus 로고    scopus 로고
    • Enrichment of transcriptional regulatory sites in non-coding genomic region
    • Xue, W., J. Wang, Z. Shen, and H. Zhu, 2004 Enrichment of transcriptional regulatory sites in non-coding genomic region. Bioinformatics 20: 569-575.
    • (2004) Bioinformatics , vol.20 , pp. 569-575
    • Xue, W.1    Wang, J.2    Shen, Z.3    Zhu, H.4
  • 423
    • 77952260641 scopus 로고    scopus 로고
    • Genome-wide characterisation of the Gcn5 histone acetyltransferase in budding yeast during stress adaptation reveals evolutionarily conserved and diverged roles
    • Xue-Franzen, Y., A. Johnsson, D. Brodin, J. Henriksson, T. R. Burglin et al., 2010 Genome-wide characterisation of the Gcn5 histone acetyltransferase in budding yeast during stress adaptation reveals evolutionarily conserved and diverged roles. BMC Genomics 11: 200
    • (2010) BMC Genomics , vol.11 , pp. 200
    • Xue-Franzen, Y.1    Johnsson, A.2    Brodin, D.3    Henriksson, J.4    Burglin, T.R.5
  • 424
    • 0037138389 scopus 로고    scopus 로고
    • How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis
    • Yaffe, M. B., 2002 How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513: 53-57.
    • (2002) FEBS Lett , vol.513 , pp. 53-57
    • Yaffe, M.B.1
  • 425
    • 1442354965 scopus 로고    scopus 로고
    • The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator
    • Yang, F., R. DeBeaumont, S. Zhou, and A. M. Naar, 2004 The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA 101: 2339-2344.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 2339-2344
    • Yang, F.1    Debeaumont, R.2    Zhou, S.3    Naar, A.M.4
  • 426
    • 0033610849 scopus 로고    scopus 로고
    • Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression
    • Young, E. T., J. Saario, N. Kacherovsky, A. Chao, J. S. Sloan et al., 1998 Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression. J. Biol. Chem. 273: 32080-32087.
    • (1998) J. Biol. Chem , vol.273 , pp. 32080-32087
    • Young, E.T.1    Saario, J.2    Kacherovsky, N.3    Chao, A.4    Sloan, J.S.5
  • 427
    • 0037064084 scopus 로고    scopus 로고
    • Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation
    • Young, E. T., N. Kacherovsky, and K. Van Riper, 2002 Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation. J. Biol. Chem. 277: 38095-38103.
    • (2002) J. Biol. Chem , vol.277 , pp. 38095-38103
    • Young, E.T.1    Kacherovsky, N.2    van Riper, K.3
  • 428
    • 0038506725 scopus 로고    scopus 로고
    • Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8
    • Young, E. T., K. M. Dombek, C. Tachibana, and T. Ideker, 2003 Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J. Biol. Chem. 278: 26146-26158.
    • (2003) J. Biol. Chem , vol.278 , pp. 26146-26158
    • Young, E.T.1    Dombek, K.M.2    Tachibana, C.3    Ideker, T.4
  • 429
    • 0037370346 scopus 로고    scopus 로고
    • Regulation of TATA-binding protein binding by the SAGA complex and the Nhp6 high-mobility group protein
    • Yu, Y., P. Eriksson, L. T. Bhoite, and D. J. Stillman, 2003 Regulation of TATA-binding protein binding by the SAGA complex and the Nhp6 high-mobility group protein. Mol. Cell. Biol. 23: 1910-1921.
    • (2003) Mol. Cell. Biol , vol.23 , pp. 1910-1921
    • Yu, Y.1    Eriksson, P.2    Bhoite, L.T.3    Stillman, D.J.4
  • 430
  • 431
    • 36549013619 scopus 로고    scopus 로고
    • RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo
    • Zeitlinger, J., A. Stark, M. Kellis, J. W. Hong, S. Nechaev et al., 2007 RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet. 39: 1512-1516.
    • (2007) Nat. Genet , vol.39 , pp. 1512-1516
    • Zeitlinger, J.1    Stark, A.2    Kellis, M.3    Hong, J.W.4    Nechaev, S.5
  • 432
    • 3242728442 scopus 로고    scopus 로고
    • A triad of subunits from the Gal11/tail domain of Srb mediator is an in vivo target of transcriptional activator Gcn4p
    • Zhang, F., L. Sumibcay, A. G. Hinnebusch, and M. J. Swanson, 2004 A triad of subunits from the Gal11/tail domain of Srb mediator is an in vivo target of transcriptional activator Gcn4p. Mol. Cell. Biol. 24: 6871-6886.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 6871-6886
    • Zhang, F.1    Sumibcay, L.2    Hinnebusch, A.G.3    Swanson, M.J.4
  • 433
    • 0031806619 scopus 로고    scopus 로고
    • Molecular mechanism governing heme signaling in yeast: A higher-order complex mediates heme regulation of the transcriptional activator HAP1
    • Zhang, L., A. Hach, and C. Wang, 1998 Molecular mechanism governing heme signaling in yeast: a higher-order complex mediates heme regulation of the transcriptional activator HAP1. Mol. Cell. Biol. 18: 3819-3828.
    • (1998) Mol. Cell. Biol , vol.18 , pp. 3819-3828
    • Zhang, L.1    Hach, A.2    Wang, C.3
  • 434
    • 0030746204 scopus 로고    scopus 로고
    • Genetic redundancy between SPT23 and MGA2: Regulators of Ty-induced mutations and Ty1 transcription in Saccharomyces cerevisiae
    • Zhang, S., T. J. Burkett, I. Yamashita, and D. J. Garfinkel, 1997 Genetic redundancy between SPT23 and MGA2: regulators of Ty-induced mutations and Ty1 transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 4718-4729.
    • (1997) Mol. Cell. Biol , vol.17 , pp. 4718-4729
    • Zhang, S.1    Burkett, T.J.2    Yamashita, I.3    Garfinkel, D.J.4
  • 435
    • 20144384163 scopus 로고    scopus 로고
    • Mapping of transcription start sites in Saccharomyces cerevisiae using 59 SAGE
    • Zhang, Z., and F. S. Dietrich, 2005 Mapping of transcription start sites in Saccharomyces cerevisiae using 59 SAGE. Nucleic Acids Res. 33: 2838-2851.
    • (2005) Nucleic Acids Res , vol.33 , pp. 2838-2851
    • Zhang, Z.1    Dietrich, F.S.2
  • 436
    • 77951610155 scopus 로고    scopus 로고
    • Genetic analysis of variation in transcription factor binding in yeast
    • Zheng, W., H. Zhao, E. Mancera, L. M. Steinmetz, and M. Snyder, 2010 Genetic analysis of variation in transcription factor binding in yeast. Nature 464: 1187-1191.
    • (2010) Nature , vol.464 , pp. 1187-1191
    • Zheng, W.1    Zhao, H.2    Mancera, E.3    Steinmetz, L.M.4    Snyder, M.5
  • 437
    • 66349122952 scopus 로고    scopus 로고
    • Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5
    • Zhou, K., W. H. Kuo, J. Fillingham, and J. F. Greenblatt, 2009 Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc. Natl. Acad. Sci. USA 106: 6956-6961.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 6956-6961
    • Zhou, K.1    Kuo, W.H.2    Fillingham, J.3    Greenblatt, J.F.4
  • 438
    • 0025124529 scopus 로고
    • Yeast regulatory protein LEU3: A structure-function analysis
    • Zhou, K. M., Y. L. Bai, and G. B. Kohlhaw, 1990 Yeast regulatory protein LEU3: a structure-function analysis. Nucleic Acids Res. 18: 291-298.
    • (1990) Nucleic Acids Res , vol.18 , pp. 291-298
    • Zhou, K.M.1    Bai, Y.L.2    Kohlhaw, G.B.3
  • 439
    • 63849315606 scopus 로고    scopus 로고
    • High-resolution DNA-binding specificity analysis of yeast transcription factors
    • Zhu, C., K. J. Byers, R. P. McCord, Z. Shi, M. F. Berger et al., 2009 High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res. 19: 556-566.
    • (2009) Genome Res , vol.19 , pp. 556-566
    • Zhu, C.1    Byers, K.J.2    McCord, R.P.3    Shi, Z.4    Berger, M.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.