메뉴 건너뛰기




Volumn 8, Issue 4, 2007, Pages 284-295

Histone acetyltransferase complexes: One size doesn't fit all

Author keywords

[No Author keywords available]

Indexed keywords

HISTONE; HISTONE ACETYLTRANSFERASE;

EID: 33947532026     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm2145     Document Type: Review
Times cited : (873)

References (129)
  • 3
    • 0033529565 scopus 로고    scopus 로고
    • Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
    • Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294 (1999).
    • (1999) Cell , vol.98 , pp. 285-294
    • Kornberg, R.D.1    Lorch, Y.2
  • 4
    • 0037099468 scopus 로고    scopus 로고
    • Histone modification and replacement in chromatin activation
    • Goll, M. G. & Bestor, T. H. Histone modification and replacement in chromatin activation. Genes Dev. 16, 1739-1742 (2002).
    • (2002) Genes Dev , vol.16 , pp. 1739-1742
    • Goll, M.G.1    Bestor, T.H.2
  • 5
    • 0035032345 scopus 로고    scopus 로고
    • A tale of histone modifications
    • REVIEWS0003 2001
    • Grant, P. A. A tale of histone modifications. Genome Biol. 2, REVIEWS0003 (2001).
    • Genome Biol , vol.2
    • Grant, P.A.1
  • 6
    • 78651162036 scopus 로고
    • Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis
    • Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA 51, 786-794 (1964).
    • (1964) Proc. Natl Acad. Sci. USA , vol.51 , pp. 786-794
    • Allfrey, V.G.1    Faulkner, R.2    Mirsky, A.E.3
  • 7
    • 0029925512 scopus 로고    scopus 로고
    • Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation
    • Brownell, J. E. & Allis, C. D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genes Dev. 6, 176-184 (1996).
    • (1996) Curr. Opin. Genes Dev , vol.6 , pp. 176-184
    • Brownell, J.E.1    Allis, C.D.2
  • 8
    • 0018487568 scopus 로고
    • Purification and properties of a histone acetyltransferase from Artemia salina, highly efficient with H1 histone
    • Cano, A. & Pestana, A. Purification and properties of a histone acetyltransferase from Artemia salina, highly efficient with H1 histone. Eur. J. Biochem. 97, 65-72 (1979).
    • (1979) Eur. J. Biochem , vol.97 , pp. 65-72
    • Cano, A.1    Pestana, A.2
  • 9
    • 0028885077 scopus 로고
    • Identification of a gene encoding a yeast histone H4 acetyltransferase
    • Kleff, S., Andrulis, E. D., Anderson, C. W. & Sternglanz, R. Identification of a gene encoding a yeast histone H4 acetyltransferase. J. Biol. Chem. 270, 24674-24677 (1995).
    • (1995) J. Biol. Chem , vol.270 , pp. 24674-24677
    • Kleff, S.1    Andrulis, E.D.2    Anderson, C.W.3    Sternglanz, R.4
  • 10
    • 0029984469 scopus 로고    scopus 로고
    • Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation
    • Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843-851 (1996).
    • (1996) Cell , vol.84 , pp. 843-851
    • Brownell, J.E.1
  • 11
    • 0030797349 scopus 로고    scopus 로고
    • Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: Characterization of an Ada complex and the SAGA (Spt/Ada) complex
    • Grant, P. A. et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11, 1640-1650 (1997).
    • (1997) Genes Dev , vol.11 , pp. 1640-1650
    • Grant, P.A.1
  • 12
    • 0038204415 scopus 로고    scopus 로고
    • The diverse functions of histone acetyltransferase complexes
    • Carrozza, M. J., Utley, R. T., Workman, J. L. & Coté, J. The diverse functions of histone acetyltransferase complexes. Trends Genet. 19, 321-329 (2003).
    • (2003) Trends Genet , vol.19 , pp. 321-329
    • Carrozza, M.J.1    Utley, R.T.2    Workman, J.L.3    Coté, J.4
  • 13
    • 32944469082 scopus 로고    scopus 로고
    • A decade of histone acetylation: Marking eukaryotic chromosomes with specific codes
    • Kimura, A., Matsubara, K. & Horikoshi, M. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J. Biochem. (Tokyo) 138, 647-662 (2005).
    • (2005) J. Biochem. (Tokyo) , vol.138 , pp. 647-662
    • Kimura, A.1    Matsubara, K.2    Horikoshi, M.3
  • 14
    • 0037242383 scopus 로고    scopus 로고
    • The MYST family of histone acetyltransferases
    • Utley, R. T. & Côté, J. The MYST family of histone acetyltransferases. Curr. Top. Microbiol. Immunol. 274, 203-236 (2002).
    • (2002) Curr. Top. Microbiol. Immunol , vol.274 , pp. 203-236
    • Utley, R.T.1    Côté, J.2
  • 15
    • 2342599619 scopus 로고    scopus 로고
    • The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases
    • Yang, X. J. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32, 959-976 (2004).
    • (2004) Nucleic Acids Res , vol.32 , pp. 959-976
    • Yang, X.J.1
  • 16
    • 26444514954 scopus 로고    scopus 로고
    • Genome-wide analysis of HDAC function
    • Ekwall, K. Genome-wide analysis of HDAC function. Trends Genet. 21, 608-615 (2005).
    • (2005) Trends Genet , vol.21 , pp. 608-615
    • Ekwall, K.1
  • 17
    • 33746641324 scopus 로고    scopus 로고
    • Nucleosome displacement in transcription
    • Workman, J. L. Nucleosome displacement in transcription. Genes Dev. 20, 2009-2017 (2006).
    • (2006) Genes Dev , vol.20 , pp. 2009-2017
    • Workman, J.L.1
  • 18
    • 33646145721 scopus 로고    scopus 로고
    • Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497-508 (2006). Describes the identification of the circadian rhythm master regulator, CLOCK, as a HAT that functions with BMAL1 to carry out its activity.
    • Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497-508 (2006). Describes the identification of the circadian rhythm master regulator, CLOCK, as a HAT that functions with BMAL1 to carry out its activity.
  • 19
    • 0034657420 scopus 로고    scopus 로고
    • The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex
    • John, S. et al. The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev. 14, 1196-1208 (2000).
    • (2000) Genes Dev , vol.14 , pp. 1196-1208
    • John, S.1
  • 20
    • 0033166761 scopus 로고    scopus 로고
    • A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme
    • Wittschieben, B. O. et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123-128 (1999).
    • (1999) Mol. Cell , vol.4 , pp. 123-128
    • Wittschieben, B.O.1
  • 21
    • 0033519641 scopus 로고    scopus 로고
    • Structure and ligand of a histone acetyltransferase bromodomain
    • Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491-496 (1999).
    • (1999) Nature , vol.399 , pp. 491-496
    • Dhalluin, C.1
  • 22
    • 0034717183 scopus 로고    scopus 로고
    • Structure and function of a human TAFII250 double bromodomain module
    • Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422-1425 (2000).
    • (2000) Science , vol.288 , pp. 1422-1425
    • Jacobson, R.H.1    Ladurner, A.G.2    King, D.S.3    Tjian, R.4
  • 23
    • 1942535223 scopus 로고    scopus 로고
    • Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14
    • Kasten, M. et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 23, 1348-1359 (2004).
    • (2004) EMBO J , vol.23 , pp. 1348-1359
    • Kasten, M.1
  • 24
    • 0036847620 scopus 로고    scopus 로고
    • Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes
    • Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369-379 (2002).
    • (2002) Cell , vol.111 , pp. 369-379
    • Hassan, A.H.1
  • 25
    • 0035282458 scopus 로고    scopus 로고
    • Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
    • Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124 (2001).
    • (2001) Nature , vol.410 , pp. 120-124
    • Bannister, A.J.1
  • 26
    • 0037086355 scopus 로고    scopus 로고
    • Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail
    • Jacobs, S. A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080-2083 (2002).
    • (2002) Science , vol.295 , pp. 2080-2083
    • Jacobs, S.A.1    Khorasanizadeh, S.2
  • 27
    • 0035282573 scopus 로고    scopus 로고
    • Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
    • Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120 (2001).
    • (2001) Nature , vol.410 , pp. 116-120
    • Lachner, M.1    O'Carroll, D.2    Rea, S.3    Mechtler, K.4    Jenuwein, T.5
  • 28
    • 0037034911 scopus 로고    scopus 로고
    • Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9
    • Nielsen, P. R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416, 103-107 (2002).
    • (2002) Nature , vol.416 , pp. 103-107
    • Nielsen, P.R.1
  • 29
    • 0141929385 scopus 로고    scopus 로고
    • Binary switches and modification cassettes in histone biology and beyond
    • Fischle, W., Wang, Y. & Allis, C. D. Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475-479 (2003).
    • (2003) Nature , vol.425 , pp. 475-479
    • Fischle, W.1    Wang, Y.2    Allis, C.D.3
  • 30
    • 29144468972 scopus 로고    scopus 로고
    • Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation
    • Joshi, A. A. & Struhl, K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell 20, 971-978 (2005).
    • (2005) Mol. Cell , vol.20 , pp. 971-978
    • Joshi, A.A.1    Struhl, K.2
  • 31
    • 27744587302 scopus 로고    scopus 로고
    • Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex
    • Keogh, M. C. et al. Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593-605 (2005).
    • (2005) Cell , vol.123 , pp. 593-605
    • Keogh, M.C.1
  • 32
    • 27744577727 scopus 로고    scopus 로고
    • Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
    • Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581-592 (2005).
    • (2005) Cell , vol.123 , pp. 581-592
    • Carrozza, M.J.1
  • 33
    • 20444417108 scopus 로고    scopus 로고
    • WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development
    • Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859-872 (2005).
    • (2005) Cell , vol.121 , pp. 859-872
    • Wysocka, J.1
  • 34
    • 33646083683 scopus 로고    scopus 로고
    • Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5
    • Han, Z. et al. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol. Cell 22, 137-144 (2006).
    • (2006) Mol. Cell , vol.22 , pp. 137-144
    • Han, Z.1
  • 35
    • 33746828109 scopus 로고    scopus 로고
    • Molecular recognition of histone H3 by the WD40 protein WDR5
    • Couture, J. F., Collazo, E. & Trievel, R. C. Molecular recognition of histone H3 by the WD40 protein WDR5. Nature Struct. Mol. Biol. 13, 698-703 (2006).
    • (2006) Nature Struct. Mol. Biol , vol.13 , pp. 698-703
    • Couture, J.F.1    Collazo, E.2    Trievel, R.C.3
  • 36
    • 33746851506 scopus 로고    scopus 로고
    • Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex
    • Ruthenburg, A. J. et al. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nature Struct. Mol. Biol. 13, 704-712 (2006).
    • (2006) Nature Struct. Mol. Biol , vol.13 , pp. 704-712
    • Ruthenburg, A.J.1
  • 37
    • 33645502395 scopus 로고    scopus 로고
    • Tudor, MBT and chromo domains gauge the degree of lysine methylation
    • 397-403
    • Kim, J. et al. Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep. 7, 397-403 (2006).
    • (2006) EMBO Rep , vol.7
    • Kim, J.1
  • 38
    • 23344444863 scopus 로고    scopus 로고
    • Tudor domains bind symmetrical dimethylated arginines
    • Coté, J. & Richard, S. Tudor domains bind symmetrical dimethylated arginines. J. Biol. Chem. 280, 28476-28483 (2005).
    • (2005) J. Biol. Chem , vol.280 , pp. 28476-28483
    • Coté, J.1    Richard, S.2
  • 39
    • 33745809637 scopus 로고    scopus 로고
    • Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF
    • Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91-95 (2006).
    • (2006) Nature , vol.442 , pp. 91-95
    • Li, H.1
  • 40
    • 33745818717 scopus 로고    scopus 로고
    • Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2
    • Pena, P. V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100-103 (2006).
    • (2006) Nature , vol.442 , pp. 100-103
    • Pena, P.V.1
  • 41
    • 33745839365 scopus 로고    scopus 로고
    • Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86-90 (2006). References 39-41 provide structural evidence that the PHD fingers can recognize and bind H3K4 trimethylation.
    • Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86-90 (2006). References 39-41 provide structural evidence that the PHD fingers can recognize and bind H3K4 trimethylation.
  • 42
    • 0347986672 scopus 로고    scopus 로고
    • Eaf3 regulates the global pattern of histone acetylation in Saccharomyces cerevisiae
    • Reid, J. L., Moqtaderi, Z. & Struhl, K. Eaf3 regulates the global pattern of histone acetylation in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 757-764 (2004).
    • (2004) Mol. Cell. Biol , vol.24 , pp. 757-764
    • Reid, J.L.1    Moqtaderi, Z.2    Struhl, K.3
  • 43
    • 3242680774 scopus 로고    scopus 로고
    • Molecular architecture of the S. cerevisiae SAGA complex
    • Wu, P. Y., Ruhlmann, C., Winston, F. & Schultz, P. Molecular architecture of the S. cerevisiae SAGA complex. Mol. Cell 15, 199-208 (2004).
    • (2004) Mol. Cell , vol.15 , pp. 199-208
    • Wu, P.Y.1    Ruhlmann, C.2    Winston, F.3    Schultz, P.4
  • 44
    • 10844233155 scopus 로고    scopus 로고
    • Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions
    • Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084-2087 (2004).
    • (2004) Science , vol.306 , pp. 2084-2087
    • Kusch, T.1
  • 45
    • 0036842129 scopus 로고    scopus 로고
    • Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin
    • Suka, N., Luo, K. & Grunstein, M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nature Genet. 32, 378-383 (2002).
    • (2002) Nature Genet , vol.32 , pp. 378-383
    • Suka, N.1    Luo, K.2    Grunstein, M.3
  • 46
    • 0034654011 scopus 로고    scopus 로고
    • Acetylation: A regulatory modification to rival phosphorylation?
    • Kouzarides, T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19, 1176-1179 (2000).
    • (2000) EMBO J , vol.19 , pp. 1176-1179
    • Kouzarides, T.1
  • 47
    • 20144388146 scopus 로고    scopus 로고
    • Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391-400 (2005). Shows the importance of H4K16 acetylation as a predictor of human cancer.
    • Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391-400 (2005). Shows the importance of H4K16 acetylation as a predictor of human cancer.
  • 48
    • 32444434989 scopus 로고    scopus 로고
    • Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844-847 (2006). A key paper that shows the importance of a single histone modification in modulating both higherorder chromatin structure and functional interactions between a non-histone protein and the chromatin fibre.
    • Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844-847 (2006). A key paper that shows the importance of a single histone modification in modulating both higherorder chromatin structure and functional interactions between a non-histone protein and the chromatin fibre.
  • 49
    • 0033866836 scopus 로고    scopus 로고
    • Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila
    • Akhtar, A. & Becker, P. B. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell 5, 367-375 (2000).
    • (2000) Mol. Cell , vol.5 , pp. 367-375
    • Akhtar, A.1    Becker, P.B.2
  • 50
    • 0030891858 scopus 로고    scopus 로고
    • mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila
    • Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A. & Lucchesi, J. C. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16, 2054-2060 (1997).
    • (1997) EMBO J , vol.16 , pp. 2054-2060
    • Hilfiker, A.1    Hilfiker-Kleiner, D.2    Pannuti, A.3    Lucchesi, J.C.4
  • 51
    • 27144546434 scopus 로고    scopus 로고
    • A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16
    • Smith, E. R. et al. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol. Cell. Biol. 25, 9175-9188 (2005).
    • (2005) Mol. Cell. Biol , vol.25 , pp. 9175-9188
    • Smith, E.R.1
  • 52
    • 0035576789 scopus 로고    scopus 로고
    • The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1
    • Osada, S. et al. The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. Genes Dev. 15, 3155-3168 (2001).
    • (2001) Genes Dev , vol.15 , pp. 3155-3168
    • Osada, S.1
  • 53
    • 0035577669 scopus 로고    scopus 로고
    • The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae
    • Meijsing, S. H. & Ehrenhofer-Murray, A. E. The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae. Genes Dev. 15, 3169-3182 (2001).
    • (2001) Genes Dev , vol.15 , pp. 3169-3182
    • Meijsing, S.H.1    Ehrenhofer-Murray, A.E.2
  • 54
    • 0036843170 scopus 로고    scopus 로고
    • Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing
    • Kimura, A., Umehara, T. & Horikoshi, M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nature Genet. 32, 370-377 (2002).
    • (2002) Nature Genet , vol.32 , pp. 370-377
    • Kimura, A.1    Umehara, T.2    Horikoshi, M.3
  • 55
    • 15744369742 scopus 로고    scopus 로고
    • Characterization of the yeast trimeric-SAS acetyltransferase complex
    • Shia, W. J. et al. Characterization of the yeast trimeric-SAS acetyltransferase complex. J. Biol. Chem. 280, 11987-11994 (2005).
    • (2005) J. Biol. Chem , vol.280 , pp. 11987-11994
    • Shia, W.J.1
  • 56
    • 33748698658 scopus 로고    scopus 로고
    • SAS-mediated acetylation of histone H4 lysine 16 is required for H2A.Z incorporation at telomeres in Saccharomyces cerevisiae
    • Shia, W. J., Li, B. & Workman, J. SAS-mediated acetylation of histone H4 lysine 16 is required for H2A.Z incorporation at telomeres in Saccharomyces cerevisiae. Genes Dev. 20 2507-2512 (2006).
    • (2006) Genes Dev , vol.20 , pp. 2507-2512
    • Shia, W.J.1    Li, B.2    Workman, J.3
  • 57
    • 0033988212 scopus 로고    scopus 로고
    • The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation
    • Smith, E. R. et al. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol. Cell. Biol. 20, 312-318 (2000).
    • (2000) Mol. Cell. Biol , vol.20 , pp. 312-318
    • Smith, E.R.1
  • 58
    • 0033588309 scopus 로고    scopus 로고
    • Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin
    • Kelley, R. L. et al. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98, 513-522 (1999).
    • (1999) Cell , vol.98 , pp. 513-522
    • Kelley, R.L.1
  • 59
    • 0037478652 scopus 로고    scopus 로고
    • Male-specific lethal complex of Drosophila targets activated regions of the X chromosome for chromatin remodeling
    • Sass, G. L., Pannuti, A. & Lucchesi, J. C. Male-specific lethal complex of Drosophila targets activated regions of the X chromosome for chromatin remodeling. Proc. Natl Acad. Sci. USA 100, 8287-8291 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 8287-8291
    • Sass, G.L.1    Pannuti, A.2    Lucchesi, J.C.3
  • 60
    • 0031917787 scopus 로고    scopus 로고
    • Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster
    • Gu, W., Szauter, P. & Lucchesi, J. C. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev. Genet. 22, 56-64 (1998).
    • (1998) Dev. Genet , vol.22 , pp. 56-64
    • Gu, W.1    Szauter, P.2    Lucchesi, J.C.3
  • 61
    • 20444397430 scopus 로고    scopus 로고
    • Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF
    • Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873-885 (2005).
    • (2005) Cell , vol.121 , pp. 873-885
    • Dou, Y.1
  • 62
    • 0034952596 scopus 로고    scopus 로고
    • Unraveling DNA repair in human: Molecular mechanisms and consequences of repair defect
    • Tuteja, N. & Tuteja, R. Unraveling DNA repair in human: molecular mechanisms and consequences of repair defect. Crit. Rev. Biochem. Mol. Biol. 36, 261-290 (2001).
    • (2001) Crit. Rev. Biochem. Mol. Biol , vol.36 , pp. 261-290
    • Tuteja, N.1    Tuteja, R.2
  • 63
    • 33645707277 scopus 로고    scopus 로고
    • Epigenetic information in chromatin: The code of entry for DNA repair
    • Loizou, J. I. et al. Epigenetic information in chromatin: the code of entry for DNA repair. Cell Cycle 5, 696-701 (2006).
    • (2006) Cell Cycle , vol.5 , pp. 696-701
    • Loizou, J.I.1
  • 64
    • 1542328269 scopus 로고    scopus 로고
    • Chromatin remodeling and the maintenance of genome integrity
    • Allard, S., Masson, J. Y. & Coté, J. Chromatin remodeling and the maintenance of genome integrity. Biochim. Biophys. Acta 1677, 158-164 (2004).
    • (2004) Biochim. Biophys. Acta , vol.1677 , pp. 158-164
    • Allard, S.1    Masson, J.Y.2    Coté, J.3
  • 65
    • 0026746605 scopus 로고
    • Biological roles of the Escherichia coli RuvA, RuvB and RuvC proteins revealed
    • West, S. C. & Connolly, B. Biological roles of the Escherichia coli RuvA, RuvB and RuvC proteins revealed. Mol. Microbiol. 6, 2755-2759 (1992).
    • (1992) Mol. Microbiol , vol.6 , pp. 2755-2759
    • West, S.C.1    Connolly, B.2
  • 66
    • 0034682736 scopus 로고    scopus 로고
    • Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis
    • Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463-473 (2000).
    • (2000) Cell , vol.102 , pp. 463-473
    • Ikura, T.1
  • 67
    • 27944442030 scopus 로고    scopus 로고
    • In and out: Histone variant exchange in chromatin
    • Jin, J. et al. In and out: histone variant exchange in chromatin. Trends Biochem. Sci. 30, 680-687 (2005).
    • (2005) Trends Biochem. Sci , vol.30 , pp. 680-687
    • Jin, J.1
  • 68
    • 0037179692 scopus 로고    scopus 로고
    • Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair
    • Bird, A. W. et al. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411-415 (2002).
    • (2002) Nature , vol.419 , pp. 411-415
    • Bird, A.W.1
  • 69
    • 0036889332 scopus 로고    scopus 로고
    • NuA4 subunit Yng2 function in intra-S-phase DNA damage response
    • Choy, J. S. & Kron, S. J. NuA4 subunit Yng2 function in intra-S-phase DNA damage response. Mol. Cell. Biol. 22, 8215-8225 (2002).
    • (2002) Mol. Cell. Biol , vol.22 , pp. 8215-8225
    • Choy, J.S.1    Kron, S.J.2
  • 70
    • 10944267160 scopus 로고    scopus 로고
    • Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites
    • Downs, J. A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979-90 (2004).
    • (2004) Mol. Cell , vol.16 , pp. 979-990
    • Downs, J.A.1
  • 71
    • 24344481673 scopus 로고    scopus 로고
    • Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4
    • Utley, R. T., Lacoste, N., Jobin-Robitaille, O., Allard, S. & Coté, J. Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol. Cell. Biol. 25, 8179-8190 (2005).
    • (2005) Mol. Cell. Biol , vol.25 , pp. 8179-8190
    • Utley, R.T.1    Lacoste, N.2    Jobin-Robitaille, O.3    Allard, S.4    Coté, J.5
  • 72
    • 0035875666 scopus 로고    scopus 로고
    • UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation
    • Brand, M. et al. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J. 20, 3187-3196 (2001).
    • (2001) EMBO J , vol.20 , pp. 3187-3196
    • Brand, M.1
  • 73
    • 25444482343 scopus 로고    scopus 로고
    • Histone acetylation, chromatin remodelling and nucleotide excision repair: Hint from the study on MFA2 in Saccharomyces cerevisiae
    • Yu, Y. & Waters, R. Histone acetylation, chromatin remodelling and nucleotide excision repair: hint from the study on MFA2 in Saccharomyces cerevisiae. Cell Cycle 4, 1043-1045 (2005).
    • (2005) Cell Cycle , vol.4 , pp. 1043-1045
    • Yu, Y.1    Waters, R.2
  • 74
    • 0032880119 scopus 로고    scopus 로고
    • Das, B. K. et al. Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol. Cell. Biol. 19, 6796-6802 (1999).
    • Das, B. K. et al. Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol. Cell. Biol. 19, 6796-6802 (1999).
  • 75
    • 20844453256 scopus 로고    scopus 로고
    • UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus
    • Yu, Y., Teng, Y., Liu, H., Reed, S. H. & Waters, R. UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus. Proc. Natl Acad. Sci. USA 102, 8650-8655 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 8650-8655
    • Yu, Y.1    Teng, Y.2    Liu, H.3    Reed, S.H.4    Waters, R.5
  • 76
    • 0036300514 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae histone acetyltransferase Gcn5 has a role in the photoreactivation and nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers in the MFA2 gene
    • Teng, Y., Yu, Y. & Waters, R. The Saccharomyces cerevisiae histone acetyltransferase Gcn5 has a role in the photoreactivation and nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers in the MFA2 gene. J. Mol. Biol. 316, 489-499 (2002).
    • (2002) J. Mol. Biol , vol.316 , pp. 489-499
    • Teng, Y.1    Yu, Y.2    Waters, R.3
  • 77
    • 0030797585 scopus 로고    scopus 로고
    • Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain
    • Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606 (1997).
    • (1997) Cell , vol.90 , pp. 595-606
    • Gu, W.1    Roeder, R.G.2
  • 78
    • 0347481147 scopus 로고    scopus 로고
    • Poux, A. N. & Marmorstein, R. Molecular basis for Gcn5/PCAF histone acetyltransferase selectivity for histone and nonhistone substrates. Biochemistry 42, 14366-14374 (2003). Shows the ability of the catalytic domain of Gcn5 to accommodate a number of substrates, through the fine tuning of intermolecular and intramolecular interactions.
    • Poux, A. N. & Marmorstein, R. Molecular basis for Gcn5/PCAF histone acetyltransferase selectivity for histone and nonhistone substrates. Biochemistry 42, 14366-14374 (2003). Shows the ability of the catalytic domain of Gcn5 to accommodate a number of substrates, through the fine tuning of intermolecular and intramolecular interactions.
  • 79
    • 0032589574 scopus 로고    scopus 로고
    • Brand, M., Leurent, C., Mallouh, V., Tora, L. & Schultz, P. Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC. Science 286, 2151-2153 (1999). This is the first description of the three-dimensional structure and basis of recognition of a macromolecular complex that contains a HAT.
    • Brand, M., Leurent, C., Mallouh, V., Tora, L. & Schultz, P. Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC. Science 286, 2151-2153 (1999). This is the first description of the three-dimensional structure and basis of recognition of a macromolecular complex that contains a HAT.
  • 80
    • 0038508864 scopus 로고    scopus 로고
    • DNA-dependent acetylation of p53 by the transcription coactivator p300
    • Dornan, D., Shimizu, H., Perkins, N. D. & Hupp, T. R. DNA-dependent acetylation of p53 by the transcription coactivator p300. J. Biol. Chem. 278, 13431-13441 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 13431-13441
    • Dornan, D.1    Shimizu, H.2    Perkins, N.D.3    Hupp, T.R.4
  • 81
    • 7644223905 scopus 로고    scopus 로고
    • Interferon regulatory factor 1 binding to p300 stimulates DNA-dependent acetylation of p53
    • Dornan, D. et al. Interferon regulatory factor 1 binding to p300 stimulates DNA-dependent acetylation of p53. Mol. Cell. Biol. 24, 10083-10098 (2004).
    • (2004) Mol. Cell. Biol , vol.24 , pp. 10083-10098
    • Dornan, D.1
  • 82
    • 0035839135 scopus 로고    scopus 로고
    • Snf1 - a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription
    • Lo, W. S. et al. Snf1 - a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293, 1142-1146 (2001).
    • (2001) Science , vol.293 , pp. 1142-1146
    • Lo, W.S.1
  • 83
    • 0030798245 scopus 로고    scopus 로고
    • Histone acetylation in chromatin structure and transcription
    • Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349-352 (1997).
    • (1997) Nature , vol.389 , pp. 349-352
    • Grunstein, M.1
  • 84
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074-1080 (2001).
    • (2001) Science , vol.293 , pp. 1074-1080
    • Jenuwein, T.1    Allis, C.D.2
  • 85
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41-45 (2000).
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 86
    • 0033848849 scopus 로고    scopus 로고
    • Histone acetylation and an epigenetic code
    • Turner, B. M. Histone acetylation and an epigenetic code. Bioessays 22, 836-845 (2000).
    • (2000) Bioessays , vol.22 , pp. 836-845
    • Turner, B.M.1
  • 87
    • 0038057380 scopus 로고    scopus 로고
    • Memorable transcription
    • Turner, B. M. Memorable transcription. Nature Cell Biol. 5, 390-393 (2003).
    • (2003) Nature Cell Biol , vol.5 , pp. 390-393
    • Turner, B.M.1
  • 88
    • 0037074010 scopus 로고    scopus 로고
    • Signaling network model of chromatin
    • Schreiber, S. L. & Bernstein, B. E. Signaling network model of chromatin. Cell 111, 771-778 (2002).
    • (2002) Cell , vol.111 , pp. 771-778
    • Schreiber, S.L.1    Bernstein, B.E.2
  • 89
    • 27644589675 scopus 로고    scopus 로고
    • The diverse functions of histone lysine methylation
    • Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nature Rev. Mol. Cell Biol. 6, 838-849 (2005).
    • (2005) Nature Rev. Mol. Cell Biol , vol.6 , pp. 838-849
    • Martin, C.1    Zhang, Y.2
  • 90
    • 13444267442 scopus 로고    scopus 로고
    • Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R. 3rd & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIKdependent acetylation. Nature 433, 434-438 (2005). Links histone methylation to histone acetylation through Chd1, identifying it as the first H3K4 methyl-binding protein.
    • Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R. 3rd & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIKdependent acetylation. Nature 433, 434-438 (2005). Links histone methylation to histone acetylation through Chd1, identifying it as the first H3K4 methyl-binding protein.
  • 91
    • 33645804789 scopus 로고    scopus 로고
    • Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin
    • Martin, D. G., Grimes, D. E., Baetz, K. & Howe, L. Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin. Mol. Cell. Biol. 26, 3018-3028 (2006).
    • (2006) Mol. Cell. Biol , vol.26 , pp. 3018-3028
    • Martin, D.G.1    Grimes, D.E.2    Baetz, K.3    Howe, L.4
  • 92
    • 10744233477 scopus 로고    scopus 로고
    • Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery
    • Rodriguez-Navarro, S. et al. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116, 75-86 (2004).
    • (2004) Cell , vol.116 , pp. 75-86
    • Rodriguez-Navarro, S.1
  • 93
    • 0242361623 scopus 로고    scopus 로고
    • Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8
    • Henry, K. W. et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17, 2648-2663 (2003).
    • (2003) Genes Dev , vol.17 , pp. 2648-2663
    • Henry, K.W.1
  • 94
    • 0345826106 scopus 로고    scopus 로고
    • Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription
    • Daniel, J. A. et al. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J. Biol. Chem. 279, 1867-1871 (2004).
    • (2004) J. Biol. Chem , vol.279 , pp. 1867-1871
    • Daniel, J.A.1
  • 95
    • 3543005925 scopus 로고    scopus 로고
    • Cluster analysis of mass spectrometry data reveals a novel component of SAGA
    • Powell, D. W. et al. Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Mol. Cell. Biol. 24, 7249-7259 (2004).
    • (2004) Mol. Cell. Biol , vol.24 , pp. 7249-7259
    • Powell, D.W.1
  • 96
    • 0034657071 scopus 로고    scopus 로고
    • The chromo domain protein Chd1p from budding yeast is an ATP-dependent chromatin-modifying factor
    • Tran, H. G., Steger, D. J., Iyer, V. R. & Johnson, A. D. The chromo domain protein Chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J. 19, 2323-2331 (2000).
    • (2000) EMBO J , vol.19 , pp. 2323-2331
    • Tran, H.G.1    Steger, D.J.2    Iyer, V.R.3    Johnson, A.D.4
  • 97
    • 33745868054 scopus 로고    scopus 로고
    • ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression
    • Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96-99 (2006).
    • (2006) Nature , vol.442 , pp. 96-99
    • Shi, X.1
  • 98
    • 33644787137 scopus 로고    scopus 로고
    • The Epc-N domain: A predicted protein-protein interaction domain found in select chromatin associated proteins
    • Perry, J. The Epc-N domain: a predicted protein-protein interaction domain found in select chromatin associated proteins. BMC Genomics 7, 6 (2006).
    • (2006) BMC Genomics , vol.7 , pp. 6
    • Perry, J.1
  • 99
    • 33750328340 scopus 로고    scopus 로고
    • Martin, D. G. et al. The Yng1p PHD finger is a methyl-histone binding module that recognizes lysine 4 methylated histone H3. Mol. Cell. Biol. 7871-7879 (2006). References 91 and 99 demonstrate the interplay between the NuA3 HAT complex and the Set1 and Set2 histone methyltransferases in regulating Gcn5-independent H3 acetylation, as well as the importance of the PHD finger of the yeast inhibitor of growth protein, Yng1.
    • Martin, D. G. et al. The Yng1p PHD finger is a methyl-histone binding module that recognizes lysine 4 methylated histone H3. Mol. Cell. Biol. 7871-7879 (2006). References 91 and 99 demonstrate the interplay between the NuA3 HAT complex and the Set1 and Set2 histone methyltransferases in regulating Gcn5-independent H3 acetylation, as well as the importance of the PHD finger of the yeast inhibitor of growth protein, Yng1.
  • 100
    • 33645879818 scopus 로고    scopus 로고
    • Nathan, D. et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev. 20, 966-976 (2006). This is the first demonstration of a histone mark in S. cerevisiae that functions in transcriptional repression.
    • Nathan, D. et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev. 20, 966-976 (2006). This is the first demonstration of a histone mark in S. cerevisiae that functions in transcriptional repression.
  • 101
    • 0344824404 scopus 로고    scopus 로고
    • Histone sumoylation is associated with transcriptional repression
    • Shiio, Y. & Eisenman, R. N. Histone sumoylation is associated with transcriptional repression. Proc. Natl Acad. Sci. USA 100, 13225-13230 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 13225-13230
    • Shiio, Y.1    Eisenman, R.N.2
  • 102
    • 0032135131 scopus 로고    scopus 로고
    • SUMO-1 modification of IκBα inhibits NF-κB activation
    • Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2, 233-239 (1998).
    • (1998) Mol. Cell , vol.2 , pp. 233-239
    • Desterro, J.M.1    Rodriguez, M.S.2    Hay, R.T.3
  • 103
    • 0037406061 scopus 로고    scopus 로고
    • Class II histone deacetylases: Versatile regulators
    • Verdin, E., Dequiedt, F. & Kasler, H. G. Class II histone deacetylases: versatile regulators. Trends Genet. 19, 286-293 (2003).
    • (2003) Trends Genet , vol.19 , pp. 286-293
    • Verdin, E.1    Dequiedt, F.2    Kasler, H.G.3
  • 104
    • 0014940687 scopus 로고
    • Two classes of histone acetylation in developing mouse mammary gland
    • Marzluff, W. F. Jr & McCarty, K. S. Two classes of histone acetylation in developing mouse mammary gland. J. Biol. Chem. 245, 5635-5642 (1970).
    • (1970) J. Biol. Chem , vol.245 , pp. 5635-5642
    • Marzluff, W.F.J.1    McCarty, K.S.2
  • 105
    • 0032142918 scopus 로고    scopus 로고
    • Roles of histone acetyltransferases and deacetylases in gene regulation
    • Kuo, M. H. & Allis, C. D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615-626 (1998).
    • (1998) Bioessays , vol.20 , pp. 615-626
    • Kuo, M.H.1    Allis, C.D.2
  • 106
    • 0031707751 scopus 로고    scopus 로고
    • Alteration of nucleosome structure as a mechanism of transcriptional regulation
    • Workman, J. L. & Kingston, R. E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545-579 (1998).
    • (1998) Annu. Rev. Biochem , vol.67 , pp. 545-579
    • Workman, J.L.1    Kingston, R.E.2
  • 107
    • 0029665857 scopus 로고    scopus 로고
    • p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A
    • Yang, X.-J., Ogryzko, V. V., Nichikawa, J.-I., Howard, B. H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319-324 (1996).
    • (1996) Nature , vol.382 , pp. 319-324
    • Yang, X.-J.1    Ogryzko, V.V.2    Nichikawa, J.-I.3    Howard, B.H.4    Nakatani, Y.A.5
  • 108
    • 0030447943 scopus 로고    scopus 로고
    • The TAF(II)250 subunit of TFIID has histone acetyltransferase activity
    • Mizzen, C. A. et al. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87, 1261-1270 (1996).
    • (1996) Cell , vol.87 , pp. 1261-1270
    • Mizzen, C.A.1
  • 109
    • 0030740253 scopus 로고    scopus 로고
    • Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300
    • Chen, H. et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569-580 (1997).
    • (1997) Cell , vol.90 , pp. 569-580
    • Chen, H.1
  • 111
    • 0042626226 scopus 로고    scopus 로고
    • BMAL1-dependent circadian oscillation of nuclear CLOCK: Posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system
    • Kondratov, R. V. et al. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 17, 1921-1932 (2003).
    • (2003) Genes Dev , vol.17 , pp. 1921-1932
    • Kondratov, R.V.1
  • 112
  • 113
    • 33746235094 scopus 로고    scopus 로고
    • Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES
    • Kondratov, R. V. et al. Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES. Cell Cycle 5, 890-895 (2006).
    • (2006) Cell Cycle , vol.5 , pp. 890-895
    • Kondratov, R.V.1
  • 114
    • 21244456772 scopus 로고    scopus 로고
    • Complicated tails: Histone modifications and the DNA damage response
    • Vidanes, G. M., Bonilla, C. Y. & Toczyski, D. P. Complicated tails: histone modifications and the DNA damage response. Cell 121, 973-976 (2005).
    • (2005) Cell , vol.121 , pp. 973-976
    • Vidanes, G.M.1    Bonilla, C.Y.2    Toczyski, D.P.3
  • 115
    • 33646269070 scopus 로고    scopus 로고
    • Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks
    • Qin, S. & Parthun, M. R. Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol. Cell. Biol. 26, 3649-3658 (2006).
    • (2006) Mol. Cell. Biol , vol.26 , pp. 3649-3658
    • Qin, S.1    Parthun, M.R.2
  • 116
    • 0141992114 scopus 로고    scopus 로고
    • Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase
    • Clements, A. et al. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol. Cell 12, 461-473 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 461-473
    • Clements, A.1
  • 117
    • 33749182474 scopus 로고    scopus 로고
    • The essential gene wda encodes a WD40 repeat subunit of Drosophila SAGA required for histone H3 acetylation
    • Guelman, S. et al. The essential gene wda encodes a WD40 repeat subunit of Drosophila SAGA required for histone H3 acetylation. Mol. Cell. Biol. 26, 7178-7189 (2006).
    • (2006) Mol. Cell. Biol , vol.26 , pp. 7178-7189
    • Guelman, S.1
  • 118
    • 31344434715 scopus 로고    scopus 로고
    • Host cell factor and an uncharacterized SANT domain protein are stable components of ATAC, a novel dAda2A/dGcn5-containing histone acetyltransferase complex in Drosophila
    • Guelman, S. et al. Host cell factor and an uncharacterized SANT domain protein are stable components of ATAC, a novel dAda2A/dGcn5-containing histone acetyltransferase complex in Drosophila. Mol. Cell. Biol. 26, 871-882 (2006).
    • (2006) Mol. Cell. Biol , vol.26 , pp. 871-882
    • Guelman, S.1
  • 119
    • 0038497542 scopus 로고
    • Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid
    • Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737-738 (1953).
    • (1953) Nature , vol.171 , pp. 737-738
    • Watson, J.D.1    Crick, F.H.2
  • 120
    • 0347259951 scopus 로고
    • Approximation of genetic code via cell-free protein synthesis directed by template RNA
    • Nirenberg, M. W., Matthaei, J. H., Jones, O. W., Martin, R. G. & Barondes, S. H. Approximation of genetic code via cell-free protein synthesis directed by template RNA. Fed. Proc. 22, 55-61 (1963).
    • (1963) Fed. Proc , vol.22 , pp. 55-61
    • Nirenberg, M.W.1    Matthaei, J.H.2    Jones, O.W.3    Martin, R.G.4    Barondes, S.H.5
  • 121
    • 0000818999 scopus 로고
    • General nature of the genetic code for proteins
    • Crick, F. H., Barnett, L., Brenner, S. & Watts-Tobin, R. J. General nature of the genetic code for proteins. Nature 192, 1227-1232 (1961).
    • (1961) Nature , vol.192 , pp. 1227-1232
    • Crick, F.H.1    Barnett, L.2    Brenner, S.3    Watts-Tobin, R.J.4
  • 122
    • 0016221697 scopus 로고
    • Chromatin structure: A repeating unit of histones and DNA
    • Kornberg, R. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868-871 (1974).
    • (1974) Science , vol.184 , pp. 868-871
    • Kornberg, R.1
  • 123
    • 0029049102 scopus 로고
    • An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei
    • Brownell, J. E. & Allis, C. D. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl Acad. Sci. USA 92, 6364-6368 (1995).
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 6364-6368
    • Brownell, J.E.1    Allis, C.D.2
  • 124
    • 0030271392 scopus 로고    scopus 로고
    • The major cytoplasmic histone acetyltransferase in yeast: Links to chromatin replication and histone metabolism
    • Parthun, M. R., Widom, J. & Gottschling, D. E. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87, 85-94 (1996).
    • (1996) Cell , vol.87 , pp. 85-94
    • Parthun, M.R.1    Widom, J.2    Gottschling, D.E.3
  • 125
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 Å resolution
    • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251-260 (1997).
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mader, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 126
    • 0033517354 scopus 로고    scopus 로고
    • Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide
    • Rojas, J. R. et al. Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 401, 93-98 (1999).
    • (1999) Nature , vol.401 , pp. 93-98
    • Rojas, J.R.1
  • 127
    • 0033529845 scopus 로고    scopus 로고
    • Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator
    • Trievel, R. C. et al. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc. Natl Acad. Sci. USA 96, 8931-8936 (1999).
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 8931-8936
    • Trievel, R.C.1
  • 128
    • 0033714888 scopus 로고    scopus 로고
    • HATs off: Selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF
    • Lau, O. D. et al. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell 5, 589-595 (2000).
    • (2000) Mol. Cell , vol.5 , pp. 589-595
    • Lau, O.D.1
  • 129
    • 0027525056 scopus 로고
    • Decoding the nucleosome
    • Turner, B. M. Decoding the nucleosome. Cell 75, 5-8 (1993).
    • (1993) Cell , vol.75 , pp. 5-8
    • Turner, B.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.