메뉴 건너뛰기




Volumn 6, Issue 2, 2011, Pages 142-161

Regulatory circuitries coordinated by transcription factors and microRNAs at the cornerstone of hematopoietic stem cell self-renewal and differentiation

Author keywords

Hematopoiesis; Hematopoietic stem cell; MicroRNAs; Transcription factors

Indexed keywords

CCAAT ENHANCER BINDING PROTEIN ALPHA; ERYTHROID KRUPPEL LIKE FACTOR; LIM KINASE; MICRORNA; NUCLEAR FACTOR I; NUCLEAR FACTOR I A; PROTEIN C MYB; PROTEIN GFI 1; PROTEIN GFI 1B; PROTEIN LDB1; PROTEIN LMO2; PROTEIN LYL 1; PROTEIN PLZF; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR E2A; TRANSCRIPTION FACTOR ERG; TRANSCRIPTION FACTOR ETV6; TRANSCRIPTION FACTOR FKHR; TRANSCRIPTION FACTOR FLI 1; TRANSCRIPTION FACTOR GATA 1; TRANSCRIPTION FACTOR GATA 2; TRANSCRIPTION FACTOR JUNB; TRANSCRIPTION FACTOR MAFB; TRANSCRIPTION FACTOR NF E2; TRANSCRIPTION FACTOR PU 1; TRANSCRIPTION FACTOR RUNX1; TRANSCRIPTION FACTOR SOX7; TRANSCRIPTION FACTOR TAL1; UNCLASSIFIED DRUG; UNINDEXED DRUG; ZINC FINGER PROTEIN;

EID: 79955692569     PISSN: 1574888X     EISSN: None     Source Type: Journal    
DOI: 10.2174/157488811795495431     Document Type: Article
Times cited : (12)

References (317)
  • 1
    • 21444446678 scopus 로고    scopus 로고
    • Embryonic development of the human hematopoietic system
    • Tavian M, Peault B. Embryonic development of the human hematopoietic system. Int J Dev Biol 2005; 49: 243-50.
    • (2005) Int J Dev Biol , vol.49 , pp. 243-250
    • Tavian, M.1    Peault, B.2
  • 2
    • 16644401281 scopus 로고    scopus 로고
    • Analysis of hematopoietic development during human embryonic ontogenesis
    • Tavian M, Peault B. Analysis of hematopoietic development during human embryonic ontogenesis. Methods Mol Med 2005; 105: 413-24.
    • (2005) Methods Mol Med , vol.105 , pp. 413-424
    • Tavian, M.1    Peault, B.2
  • 3
    • 24044470644 scopus 로고    scopus 로고
    • The changing cellular environments of hematopoiesis in human development in utero
    • Tavian M, Peault B. The changing cellular environments of hematopoiesis in human development in utero. Exp Hematol 2005; 33:1062-9.
    • (2005) Exp Hematol , vol.33 , pp. 1062-1069
    • Tavian, M.1    Peault, B.2
  • 4
    • 0034909083 scopus 로고    scopus 로고
    • Yolk-sac hematopoiesis: The first blood cells of mouse and man
    • Palis J, Yoder MC. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol 2001; 29: 927-36.
    • (2001) Exp Hematol , vol.29 , pp. 927-936
    • Palis, J.1    Yoder, M.C.2
  • 5
    • 38349179230 scopus 로고    scopus 로고
    • Of lineage and legacy: The development of mammalian hematopoietic stem cells
    • Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 2008; 9: 129-36.
    • (2008) Nat Immunol , vol.9 , pp. 129-136
    • Dzierzak, E.1    Speck, N.A.2
  • 6
    • 0030595341 scopus 로고    scopus 로고
    • Definitive hematopoiesis is autonomously initiated by the AGM region
    • Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86: 897-906.
    • (1996) Cell , vol.86 , pp. 897-906
    • Medvinsky, A.1    Dzierzak, E.2
  • 7
    • 0036285647 scopus 로고    scopus 로고
    • Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta
    • de Bruijn MF, Ma X, Robin C, Ottersbach K, Sanchez MJ, Dzierzak E. Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 2002; 16: 673-83.
    • (2002) Immunity , vol.16 , pp. 673-683
    • de Bruijn, M.F.1    Ma, X.2    Robin, C.3    Ottersbach, K.4    Sanchez, M.J.5    Dzierzak, E.6
  • 8
    • 0034214284 scopus 로고    scopus 로고
    • Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo
    • de Bruijn MF, Speck NA, Peeters MC, Dzierzak E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 2000; 19: 2465-74.
    • (2000) EMBO J , vol.19 , pp. 2465-2474
    • de Bruijn, M.F.1    Speck, N.A.2    Peeters, M.C.3    Dzierzak, E.4
  • 9
    • 39149100564 scopus 로고    scopus 로고
    • The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation
    • Rhodes KE, Gekas C, Wang Y, et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2008; 2: 252-63.
    • (2008) Cell Stem Cell , vol.2 , pp. 252-263
    • Rhodes, K.E.1    Gekas, C.2    Wang, Y.3
  • 10
    • 33750439078 scopus 로고    scopus 로고
    • The journey of developing hematopoietic stem cells
    • Mikkola HK, Orkin SH. The journey of developing hematopoietic stem cells. Development 2006; 133: 3733-44.
    • (2006) Development , vol.133 , pp. 3733-3744
    • Mikkola, H.K.1    Orkin, S.H.2
  • 11
    • 0034614576 scopus 로고    scopus 로고
    • Stem cells: Units of development, units of regeneration, and units in evolution
    • Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000; 100: 157-68.
    • (2000) Cell , vol.100 , pp. 157-168
    • Weissman, I.L.1
  • 12
    • 39349096526 scopus 로고    scopus 로고
    • Hematopoiesis: An evolving paradigm for stem cell biology
    • Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008; 132: 631-44.
    • (2008) Cell , vol.132 , pp. 631-644
    • Orkin, S.H.1    Zon, L.I.2
  • 13
    • 50849101033 scopus 로고    scopus 로고
    • How transcription factors program chromatin--lessons from studies of the regulation of myeloid-specific genes
    • Bonifer C, Hoogenkamp M, Krysinska H, Tagoh H. How transcription factors program chromatin--lessons from studies of the regulation of myeloid-specific genes. Semin Immunol 2008; 20: 257-63.
    • (2008) Semin Immunol , vol.20 , pp. 257-263
    • Bonifer, C.1    Hoogenkamp, M.2    Krysinska, H.3    Tagoh, H.4
  • 14
    • 0036110293 scopus 로고    scopus 로고
    • Transcriptional regulation of the stem cell leukemia gene (SCL)-Comparative analysis of five vertebrate SCL loci
    • Gottgens B, Barton LM, Chapman MA, et al. Transcriptional regulation of the stem cell leukemia gene (SCL)--comparative analysis of five vertebrate SCL loci. Genome Res 2002; 12: 749-59.
    • (2002) Genome Res , vol.12 , pp. 749-759
    • Gottgens, B.1    Barton, L.M.2    Chapman, M.A.3
  • 15
    • 2942526253 scopus 로고    scopus 로고
    • The scl +18/19 stem cell enhancer is not required for hematopoiesis: Identification of a5' bi-functional hematopoietic-endothelial enhancer bound by Fli-1and Elf-1
    • Gottgens B, Broccardo C, Sanchez MJ, et al. The scl +18/19 stem cell enhancer is not required for hematopoiesis: identification of a5' bi-functional hematopoietic-endothelial enhancer bound by Fli-1and Elf-1. Mol Cell Biol 2004; 24: 1870-83.
    • (2004) Mol Cell Biol , vol.24 , pp. 1870-1883
    • Gottgens, B.1    Broccardo, C.2    Sanchez, M.J.3
  • 16
    • 36749094041 scopus 로고    scopus 로고
    • Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development
    • Pimanda JE, Ottersbach K, Knezevic K, et al. Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci USA 2007; 104: 17692-7.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 17692-17697
    • Pimanda, J.E.1    Ottersbach, K.2    Knezevic, K.3
  • 17
    • 67149099806 scopus 로고    scopus 로고
    • The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic specificity to both Runx1 promoters
    • Bee T, Ashley EL, Bickley SR, et al. The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic specificity to both Runx1 promoters. Blood 2009; 113: 5121-4.
    • (2009) Blood , vol.113 , pp. 5121-5124
    • Bee, T.1    Ashley, E.L.2    Bickley, S.R.3
  • 18
    • 33645218935 scopus 로고    scopus 로고
    • Alternative splicing increases complexity of stem cell transcriptome
    • Lemischka IR, Pritsker M. Alternative splicing increases complexity of stem cell transcriptome. Cell Cycle 2006; 5: 347-51.
    • (2006) Cell Cycle , vol.5 , pp. 347-351
    • Lemischka, I.R.1    Pritsker, M.2
  • 19
    • 3042767202 scopus 로고    scopus 로고
    • MicroRNAs: Small RNAs with a big role in gene regulation
    • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522-31.
    • (2004) Nat Rev Genet , vol.5 , pp. 522-531
    • He, L.1    Hannon, G.J.2
  • 20
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-97.
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 21
    • 4644309196 scopus 로고    scopus 로고
    • The functions of animal microRNAs
    • Ambros V. The functions of animal microRNAs. Nature 2004; 431:350-5.
    • (2004) Nature , vol.431 , pp. 350-355
    • Ambros, V.1
  • 22
    • 0034071346 scopus 로고    scopus 로고
    • Basic fibroblast growth factor positively regulates hematopoietic development
    • Faloon P, Arentson E, Kazarov A, et al. Basic fibroblast growth factor positively regulates hematopoietic development. Development 2000; 127: 1931-41.
    • (2000) Development , vol.127 , pp. 1931-1941
    • Faloon, P.1    Arentson, E.2    Kazarov, A.3
  • 23
    • 0029006696 scopus 로고
    • Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice
    • Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995;376: 62-6.
    • (1995) Nature , vol.376 , pp. 62-66
    • Shalaby, F.1    Rossant, J.2    Yamaguchi, T.P.3
  • 24
    • 0029149656 scopus 로고
    • Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse
    • Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 1995; 9: 2105-16.
    • (1995) Genes Dev , vol.9 , pp. 2105-2116
    • Winnier, G.1    Blessing, M.2    Labosky, P.A.3    Hogan, B.L.4
  • 25
    • 70349968231 scopus 로고    scopus 로고
    • Notch signaling functions as a cell-fate switch between the endothelial and hematopoietic lineages
    • Lee CY, Vogeli KM, Kim SH, et al. Notch signaling functions as a cell-fate switch between the endothelial and hematopoietic lineages. Curr Biol 2009; 19: 1616-22.
    • (2009) Curr Biol , vol.19 , pp. 1616-1622
    • Lee, C.Y.1    Vogeli, K.M.2    Kim, S.H.3
  • 26
    • 0033036971 scopus 로고    scopus 로고
    • Cbfa2 is required for the formation of intra-aortic hematopoietic clusters
    • North T, Gu TL, Stacy T, et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 1999; 126:2563-75.
    • (1999) Development , vol.126 , pp. 2563-2575
    • North, T.1    Gu, T.L.2    Stacy, T.3
  • 27
    • 2942547444 scopus 로고    scopus 로고
    • Core-binding factors in hematopoiesis and immune function
    • de Bruijn MF, Speck NA. Core-binding factors in hematopoiesis and immune function. Oncogene 2004; 23: 4238-48.
    • (2004) Oncogene , vol.23 , pp. 4238-4248
    • de Bruijn, M.F.1    Speck, N.A.2
  • 28
    • 0029918597 scopus 로고    scopus 로고
    • Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis
    • Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996; 93: 3444-9.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 3444-3449
    • Wang, Q.1    Stacy, T.2    Binder, M.3    Marin-Padilla, M.4    Sharpe, A.H.5    Speck, N.A.6
  • 29
    • 0033697669 scopus 로고    scopus 로고
    • Haploin sufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo
    • Cai Z, de Bruijn M, Ma X, et al. Haploin sufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 2000; 13: 423-31.
    • (2000) Immunity , vol.13 , pp. 423-431
    • Cai, Z.1    de Bruijn, M.2    Ma, X.3
  • 30
    • 0030061554 scopus 로고    scopus 로고
    • AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis
    • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR.AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321-30.
    • (1996) Cell , vol.84 , pp. 321-330
    • Okuda, T.1    van Deursen, J.2    Hiebert, S.W.3    Grosveld, G.4    Downing, J.R.5
  • 31
    • 0036282095 scopus 로고    scopus 로고
    • Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo
    • North TE, de Bruijn MF, Stacy T, et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 2002; 16: 661-72.
    • (2002) Immunity , vol.16 , pp. 661-672
    • North, T.E.1    de Bruijn, M.F.2    Stacy, T.3
  • 32
    • 60149100010 scopus 로고    scopus 로고
    • Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter
    • Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA.Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009; 457: 887-91.
    • (2009) Nature , vol.457 , pp. 887-891
    • Chen, M.J.1    Yokomizo, T.2    Zeigler, B.M.3    Dzierzak, E.4    Speck, N.A.5
  • 33
    • 77950670596 scopus 로고    scopus 로고
    • Definitive hematopoiesis requires Runx1 C-terminal-mediated sub nuclear targeting and transactivation
    • Dowdy CR, Xie R, Frederick D, et al. Definitive hematopoiesis requires Runx1 C-terminal-mediated sub nuclear targeting and transactivation. Hum Mol Genet 2010; 19(6): 1048-57.
    • (2010) Hum Mol Genet , vol.19 , Issue.6 , pp. 1048-1057
    • Dowdy, C.R.1    Xie, R.2    Frederick, D.3
  • 34
    • 0028022916 scopus 로고
    • An early haematopoietic defect in mice lacking the transcription factor GATA-2
    • Tsai FY, Keller G, Kuo FC, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994; 371:221-6.
    • (1994) Nature , vol.371 , pp. 221-226
    • Tsai, F.Y.1    Keller, G.2    Kuo, F.C.3
  • 35
    • 22144476881 scopus 로고    scopus 로고
    • Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis
    • Rodrigues NP, Janzen V, Forkert R, et al. Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-Cell homeostasis.Blood 2005; 106: 477-84.
    • (2005) Blood , vol.106 , pp. 477-484
    • Rodrigues, N.P.1    Janzen, V.2    Forkert, R.3
  • 36
    • 0028858855 scopus 로고
    • Absence of blood formation in mice lacking the T-Cell leukaemia on coprotein tal-1/SCL
    • Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking the T-Cell leukaemia on coprotein tal-1/SCL. Nature 1995; 373: 432-4.
    • (1995) Nature , vol.373 , pp. 432-434
    • Shivdasani, R.A.1    Mayer, E.L.2    Orkin, S.H.3
  • 37
    • 0028278325 scopus 로고
    • The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development
    • Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH. The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 1994; 78: 45-57.
    • (1994) Cell , vol.78 , pp. 45-57
    • Warren, A.J.1    Colledge, W.H.2    Carlton, M.B.3    Evans, M.J.4    Smith, A.J.5    Rabbitts, T.H.6
  • 39
    • 0033714882 scopus 로고    scopus 로고
    • Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia
    • Hart A, Melet F, Grossfeld P, et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 2000; 13: 167-77.
    • (2000) Immunity , vol.13 , pp. 167-177
    • Hart, A.1    Melet, F.2    Grossfeld, P.3
  • 40
    • 0033912227 scopus 로고    scopus 로고
    • Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor
    • Spyropoulos DD, Pharr PN, Lavenburg KR, et al. Hemorrhage,impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol Cell Biol 2000; 20: 5643-52.
    • (2000) Mol Cell Biol , vol.20 , pp. 5643-5652
    • Spyropoulos, D.D.1    Pharr, P.N.2    Lavenburg, K.R.3
  • 41
    • 49649086600 scopus 로고    scopus 로고
    • Fli1 acts at the top of the transcriptional network driving blood and endothelial development
    • Liu F, Walmsley M, Rodaway A, Patient R. Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr Biol 2008; 18: 1234-40.
    • (2008) Curr Biol , vol.18 , pp. 1234-1240
    • Liu, F.1    Walmsley, M.2    Rodaway, A.3    Patient, R.4
  • 42
    • 0032980506 scopus 로고    scopus 로고
    • In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells
    • Cheshier SH, Morrison SJ, Liao X, Weissman IL. in vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 1999; 96: 3120-5.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 3120-3125
    • Cheshier, S.H.1    Morrison, S.J.2    Liao, X.3    Weissman, I.L.4
  • 43
    • 66049149851 scopus 로고    scopus 로고
    • Bone and blood vessels: The hard and the soft of hematopoietic stem cell niches
    • Garrett RW, Emerson SG. Bone and blood vessels: the hard and the soft of hematopoietic stem cell niches. Cell Stem Cell 2009; 4: 503-6.
    • (2009) Cell Stem Cell , vol.4 , pp. 503-506
    • Garrett, R.W.1    Emerson, S.G.2
  • 44
    • 41149109622 scopus 로고    scopus 로고
    • Uncertainty in the niches that maintain haematopoietic stem cells
    • Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 2008; 8: 290-301.
    • (2008) Nat Rev Immunol , vol.8 , pp. 290-301
    • Kiel, M.J.1    Morrison, S.J.2
  • 45
    • 34147224008 scopus 로고    scopus 로고
    • Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia
    • Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007;446: 758-64.
    • (2007) Nature , vol.446 , pp. 758-764
    • Mullighan, C.G.1    Goorha, S.2    Radtke, I.3
  • 46
    • 34548234969 scopus 로고    scopus 로고
    • High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: A Cancer and Leukemia Group B Study
    • Marcucci G, Maharry K, Whitman SP, et al. High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 2007; 25: 3337-43.
    • (2007) J Clin Oncol , vol.25 , pp. 3337-3343
    • Marcucci, G.1    Maharry, K.2    Whitman, S.P.3
  • 47
    • 45549102935 scopus 로고    scopus 로고
    • The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells
    • Loughran SJ, Kruse EA, Hacking DF, et al. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat Immunol 2008; 9: 810-9.
    • (2008) Nat Immunol , vol.9 , pp. 810-819
    • Loughran, S.J.1    Kruse, E.A.2    Hacking, D.F.3
  • 49
    • 69549138554 scopus 로고    scopus 로고
    • Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage
    • Kruse EA, Loughran SJ, Baldwin TM, et al. Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. Proc Natl Acad Sci USA 2009; 106: 13814-9.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 13814-13819
    • Kruse, E.A.1    Loughran, S.J.2    Baldwin, T.M.3
  • 50
    • 4644274431 scopus 로고    scopus 로고
    • Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival
    • Hock H, Meade E, Medeiros S, et al. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev 2004; 18: 2336-41.
    • (2004) Genes Dev , vol.18 , pp. 2336-2341
    • Hock, H.1    Meade, E.2    Medeiros, S.3
  • 51
    • 0037472895 scopus 로고    scopus 로고
    • Haematopoietic stem cell sretain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene
    • Mikkola HK, Klintman J, Yang H, et al. Haematopoietic stem cell sretain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 2003; 421:547-51.
    • (2003) Nature , vol.421 , pp. 547-551
    • Mikkola, H.K.1    Klintman, J.2    Yang, H.3
  • 52
    • 1942425445 scopus 로고    scopus 로고
    • SCL is required for normal function of short-term re-populating hematopoietic stem cells
    • Curtis DJ, Hall MA, Van Stekelenburg LJ, Robb L, Jane SM, Begley CG. SCL is required for normal function of short-term re-populating hematopoietic stem cells. Blood 2004; 103: 3342-8.
    • (2004) Blood , vol.103 , pp. 3342-3348
    • Curtis, D.J.1    Hall, M.A.2    van Stekelenburg, L.J.3    Robb, L.4    Jane, S.M.5    Begley, C.G.6
  • 53
    • 77949322674 scopus 로고    scopus 로고
    • Scl regulates the quiescence and the long-term competence of hematopoietic stem cells
    • Lacombe J, Herblot S, Rojas-Sutterlin S, et al. Scl regulates the quiescence and the long-term competence of hematopoietic stem cells. Blood 2010; 115(4): 792-803
    • (2010) Blood , vol.115 , Issue.4 , pp. 792-803
    • Lacombe, J.1    Herblot, S.2    Rojas-Sutterlin, S.3
  • 54
    • 33751558834 scopus 로고    scopus 로고
    • Lyl-1 and tal-1/scl, two genes encoding closely related bHLH transcription factors, display highly overlapping expression patterns during cardiovascular and hematopoietic ontogeny
    • Giroux S, Kaushik AL, Capron C, et al. lyl-1 and tal-1/scl, two genes encoding closely related bHLH transcription factors, display highly overlapping expression patterns during cardiovascular and hematopoietic ontogeny. Gene Expr Patterns 2007; 7: 215-26.
    • (2007) Gene Expr Patterns , vol.7 , pp. 215-226
    • Giroux, S.1    Kaushik, A.L.2    Capron, C.3
  • 55
    • 33745079016 scopus 로고    scopus 로고
    • The SCL relative LYL-1is required for fetal and adult hematopoietic stem cell function and B-cell differentiation
    • Capron C, Lecluse Y, Kaushik AL, et al. The SCL relative LYL-1is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood 2006; 107: 4678-86.
    • (2006) Blood , vol.107 , pp. 4678-4686
    • Capron, C.1    Lecluse, Y.2    Kaushik, A.L.3
  • 57
    • 67049108075 scopus 로고    scopus 로고
    • The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development
    • Wilson NK, Miranda-Saavedra D, Kinston S, et al. The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development. Blood 2009;113: 5456-65.
    • (2009) Blood , vol.113 , pp. 5456-5465
    • Wilson, N.K.1    Miranda-Saavedra, D.2    Kinston, S.3
  • 58
    • 7044269527 scopus 로고    scopus 로고
    • Jun b deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells
    • Passegue E, Wagner EF, Weissman IL. Jun B deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 2004; 119: 431-43.
    • (2004) Cell , vol.119 , pp. 431-443
    • Passegue, E.1    Wagner, E.F.2    Weissman, I.L.3
  • 59
    • 63249095562 scopus 로고    scopus 로고
    • Jun B protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal
    • Santaguida M, Schepers K, King B, et al. Jun B protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 2009; 15: 341-52.
    • (2009) Cancer Cell , vol.15 , pp. 341-352
    • Santaguida, M.1    Schepers, K.2    King, B.3
  • 60
    • 0000891478 scopus 로고
    • Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors
    • Mucenski ML, Taylor BA, Ihle JN, et al. Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 1988; 8: 301-8.
    • (1988) Mol Cell Biol , vol.8 , pp. 301-308
    • Mucenski, M.L.1    Taylor, B.A.2    Ihle, J.N.3
  • 61
    • 0030320739 scopus 로고    scopus 로고
    • Abnormal expression ofEvi-1 gene in human leukemias
    • Ogawa S, Mitani K, Kurokawa M, et al. Abnormal expression ofEvi-1 gene in human leukemias. Hum Cell 1996; 9: 323-32.
    • (1996) Hum Cell , vol.9 , pp. 323-332
    • Ogawa, S.1    Mitani, K.2    Kurokawa, M.3
  • 62
    • 0027943844 scopus 로고
    • Identification of a break-point cluster region 3' of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute mye-logenous leuk emias with inv(3)(q21q26)
    • Suzukawa K, Parganas E, Gajjar A, et al. Identification of a break-point cluster region 3' of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute mye-logenous leuk emias with inv(3)(q21q26). Blood 1994; 84: 2681-8.
    • (1994) Blood , vol.84 , pp. 2681-2688
    • Suzukawa, K.1    Parganas, E.2    Gajjar, A.3
  • 63
    • 48149095026 scopus 로고    scopus 로고
    • Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells
    • Goyama S, Yamamoto G, Shimabe M, et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 2008; 3: 207-20.
    • (2008) Cell Stem Cell , vol.3 , pp. 207-220
    • Goyama, S.1    Yamamoto, G.2    Shimabe, M.3
  • 64
    • 0035283135 scopus 로고    scopus 로고
    • Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages
    • Krishnaraju K, Hoffman B, Liebermann DA. Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages. Blood 2001; 97: 1298-305.
    • (2001) Blood , vol.97 , pp. 1298-1305
    • Krishnaraju, K.1    Hoffman, B.2    Liebermann, D.A.3
  • 65
    • 41449118699 scopus 로고    scopus 로고
    • The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells
    • Min IM, Pietramaggiori G, Kim FS, Passegue E, Stevenson KE, Wagers AJ. The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2008; 2: 380-91.
    • (2008) Cell Stem Cell , vol.2 , pp. 380-391
    • Min, I.M.1    Pietramaggiori, G.2    Kim, F.S.3    Passegue, E.4    Stevenson, K.E.5    Wagers, A.J.6
  • 66
    • 33846419112 scopus 로고    scopus 로고
    • FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
    • Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128: 325-39.
    • (2007) Cell , vol.128 , pp. 325-339
    • Tothova, Z.1    Kollipara, R.2    Huntly, B.J.3
  • 67
    • 34249882777 scopus 로고    scopus 로고
    • Foxo3a is essential for maintenance of the hematopoietic stem cell pool
    • Miyamoto K, Araki KY, Naka K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101-12.
    • (2007) Cell Stem Cell , vol.1 , pp. 101-112
    • Miyamoto, K.1    Araki, K.Y.2    Naka, K.3
  • 69
    • 0034892945 scopus 로고    scopus 로고
    • HOXB4 over expression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation
    • Antonchuk J, Sauvageau G, Humphries RK. HOXB4 over expression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp Hematol 2001; 29: 1125-34.
    • (2001) Exp Hematol , vol.29 , pp. 1125-1134
    • Antonchuk, J.1    Sauvageau, G.2    Humphries, R.K.3
  • 70
    • 0037396675 scopus 로고    scopus 로고
    • The competitive nature of HOXB4-transduced HSC is limited byPBX1: The generation of ultra-competitive stem cells retaining full differentiation potential
    • Krosl J, Beslu N, Mayotte N, Humphries RK, Sauvageau G. The competitive nature of HOXB4-transduced HSC is limited byPBX1: the generation of ultra-competitive stem cells retaining full differentiation potential. Immunity 2003; 18: 561-71.
    • (2003) Immunity , vol.18 , pp. 561-571
    • Krosl, J.1    Beslu, N.2    Mayotte, N.3    Humphries, R.K.4    Sauvageau, G.5
  • 71
    • 42649142267 scopus 로고    scopus 로고
    • Pbx1 regulates self renewal of long-term hematopoietic stem cells by maintaining their quiescence
    • Ficara F, Murphy MJ, Lin M, Cleary ML. Pbx1 regulates self renewal of long-term hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2008; 2: 484-96.
    • (2008) Cell Stem Cell , vol.2 , pp. 484-496
    • Ficara, F.1    Murphy, M.J.2    Lin, M.3    Cleary, M.L.4
  • 73
    • 28444455240 scopus 로고    scopus 로고
    • Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells
    • Lawrence HJ, Christensen J, Fong S, et al. Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood 2005; 106: 3988-94.
    • (2005) Blood , vol.106 , pp. 3988-3994
    • Lawrence, H.J.1    Christensen, J.2    Fong, S.3
  • 74
    • 70249100266 scopus 로고    scopus 로고
    • HOXA9 modulates its oncogenic partner Meis1 to influence normal hematopoiesis
    • Hu YL, Fong S, Ferrell C, Largman C, Shen WF. HOXA9 modulates its oncogenic partner Meis1 to influence normal hematopoiesis. Mol Cell Biol 2009; 29: 5181-92.
    • (2009) Mol Cell Biol , vol.29 , pp. 5181-5192
    • Hu, Y.L.1    Fong, S.2    Ferrell, C.3    Largman, C.4    Shen, W.F.5
  • 76
    • 58849163959 scopus 로고    scopus 로고
    • MicroRNAs: Key regulators of stem cells
    • Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 2009; 10: 116-25.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 116-125
    • Gangaraju, V.K.1    Lin, H.2
  • 77
    • 33847304124 scopus 로고    scopus 로고
    • CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control
    • Georgantas RW 3rd, Hildreth R, Morisot S, et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 2007; 104: 2750-5.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 2750-2755
    • Georgantas 3rd, R.W.1    Hildreth, R.2    Morisot, S.3
  • 78
    • 34250214880 scopus 로고    scopus 로고
    • Myeloid lineage commitment from the hematopoietic stem cell
    • Iwasaki H, Akashi K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity 2007; 26: 726-40.
    • (2007) Immunity , vol.26 , pp. 726-740
    • Iwasaki, H.1    Akashi, K.2
  • 79
    • 0030838280 scopus 로고    scopus 로고
    • The lineage commitment of haemopoietic progenitor cells
    • Cross MA, Enver T. The lineage commitment of haemopoietic progenitor cells. Curr Opin Genet Dev 1997; 7: 609-13.
    • (1997) Curr Opin Genet Dev , vol.7 , pp. 609-613
    • Cross, M.A.1    Enver, T.2
  • 80
    • 61749088375 scopus 로고    scopus 로고
    • NA-Seq: A discovery tool for the analysis of chromatin structure and dynamics during differentiation
    • Gargiulo G, Levy S, Bucci G, et al. NA-Seq: a discovery tool for the analysis of chromatin structure and dynamics during differentiation. Dev Cell 2009; 16: 466-81.
    • (2009) Dev Cell , vol.16 , pp. 466-481
    • Gargiulo, G.1    Levy, S.2    Bucci, G.3
  • 81
    • 0036070180 scopus 로고    scopus 로고
    • Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment
    • Miyamoto T, Iwasaki H, Reizis B, et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 2002; 3: 137-47.
    • (2002) Dev Cell , vol.3 , pp. 137-147
    • Miyamoto, T.1    Iwasaki, H.2    Reizis, B.3
  • 82
    • 34848883146 scopus 로고    scopus 로고
    • Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages
    • Arinobu Y, Mizuno S, Chong Y, et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 2007; 1: 416-27.
    • (2007) Cell Stem Cell , vol.1 , pp. 416-427
    • Arinobu, Y.1    Mizuno, S.2    Chong, Y.3
  • 83
    • 0033151624 scopus 로고    scopus 로고
    • Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: Functional antagonism in erythroid cells
    • Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 1999; 13:1398-411.
    • (1999) Genes Dev , vol.13 , pp. 1398-1411
    • Rekhtman, N.1    Radparvar, F.2    Evans, T.3    Skoultchi, A.I.4
  • 84
    • 0034656393 scopus 로고    scopus 로고
    • GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription
    • Nerlov C, Querfurth E, Kulessa H, Graf T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 2000; 95: 2543-51.
    • (2000) Blood , vol.95 , pp. 2543-2551
    • Nerlov, C.1    Querfurth, E.2    Kulessa, H.3    Graf, T.4
  • 85
    • 70349229824 scopus 로고    scopus 로고
    • Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate
    • Chou ST, Khandros E, Bailey LC, et al. Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood 2009; 114: 983-94.
    • (2009) Blood , vol.114 , pp. 983-994
    • Chou, S.T.1    Khandros, E.2    Bailey, L.C.3
  • 86
    • 0034667672 scopus 로고    scopus 로고
    • PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding
    • Zhang P, Zhang X, Iwama A, et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 2000; 96: 2641-8.
    • (2000) Blood , vol.96 , pp. 2641-2648
    • Zhang, P.1    Zhang, X.2    Iwama, A.3
  • 87
    • 27744587735 scopus 로고    scopus 로고
    • PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure
    • Stopka T, Amanatullah DF, Papetti M, Skoultchi AI. PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J 2005; 24: 3712-23.
    • (2005) EMBO J , vol.24 , pp. 3712-3723
    • Stopka, T.1    Amanatullah, D.F.2    Papetti, M.3    Skoultchi, A.I.4
  • 88
    • 0036792665 scopus 로고    scopus 로고
    • Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: Role of Ets transcription factors
    • Wang X, Crispino JD, Letting DL, Nakazawa M, Poncz M, BlobelGA. Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. EMBO J 2002; 21:5225-34.
    • (2002) EMBO J , vol.21 , pp. 5225-5234
    • Wang, X.1    Crispino, J.D.2    Letting, D.L.3    Nakazawa, M.4    Poncz, M.5    Blobel, G.A.6
  • 89
    • 0028963735 scopus 로고
    • Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF
    • Merika M, Orkin SH. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol Cell Biol 1995; 15: 2437-47.
    • (1995) Mol Cell Biol , vol.15 , pp. 2437-2447
    • Merika, M.1    Orkin, S.H.2
  • 90
    • 37049035381 scopus 로고    scopus 로고
    • Novel role for EKLF in megakaryocyte lineage commitment
    • Frontelo P, Manwani D, Galdass M, et al. Novel role for EKLF in megakaryocyte lineage commitment. Blood 2007; 110: 3871-80.
    • (2007) Blood , vol.110 , pp. 3871-3880
    • Frontelo, P.1    Manwani, D.2    Galdass, M.3
  • 91
    • 0037312918 scopus 로고    scopus 로고
    • Functional cross-antagonism between transcription factors FLI-1 and EKLF
    • Starck J, Cohet N, Gonnet C, et al. Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cell Biol 2003; 23: 1390-402.
    • (2003) Mol Cell Biol , vol.23 , pp. 1390-1402
    • Starck, J.1    Cohet, N.2    Gonnet, C.3
  • 92
    • 50949090908 scopus 로고    scopus 로고
    • EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation
    • Bouilloux F, Juban G, Cohet N, et al. EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood 2008; 112: 576-84.
    • (2008) Blood , vol.112 , pp. 576-584
    • Bouilloux, F.1    Juban, G.2    Cohet, N.3
  • 93
    • 0033551402 scopus 로고    scopus 로고
    • The myb gene family in cell growth, differentiation and apoptosis
    • Oh IH, Reddy EP. The myb gene family in cell growth, differentiation and apoptosis. Oncogene 1999; 18: 3017-33.
    • (1999) Oncogene , vol.18 , pp. 3017-3033
    • Oh, I.H.1    Reddy, E.P.2
  • 94
    • 50849138482 scopus 로고    scopus 로고
    • Critical roles for c-Myb in hema-topoietic progenitor cells
    • Greig KT, Carotta S, Nutt SL. Critical roles for c-Myb in hema-topoietic progenitor cells. Semin Immunol 2008; 20: 247-56.
    • (2008) Semin Immunol , vol.20 , pp. 247-256
    • Greig, K.T.1    Carotta, S.2    Nutt, S.L.3
  • 95
    • 0025821494 scopus 로고
    • A functional c-myb geneis required for normal murine fetal hepatic hematopoiesis
    • Mucenski ML, McLain K, Kier AB, et al. A functional c-myb geneis required for normal murine fetal hepatic hematopoiesis. Cell 1991; 65: 677-89.
    • (1991) Cell , vol.65 , pp. 677-689
    • Mucenski, M.L.1    McLain, K.2    Kier, A.B.3
  • 96
    • 33745061675 scopus 로고    scopus 로고
    • Coordination of erythropoiesis by the transcription factor c-Myb
    • Vegiopoulos A, Garcia P, Emambokus N, Frampton J. Coordination of erythropoiesis by the transcription factor c-Myb. Blood 2006; 107: 4703-10.
    • (2006) Blood , vol.107 , pp. 4703-4710
    • Vegiopoulos, A.1    Garcia, P.2    Emambokus, N.3    Frampton, J.4
  • 97
    • 76049120037 scopus 로고    scopus 로고
    • Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation
    • Lieu YK, Reddy EP. Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation. Proc Natl Acad Sci USA 2009; 106(51): 21689-94.
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.51 , pp. 21689-21694
    • Lieu, Y.K.1    Reddy, E.P.2
  • 98
    • 66249083510 scopus 로고    scopus 로고
    • Reduced c-Myb activity compromises HSCs and leads to a myeloproliferation with a novel stem cell basis
    • Garcia P, Clarke M, Vegiopoulos A, et al. Reduced c-Myb activity compromises HSCs and leads to a myeloproliferation with a novel stem cell basis. EMBO J 2009; 28: 1492-504.
    • (2009) EMBO J , vol.28 , pp. 1492-1504
    • Garcia, P.1    Clarke, M.2    Vegiopoulos, A.3
  • 99
    • 13344294981 scopus 로고    scopus 로고
    • C-Myb and p300regulate hematopoietic stem cell proliferation and differentiation
    • Sandberg ML, Sutton SE, Pletcher MT, et al. C-Myb and p300regulate hematopoietic stem cell proliferation and differentiation. Dev Cell 2005; 8: 153-66.
    • (2005) Dev Cell , vol.8 , pp. 153-166
    • Sandberg, M.L.1    Sutton, S.E.2    Pletcher, M.T.3
  • 100
    • 0043239343 scopus 로고    scopus 로고
    • Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb
    • Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 2003;22: 4478-88.
    • (2003) EMBO J , vol.22 , pp. 4478-4488
    • Emambokus, N.1    Vegiopoulos, A.2    Harman, B.3    Jenkinson, E.4    Anderson, G.5    Frampton, J.6
  • 101
    • 33750291889 scopus 로고    scopus 로고
    • Transgene insertion in proximity to the C-Myb gene disrupts erythroid-Megakaryocytic lineage bifurcation
    • Mukai HY, Motohashi H, Ohneda O, Suzuki N, Nagano M, Yamamoto M. Transgene insertion in proximity to the c-myb gene disrupts erythroid-megakaryocytic lineage bifurcation. Mol Cell Biol 2006; 26: 7953-65.
    • (2006) Mol Cell Biol , vol.26 , pp. 7953-7965
    • Mukai, H.Y.1    Motohashi, H.2    Ohneda, O.3    Suzuki, N.4    Nagano, M.5    Yamamoto, M.6
  • 102
    • 44449108570 scopus 로고    scopus 로고
    • MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors
    • Lu J, Guo S, Ebert BL, et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 2008; 14:843-53.
    • (2008) Dev Cell , vol.14 , pp. 843-853
    • Lu, J.1    Guo, S.2    Ebert, B.L.3
  • 103
    • 60249101120 scopus 로고    scopus 로고
    • The c-myb proto-oncogene and microRNA-15a comprise an active auto regulatory feedback loop in human hematopoietic cells
    • Zhao H, Kalota A, Jin S, Gewirtz AM. The c-myb proto-oncogene and microRNA-15a comprise an active auto regulatory feedback loop in human hematopoietic cells. Blood 2009; 113: 505-16.
    • (2009) Blood , vol.113 , pp. 505-516
    • Zhao, H.1    Kalota, A.2    Jin, S.3    Gewirtz, A.M.4
  • 104
    • 70349256065 scopus 로고    scopus 로고
    • MiR-34a contributes to megakaryocytic differentiation of k562 cells independently of P53
    • Navarro F, Gutman D, Meire E, et al. miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood 2009; 114: 2181-92.
    • (2009) Blood , vol.114 , pp. 2181-2192
    • Navarro, F.1    Gutman, D.2    Meire, E.3
  • 105
    • 12344325677 scopus 로고    scopus 로고
    • GATA1 in normal and malignant hematopoiesis
    • Crispino JD. GATA1 in normal and malignant hematopoiesis. Semin Cell Dev Biol 2005; 16: 137-47.
    • (2005) Semin Cell Dev Biol , vol.16 , pp. 137-147
    • Crispino, J.D.1
  • 107
    • 13444270650 scopus 로고    scopus 로고
    • GATA1 function, a paradigm for transcription factors in hematopoiesis
    • Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 2005; 25: 1215-27.
    • (2005) Mol Cell Biol , vol.25 , pp. 1215-1227
    • Ferreira, R.1    Ohneda, K.2    Yamamoto, M.3    Philipsen, S.4
  • 108
    • 0029926485 scopus 로고    scopus 로고
    • Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1
    • Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci USA 1996; 93: 12355-8.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 12355-12358
    • Fujiwara, Y.1    Browne, C.P.2    Cunniff, K.3    Goff, S.C.4    Orkin, S.H.5
  • 109
    • 0028233760 scopus 로고
    • Novel insights into erythroid development revealed through in vitro differentiation of GATA-1embryonic stem cells
    • Weiss MJ, Keller G, Orkin SH. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1embryonic stem cells. Genes Dev 1994; 8: 1184-97.
    • (1994) Genes Dev , vol.8 , pp. 1184-1197
    • Weiss, M.J.1    Keller, G.2    Orkin, S.H.3
  • 110
    • 0030926006 scopus 로고    scopus 로고
    • A lineage-selective knockout establishes the critical role of transcription factorGATA-1 in megakaryocyte growth and platelet development
    • Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J 1997; 16: 3965-73.
    • (1997) EMBO J , vol.16 , pp. 3965-3973
    • Shivdasani, R.A.1    Fujiwara, Y.2    McDevitt, M.A.3    Orkin, S.H.4
  • 111
    • 0037099497 scopus 로고    scopus 로고
    • Transcription factor mediated lineage switching reveals plasticity in primary committed progenitor cells
    • Heyworth C, Pearson S, May G, Enver T. Transcription factor mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO J 2002; 21: 3770-81.
    • (2002) EMBO J , vol.21 , pp. 3770-3781
    • Heyworth, C.1    Pearson, S.2    May, G.3    Enver, T.4
  • 112
    • 0141455931 scopus 로고    scopus 로고
    • GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages
    • Iwasaki H, Mizuno S, Wells RA, Cantor AB, Watanabe S, Akashi K. GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity 2003; 19:451-62.
    • (2003) Immunity , vol.19 , pp. 451-462
    • Iwasaki, H.1    Mizuno, S.2    Wells, R.A.3    Cantor, A.B.4    Watanabe, S.5    Akashi, K.6
  • 113
    • 8644228649 scopus 로고    scopus 로고
    • Global regulation of erythroid gene expression by transcription factor GATA-1
    • Welch JJ, Watts JA, Vakoc CR, et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 2004; 104: 3136-47.
    • (2004) Blood , vol.104 , pp. 3136-3147
    • Welch, J.J.1    Watts, J.A.2    Vakoc, C.R.3
  • 114
    • 0033134831 scopus 로고    scopus 로고
    • Consequences of GATA-1 deficiency in megakaryocytes and platelets
    • Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 1999; 93: 2867-75.
    • (1999) Blood , vol.93 , pp. 2867-2875
    • Vyas, P.1    Ault, K.2    Jackson, C.W.3    Orkin, S.H.4    Shivdasani, R.A.5
  • 115
    • 22744437648 scopus 로고    scopus 로고
    • GATA-1 forms distinct activating and repressive complexes in erythroid cells
    • Rodriguez P, Bonte E, Krijgsveld J, et al. GATA-1 forms distinctactivating and repressive complexes in erythroid cells. EMBO J 2005; 24: 2354-66.
    • (2005) EMBO J , vol.24 , pp. 2354-2366
    • Rodriguez, P.1    Bonte, E.2    Krijgsveld, J.3
  • 116
    • 33750468995 scopus 로고    scopus 로고
    • Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles
    • Johnson KD, Kim SI, Bresnick EH. Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles. Proc Natl Acad Sci USA 2006; 103: 15939-44.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 15939-15944
    • Johnson, K.D.1    Kim, S.I.2    Bresnick, E.H.3
  • 117
    • 70449696134 scopus 로고    scopus 로고
    • Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression
    • Cheng Y, Wu W, Kumar SA, et al. Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression. Genome Res 2009; 19: 2172-84.
    • (2009) Genome Res , vol.19 , pp. 2172-2184
    • Cheng, Y.1    Wu, W.2    Kumar, S.A.3
  • 118
    • 70449638281 scopus 로고    scopus 로고
    • Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis
    • Yu M, Riva L, Xie H, et al. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell 2009; 36: 682-95.
    • (2009) Mol Cell , vol.36 , pp. 682-695
    • Yu, M.1    Riva, L.2    Xie, H.3
  • 119
    • 70449675049 scopus 로고    scopus 로고
    • Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy
    • Fujiwara T, O'Geen H, Keles S, et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell 2009; 36: 667-81.
    • (2009) Mol Cell , vol.36 , pp. 667-681
    • Fujiwara, T.1    O'Geen, H.2    Keles, S.3
  • 120
    • 73249141252 scopus 로고    scopus 로고
    • Primary sequence and epigenetic determinants of in vivo occupancy of genomic DNA by GATA1
    • Zhang Y, Wu W, Cheng Y, et al. Primary sequence and epigenetic determinants of in vivo occupancy of genomic DNA by GATA1. Nucleic Acids Res 2009; 37: 7024-38.
    • (2009) Nucleic Acids Res , vol.37 , pp. 7024-7038
    • Zhang, Y.1    Wu, W.2    Cheng, Y.3
  • 121
    • 70350455487 scopus 로고    scopus 로고
    • Chromatin architecture and transcription factor binding regulate expression of erythrocyte membrane protein genes
    • Steiner LA, Maksimova Y, Schulz V, et al. Chromatin architecture and transcription factor binding regulate expression of erythrocyte membrane protein genes. Mol Cell Biol 2009; 29: 5399-412.
    • (2009) Mol Cell Biol , vol.29 , pp. 5399-5412
    • Steiner, L.A.1    Maksimova, Y.2    Schulz, V.3
  • 122
    • 64049118936 scopus 로고    scopus 로고
    • SCL and associated proteins distinguish active from repressive GATA transcription factor complexes
    • Tripic T, Deng W, Cheng Y, et al. SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood 2009; 113: 2191-201.
    • (2009) Blood , vol.113 , pp. 2191-1201
    • Tripic, T.1    Deng, W.2    Cheng, Y.3
  • 123
    • 0041806587 scopus 로고    scopus 로고
    • GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive auto regulation and domain-wide chromatin remodeling
    • Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive auto regulation and domain-wide chromatin remodeling. Proc Natl Acad Sci USA 2003; 100: 8811-6.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 8811-8816
    • Grass, J.A.1    Boyer, M.E.2    Pal, S.3    Wu, J.4    Weiss, M.J.5    Bresnick, E.H.6
  • 124
    • 12544253500 scopus 로고    scopus 로고
    • Dynamic GATA factor interplay at a multi-component regulatory region of the GATA-2 locus
    • Martowicz ML, Grass JA, Boyer ME, Guend H, Bresnick EH. Dynamic GATA factor interplay at a multi-component regulatory region of the GATA-2 locus. J Biol Chem 2005; 280: 1724-32.
    • (2005) J Biol Chem , vol.280 , pp. 1724-1732
    • Martowicz, M.L.1    Grass, J.A.2    Boyer, M.E.3    Guend, H.4    Bresnick, E.H.5
  • 125
    • 38349178680 scopus 로고    scopus 로고
    • Differential GATA factor stabilities: Implications for chromatin occupancy by structurally similar transcription factors
    • Lurie LJ, Boyer ME, Grass JA, Bresnick EH. Differential GATA factor stabilities: implications for chromatin occupancy by structurally similar transcription factors. Biochemistry (Mosc) 2008; 47:859-69.
    • (2008) Biochemistry (Mosc) , vol.47 , pp. 859-869
    • Lurie, L.J.1    Boyer, M.E.2    Grass, J.A.3    Bresnick, E.H.4
  • 126
    • 53449102213 scopus 로고    scopus 로고
    • Characterization of megakaryocyte GATA1-interacting proteins:The corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation
    • Hamlett I, Draper J, Strouboulis J, Iborra F, Porcher C, Vyas P. Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood 2008; 112: 2738-49.
    • (2008) Blood , vol.112 , pp. 2738-2749
    • Hamlett, I.1    Draper, J.2    Strouboulis, J.3    Iborra, F.4    Porcher, C.5    Vyas, P.6
  • 128
    • 67649981723 scopus 로고    scopus 로고
    • Direct binding of pRb/E2F-2to GATA-1 regulates maturation and terminal cell division during erythropoiesis
    • Kadri Z, Shimizu R, Ohneda O, et al. Direct binding of pRb/E2F-2to GATA-1 regulates maturation and terminal cell division during erythropoiesis. PLoS Biol 2009; 7: e1000123.
    • (2009) PLoS Biol , vol.7
    • Kadri, Z.1    Shimizu, R.2    Ohneda, O.3
  • 129
    • 0033168769 scopus 로고    scopus 로고
    • GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression
    • Gregory T, Yu C, Ma A, Orkin SH, Blobel GA, Weiss MJ. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 1999; 94: 87-96.
    • (1999) Blood , vol.94 , pp. 87-96
    • Gregory, T.1    Yu, C.2    Ma, A.3    Orkin, S.H.4    Blobel, G.A.5    Weiss, M.J.6
  • 130
    • 70350061670 scopus 로고    scopus 로고
    • LRF is an essential down stream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis
    • Maeda T, Ito K, Merghoub T, et al. LRF is an essential down stream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis. Dev Cell 2009; 17: 527-40.
    • (2009) Dev Cell , vol.17 , pp. 527-540
    • Maeda, T.1    Ito, K.2    Merghoub, T.3
  • 131
    • 34250006259 scopus 로고    scopus 로고
    • Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization
    • Muntean AG, Pang L, Poncz M, Dowdy SF, Blobel GA, Crispino JD. Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization. Blood 2007; 109:5199-207.
    • (2007) Blood , vol.109 , pp. 5199-5207
    • Muntean, A.G.1    Pang, L.2    Poncz, M.3    Dowdy, S.F.4    Blobel, G.A.5    Crispino, J.D.6
  • 133
    • 63649153147 scopus 로고    scopus 로고
    • The role of zinc finger protein 521/early hematopoietic zinc finger protein in erythroid cell differentiation
    • Matsubara E, Sakai I, Yamanouchi J, et al. The role of zinc finger protein 521/early hematopoietic zinc finger protein in erythroid cell differentiation. J Biol Chem 2009; 284: 3480-7.
    • (2009) J Biol Chem , vol.284 , pp. 3480-3487
    • Matsubara, E.1    Sakai, I.2    Yamanouchi, J.3
  • 134
    • 42149149334 scopus 로고    scopus 로고
    • Identification of ZBP-89as a novel GATA-1-associated transcription factor involved in megakaryocytic and erythroid development
    • Woo AJ, Moran TB, Schindler YL, et al. Identification of ZBP-89as a novel GATA-1-associated transcription factor involved in megakaryocytic and erythroid development. Mol Cell Biol 2008;28: 2675-89.
    • (2008) Mol Cell Biol , vol.28 , pp. 2675-2689
    • Woo, A.J.1    Moran, T.B.2    Schindler, Y.L.3
  • 135
    • 0033577703 scopus 로고    scopus 로고
    • Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers
    • Fox AH, Liew C, Holmes M, Kowalski K, Mackay J, Crossley M. Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J 1999; 18:2812-22.
    • (1999) EMBO J , vol.18 , pp. 2812-2822
    • Fox, A.H.1    Liew, C.2    Holmes, M.3    Kowalski, K.4    Mackay, J.5    Crossley, M.6
  • 136
    • 0032522474 scopus 로고    scopus 로고
    • Failure of mega-karyopoiesis and arrested erythropoiesis in mice lacking theGATA-1 transcriptional cofactor FOG
    • Tsang AP, Fujiwara Y, Hom DB, Orkin SH. Failure of mega-karyopoiesis and arrested erythropoiesis in mice lacking theGATA-1 transcriptional cofactor FOG. Genes Dev 1998; 12: 1176-88.
    • (1998) Genes Dev , vol.12 , pp. 1176-1188
    • Tsang, A.P.1    Fujiwara, Y.2    Hom, D.B.3    Orkin, S.H.4
  • 137
    • 74949090052 scopus 로고    scopus 로고
    • NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development
    • Miccio A, Wang Y, Hong W, et al. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO J 2010; 29(2): 442-56.
    • (2010) EMBO J , vol.29 , Issue.2 , pp. 442-456
    • Miccio, A.1    Wang, Y.2    Hong, W.3
  • 138
    • 79955692758 scopus 로고    scopus 로고
    • FOG-1-mediated recruitment of NuRD is required for cell lineage re-enforcement during haematopoiesis
    • Gao Z, Huang Z, Olivey HE, Gurbuxani S, Crispino JD, Svensson EC. FOG-1-mediated recruitment of NuRD is required for cell lineage re-enforcement during haematopoiesis. EMBO J 2009;
    • (2009) EMBO J
    • Gao, Z.1    Huang, Z.2    Olivey, H.E.3    Gurbuxani, S.4    Crispino, J.D.5    Svensson, E.C.6
  • 139
    • 70350371605 scopus 로고    scopus 로고
    • Translational isoforms of FOG1 regulateGATA1-interacting complexes
    • Snow JW, Orkin SH. Translational isoforms of FOG1 regulateGATA1-interacting complexes. J Biol Chem 2009; 284: 29310-9.
    • (2009) J Biol Chem , vol.284 , pp. 29310-29319
    • Snow, J.W.1    Orkin, S.H.2
  • 140
    • 22144447520 scopus 로고    scopus 로고
    • Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype
    • Growney JD, Shigematsu H, Li Z, et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 2005; 106: 494-504.
    • (2005) Blood , vol.106 , pp. 494-504
    • Growney, J.D.1    Shigematsu, H.2    Li, Z.3
  • 141
    • 0032830638 scopus 로고    scopus 로고
    • Haploinsufficiency ofCBFA2 causes familial thrombocytopenia with propensity to developacute myelogenous leukaemia
    • Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency ofCBFA2 causes familial thrombocytopenia with propensity to developacute myelogenous leukaemia. Nat Genet 1999; 23: 166-75.
    • (1999) Nat Genet , vol.23 , pp. 166-175
    • Song, W.J.1    Sullivan, M.G.2    Legare, R.D.3
  • 143
    • 58149388241 scopus 로고    scopus 로고
    • Cross-talk of GATA-1 and P-TEFb in megakaryocyte differentiation
    • Elagib KE, Mihaylov IS, Delehanty LL, et al. Cross-talk of GATA-1 and P-TEFb in megakaryocyte differentiation. Blood 2008; 112:4884-94.
    • (2008) Blood , vol.112 , pp. 4884-4894
    • Elagib, K.E.1    Mihaylov, I.S.2    Delehanty, L.L.3
  • 144
    • 66749167128 scopus 로고    scopus 로고
    • Megakaryocytic programming by a transcriptional regulatory loop: A circle connecting RUNX1, GATA-1, and PTEFb
    • Goldfarb AN. Megakaryocytic programming by a transcriptional regulatory loop: A circle connecting RUNX1, GATA-1, and PTEFb.J Cell Biochem 2009; 107: 377-82.
    • (2009) J Cell Biochem , vol.107 , pp. 377-382
    • Goldfarb, A.N.1
  • 146
    • 85047689917 scopus 로고    scopus 로고
    • FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia
    • Raslova H, Komura E, Le Couedic JP, et al. FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest 2004; 114: 77-84.
    • (2004) J Clin Invest , vol.114 , pp. 77-84
    • Raslova, H.1    Komura, E.2    Couedic, J.P.L.3
  • 147
    • 67651207678 scopus 로고    scopus 로고
    • Differentiation-dependent interactions between RUNX-1 and FLI-1 during megakaryocyte development
    • Huang H, Yu M, Akie TE, et al. Differentiation-dependent interactions between RUNX-1 and FLI-1 during megakaryocyte development. Mol Cell Biol 2009; 29: 4103-15.
    • (2009) Mol Cell Biol , vol.29 , pp. 4103-4115
    • Huang, H.1    Yu, M.2    Akie, T.E.3
  • 148
    • 42149179897 scopus 로고    scopus 로고
    • A GATA-1-regulated microRNA locus essential for erythropoiesis
    • Dore LC, Amigo JD, Dos Santos CO, et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA 2008; 105: 3333-8.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 3333-3338
    • Dore, L.C.1    Amigo, J.D.2    Santos, C.O.D.3
  • 149
    • 60849131761 scopus 로고    scopus 로고
    • Mir-144 selectively regulates embryonicalpha-hemoglobin synthesis during primitive erythropoiesis
    • Fu YF, Du TT, Dong M, et al. Mir-144 selectively regulates embryonicalpha-hemoglobin synthesis during primitive erythropoiesis. Blood 2009; 113: 1340-9.
    • (2009) Blood , vol.113 , pp. 1340-1349
    • Fu, Y.F.1    Du, T.T.2    Dong, M.3
  • 151
    • 0025014636 scopus 로고
    • The tal gene undergoes chromosometrans location in T cell leukemia and potentially encodes a helix-loop-helix protein
    • Chen Q, Cheng JT, Tasi LH, et al. The tal gene undergoes chromosometrans location in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J 1990; 9: 415-24.
    • (1990) EMBO J , vol.9 , pp. 415-424
    • Chen, Q.1    Cheng, J.T.2    Tasi, L.H.3
  • 152
    • 0345347904 scopus 로고
    • Involvement of the TCL5gene on human chromosome 1 in T-cell leukemia and melanoma
    • Finger LR, Kagan J, Christopher G, et al. Involvement of the TCL5gene on human chromosome 1 in T-cell leukemia and melanoma. Proc Natl Acad Sci USA 1989; 86: 5039-43.
    • (1989) Proc Natl Acad Sci USA , vol.86 , pp. 5039-5043
    • Finger, L.R.1    Kagan, J.2    Christopher, G.3
  • 153
    • 33746656195 scopus 로고    scopus 로고
    • Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia
    • Palomero T, Odom DT, O'Neil J, et al. Transcriptional regulatory networks down stream of TAL1/SCL in T-cell acute lymphoblastic leukemia. Blood 2006; 108: 986-92.
    • (2006) Blood , vol.108 , pp. 986-992
    • Palomero, T.1    Odom, D.T.2    O'Neil, J.3
  • 154
    • 0032525313 scopus 로고    scopus 로고
    • Enhanced megakaryocyte and erythroid development from normal human CD34(+) cells: Consequence of enforced expression of SCL
    • Elwood NJ, Zogos H, Pereira DS, Dick JE, Begley CG. Enhanced megakaryocyte and erythroid development from normal human CD34(+) cells: consequence of enforced expression of SCL. Blood 1998; 91: 3756-65.
    • (1998) Blood , vol.91 , pp. 3756-3765
    • Elwood, N.J.1    Zogos, H.2    Pereira, D.S.3    Dick, J.E.4    Begley, C.G.5
  • 155
    • 0026673933 scopus 로고
    • The SCL gene product: A positive regulator of erythroid differentiation
    • Aplan PD, Nakahara K, Orkin SH, Kirsch IR. The SCL gene product: a positive regulator of erythroid differentiation. EMBO J 1992; 11: 4073-81.
    • (1992) EMBO J , vol.11 , pp. 4073-4081
    • Aplan, P.D.1    Nakahara, K.2    Orkin, S.H.3    Kirsch, I.R.4
  • 156
    • 0037417892 scopus 로고    scopus 로고
    • The critical regulator ofembryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12
    • Hall MA, Curtis DJ, Metcalf D, et al. The critical regulator ofembryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc Natl Acad Sci USA 2003; 100: 992-7.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 992-997
    • Hall, M.A.1    Curtis, D.J.2    Metcalf, D.3
  • 157
    • 18544364934 scopus 로고    scopus 로고
    • Tie2Cre-mediated gene ablation defines the stem-cell leukemiagene (SCL/tal1)-dependent window during hematopoietic stem-cell development
    • Schlaeger TM, Mikkola HK, Gekas C, Helgadottir HB, Orkin SH.Tie2Cre-mediated gene ablation defines the stem-cell leukemiagene (SCL/tal1)-dependent window during hematopoietic stem-celldevelopment. Blood 2005; 105: 3871-4.
    • (2005) Blood , vol.105 , pp. 3871-3874
    • Schlaeger, T.M.1    Mikkola, H.K.2    Gekas, C.3    Helgadottir, H.B.4    Orkin, S.H.5
  • 158
    • 65149100673 scopus 로고    scopus 로고
    • Mef2C is a lineage-restricted target of Scl/Tal1 and regulates megakaryopoiesis and B-cell homeostasis
    • Gekas C, Rhodes KE, Gereige LM, et al. Mef2C is a lineage-restricted target of Scl/Tal1 and regulates megakaryopoiesis and B-cell homeostasis. Blood 2009; 113: 3461-71.
    • (2009) Blood , vol.113 , pp. 3461-3471
    • Gekas, C.1    Rhodes, K.E.2    Gereige, L.M.3
  • 159
    • 33751186113 scopus 로고    scopus 로고
    • LowSCL/TAL1 expression reveals its major role in adult hematopoietic myeloid progenitors and stem cells
    • Brunet de la Grange P, Armstrong F, Duval V, et al. LowSCL/TAL1 expression reveals its major role in adult hematopoietic myeloid progenitors and stem cells. Blood 2006; 108: 2998-3004.
    • (2006) Blood , vol.108 , pp. 2998-3004
    • De La, B.G.P.1    Armstrong, F.2    Duval, V.3
  • 160
    • 48649110022 scopus 로고    scopus 로고
    • Impairment of granulo-monocytic development of human common myeloid progenitors but not of granulo-monocytic progenitors by decreasing stem cell leukemia/T-cell acute leukemia 1 expression
    • Brunet de la Grange P, Zink E, Armstrong F, Rouyez MC, Pflumio F. Impairment of granulo-monocytic development of human common myeloid progenitors but not of granulo-monocytic progenitors by decreasing stem cell leukemia/T-cell acute leukemia 1 expression. Stem Cells 2008; 26: 1658-62.
    • (2008) Stem Cells , vol.26 , pp. 1658-1662
    • De La, B.G.P.1    Zink, E.2    Armstrong, F.3    Rouyez, M.C.4    Pflumio, F.5
  • 161
    • 0027973545 scopus 로고
    • Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia
    • Wadman I, Li J, Bash RO, et al. Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J 1994; 13: 4831-9.
    • (1994) EMBO J , vol.13 , pp. 4831-4839
    • Wadman, I.1    Li, J.2    Bash, R.O.3
  • 162
    • 0030999645 scopus 로고    scopus 로고
    • The LIM-only proteinLmo2 is a bridging molecule assembling an erythroid, DNA binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins
    • Wadman IA, Osada H, Grutz GG, et al. The LIM-only proteinLmo2 is a bridging molecule assembling an erythroid, DNA binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 1997; 16: 3145-57.
    • (1997) EMBO J , vol.16 , pp. 3145-3157
    • Wadman, I.A.1    Osada, H.2    Grutz, G.G.3
  • 163
    • 67349199007 scopus 로고    scopus 로고
    • Expression of the leukemia oncogene Lmo2 is controlled by an array of tissue-specific elements dispersed over 100 kb and bound by Tal1/Lmo2, Ets, and Gata factors
    • Landry JR, Bonadies N, Kinston S, et al. Expression of the leukemia oncogene Lmo2 is controlled by an array of tissue-specific elements dispersed over 100 kb and bound by Tal1/Lmo2, Ets, and Gata factors. Blood 2009; 113: 5783-92.
    • (2009) Blood , vol.113 , pp. 5783-5792
    • Landry, J.R.1    Bonadies, N.2    Kinston, S.3
  • 164
    • 0025759278 scopus 로고
    • The rhombotin family of cysteine-rich LIM-domain oncogenes: Distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13
    • Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci USA 1991; 88: 4367-71.
    • (1991) Proc Natl Acad Sci USA , vol.88 , pp. 4367-4371
    • Boehm, T.1    Foroni, L.2    Kaneko, Y.3    Perutz, M.F.4    Rabbitts, T.H.5
  • 165
    • 0034932701 scopus 로고    scopus 로고
    • Primitive erythropoiesis in the Xenopus embryo: The synergistic role ofLMO-2, SCL and GATA-binding proteins
    • Mead PE, Deconinck AE, Huber TL, Orkin SH, Zon LI. Primitive erythropoiesis in the Xenopus embryo: the synergistic role ofLMO-2, SCL and GATA-binding proteins. Development 2001;128: 2301-8.
    • (2001) Development , vol.128 , pp. 2301-2308
    • Mead, P.E.1    Deconinck, A.E.2    Huber, T.L.3    Orkin, S.H.4    Zon, L.I.5
  • 167
    • 66349138750 scopus 로고    scopus 로고
    • MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis
    • Felli N, Pedini F, Romania P, et al. MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 2009; 94: 479-86.
    • (2009) Haematologica , vol.94 , pp. 479-486
    • Felli, N.1    Pedini, F.2    Romania, P.3
  • 168
    • 31444450865 scopus 로고    scopus 로고
    • ETO2 coordinates cellular proliferation and differentiation during erythropoiesis
    • Goardon N, Lambert JA, Rodriguez P, et al. ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J 2006; 25: 357-66.
    • (2006) EMBO J , vol.25 , pp. 357-366
    • Goardon, N.1    Lambert, J.A.2    Rodriguez, P.3
  • 169
    • 67649834041 scopus 로고    scopus 로고
    • LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis
    • Hu X, Li X, Valverde K, et al. LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis. Proc Natl Acad Sci USA 2009; 106: 10141-6.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 10141-10146
    • Hu, X.1    Li, X.2    Valverde, K.3
  • 170
    • 20344364878 scopus 로고    scopus 로고
    • The erythroid phenotype of EKLF-null mice: Defects in hemoglobin metabolism and membrane stability
    • Drissen R, von Lindern M, Kolbus A, et al. The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol 2005; 25: 5205-14.
    • (2005) Mol Cell Biol , vol.25 , pp. 5205-5214
    • Drissen, R.1    von Lindern, M.2    Kolbus, A.3
  • 171
    • 0029864417 scopus 로고    scopus 로고
    • Functional interaction of GATA1 with erythroid Kruppel-like factor and Sp1 at defined erythroid promoters
    • Gregory RC, Taxman DJ, Seshasayee D, Kensinger MH, Bieker JJ, Wojchowski DM. Functional interaction of GATA1 with erythroid Kruppel-like factor and Sp1 at defined erythroid promoters. Blood 1996; 87: 1793-801.
    • (1996) Blood , vol.87 , pp. 1793-1801
    • Gregory, R.C.1    Taxman, D.J.2    Seshasayee, D.3    Kensinger, M.H.4    Bieker, J.J.5    Wojchowski, D.M.6
  • 172
    • 0019949838 scopus 로고
    • Linkage of beta-thalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in human beta-globin gene cluster
    • Orkin SH, Kazazian HH, Jr., Antonarakis SE, et al. Linkage of beta-thalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in human beta-globin gene cluster. Nature 1982; 296: 627-31.
    • (1982) Nature , vol.296 , pp. 627-631
    • Orkin, S.H.1    Kazazian Jr., H.H.2    Antonarakis, S.E.3
  • 173
    • 0029010790 scopus 로고
    • Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene
    • Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F.Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 1995; 375: 316-8.
    • (1995) Nature , vol.375 , pp. 316-318
    • Nuez, B.1    Michalovich, D.2    Bygrave, A.3    Ploemacher, R.4    Grosveld, F.5
  • 174
    • 0028990264 scopus 로고
    • Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF
    • Perkins AC, Sharpe AH, Orkin SH. Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 1995; 375: 318-22.
    • (1995) Nature , vol.375 , pp. 318-322
    • Perkins, A.C.1    Sharpe, A.H.2    Orkin, S.H.3
  • 175
    • 73949133624 scopus 로고    scopus 로고
    • Megakaryocyte-erythroid lineage promiscuity in EKLF null mouse blood
    • Tallack MR, Perkins AC. Megakaryocyte-erythroid lineage promiscuity in EKLF null mouse blood. Haematologica 2010; 95(1):144-7.
    • (2010) Haematologica , vol.95 , Issue.1 , pp. 144-147
    • Tallack, M.R.1    Perkins, A.C.2
  • 176
    • 33645743530 scopus 로고    scopus 로고
    • A global role for EKLF in definitive and primitive erythropoiesis
    • Hodge D, Coghill E, Keys J, et al. A global role for EKLF in definitive and primitive erythropoiesis. Blood 2006; 107: 3359-70.
    • (2006) Blood , vol.107 , pp. 3359-3370
    • Hodge, D.1    Coghill, E.2    Keys, J.3
  • 177
    • 57349110597 scopus 로고    scopus 로고
    • Failure of terminalery throid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2
    • Pilon AM, Arcasoy MO, Dressman HK, et al. Failure of terminalery throid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2. Mol Cell Biol 2008; 28: 7394-401.
    • (2008) Mol Cell Biol , vol.28 , pp. 7394-7401
    • Pilon, A.M.1    Arcasoy, M.O.2    Dressman, H.K.3
  • 178
    • 68949094072 scopus 로고    scopus 로고
    • EKLF/KLF1 controls cell cycle entry via direct regulation of E2f2
    • Tallack MR, Keys JR, Humbert PO, Perkins AC. EKLF/KLF1 controls cell cycle entry via direct regulation of E2f2. J Biol Chem 2009; 284: 20966-74.
    • (2009) J Biol Chem , vol.284 , pp. 20966-20974
    • Tallack, M.R.1    Keys, J.R.2    Humbert, P.O.3    Perkins, A.C.4
  • 179
    • 37549066702 scopus 로고    scopus 로고
    • Sumoylation of EKLF promotes transcriptional repression and is involved in inhibition of megakaryopoiesis
    • Siatecka M, Xue L, Bieker JJ. Sumoylation of EKLF promotes transcriptional repression and is involved in inhibition of megakaryopoiesis. Mol Cell Biol 2007; 27: 8547-60.
    • (2007) Mol Cell Biol , vol.27 , pp. 8547-8560
    • Siatecka, M.1    Xue, L.2    Bieker, J.J.3
  • 180
    • 0142180052 scopus 로고    scopus 로고
    • Gfi-1 oncoproteins in hematopoiesis
    • Duan Z, Horwitz M. Gfi-1 oncoproteins in hematopoiesis. Hematology 2003; 8: 339-44.
    • (2003) Hematology , vol.8 , pp. 339-344
    • Duan, Z.1    Horwitz, M.2
  • 181
    • 33947251378 scopus 로고    scopus 로고
    • Gfi1b: Green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is largely complementary to Gfi1
    • Vassen L, Okayama T, Moroy T. Gfi1b: green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is largely complementary to Gfi1. Blood 2007;109: 2356-64.
    • (2007) Blood , vol.109 , pp. 2356-2364
    • Vassen, L.1    Okayama, T.2    Moroy, T.3
  • 182
    • 0036467868 scopus 로고    scopus 로고
    • The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages
    • Saleque S, Cameron S, Orkin SH. The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev 2002; 16: 301-6.
    • (2002) Genes Dev , vol.16 , pp. 301-306
    • Saleque, S.1    Cameron, S.2    Orkin, S.H.3
  • 183
    • 0037108193 scopus 로고    scopus 로고
    • Erythroid expansion mediated by the Gfi-1B zinc finger protein: Role in normal hematopoiesis
    • Osawa M, Yamaguchi T, Nakamura Y, Kaneko S, Onodera M, Sawada K, et al. Erythroid expansion mediated by the Gfi-1B zinc finger protein: role in normal hematopoiesis. Blood 2002; 100:2769-77.
    • (2002) Blood , vol.100 , pp. 2769-2777
    • Osawa, M.1    Yamaguchi, T.2    Nakamura, Y.3    Kaneko, S.4    Onodera, M.5    Sawada, K.6
  • 184
    • 0037127270 scopus 로고    scopus 로고
    • Regulation of Socs gene expression by the proto-onco protein GFI-1B: Two routes for STAT5 target gene induction by erythropoietin
    • Jegalian AG, Wu H. Regulation of Socs gene expression by the proto-onco protein GFI-1B: two routes for STAT5 target gene induction by erythropoietin. J Biol Chem 2002; 277: 2345-52.
    • (2002) J Biol Chem , vol.277 , pp. 2345-2352
    • Jegalian, A.G.1    Wu, H.2
  • 185
    • 0031895515 scopus 로고    scopus 로고
    • The Gfi-1B proto-onco protein represses p21WAF1 and inhibits myeloid cell differentiation
    • Tong B, Grimes HL, Yang TY, et al. The Gfi-1B proto-onco protein represses p21WAF1 and inhibits myeloid cell differentiation. Mol Cell Biol 1998; 18: 2462-73.
    • (1998) Mol Cell Biol , vol.18 , pp. 2462-2473
    • Tong, B.1    Grimes, H.L.2    Yang, T.Y.3
  • 186
    • 34250163897 scopus 로고    scopus 로고
    • GATA-1 and Gfi-1B interplay to regulate BclxL transcription
    • Kuo YY, Chang ZF. GATA-1 and Gfi-1B interplay to regulate BclxL transcription. Mol Cell Biol 2007; 27: 4261-72.
    • (2007) Mol Cell Biol , vol.27 , pp. 4261-4272
    • Kuo, Y.Y.1    Chang, Z.F.2
  • 187
    • 34547785073 scopus 로고    scopus 로고
    • Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1
    • Saleque S, Kim J, Rooke HM, Orkin SH. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell 2007; 27: 562-72.
    • (2007) Mol Cell , vol.27 , pp. 562-572
    • Saleque, S.1    Kim, J.2    Rooke, H.M.3    Orkin, S.H.4
  • 188
    • 24944569193 scopus 로고    scopus 로고
    • GATA-1 mediates auto-regulation of Gfi-1B transcription in K562 cells
    • Huang DY, Kuo YY, Chang ZF. GATA-1 mediates auto-regulation of Gfi-1B transcription in K562 cells. Nucleic Acids Res 2005; 33:5331-42.
    • (2005) Nucleic Acids Res , vol.33 , pp. 5331-5342
    • Huang, D.Y.1    Kuo, Y.Y.2    Chang, Z.F.3
  • 190
    • 14244258985 scopus 로고    scopus 로고
    • Direct transcriptional repression of the genes encoding the zinc-finger proteins Gfi1b andGfi1 by Gfi1b
    • Vassen L, Fiolka K, Mahlmann S, Moroy T. Direct transcriptional repression of the genes encoding the zinc-finger proteins Gfi1b andGfi1 by Gfi1b. Nucleic Acids Res 2005; 33: 987-98.
    • (2005) Nucleic Acids Res , vol.33 , pp. 987-998
    • Vassen, L.1    Fiolka, K.2    Mahlmann, S.3    Moroy, T.4
  • 191
    • 77449136887 scopus 로고    scopus 로고
    • High Mobility Group protein HMGB2regulates human erythroid differentiation through trans-activation of Gfi-1B transcription
    • Laurent B, Randrianarison-Huetz V, Marechal V, Mayeux P, Dusanter-Fourt I, Dumenil D. High Mobility Group protein HMGB2regulates human erythroid differentiation through trans-activation of Gfi-1B transcription. Blood 2010; 115(3): 687-95.
    • (2010) Blood , vol.115 , Issue.3 , pp. 687-695
    • Laurent, B.1    Randrianarison-Huetz, V.2    Marechal, V.3    Mayeux, P.4    Dusanter-Fourt, I.5    Dumenil, D.6
  • 192
    • 0027145162 scopus 로고
    • The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene
    • Andrews NC, Kotkow KJ, Ney PA, Erdjument-Bromage H, Tempst P, Orkin SH. The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene. Proc Natl Acad Sci USA 1993; 90: 11488-92.
    • (1993) Proc Natl Acad Sci USA , vol.90 , pp. 11488-11492
    • Andrews, N.C.1    Kotkow, K.J.2    Ney, P.A.3    Erdjument-Bromage, H.4    Tempst, P.5    Orkin, S.H.6
  • 193
    • 0025080566 scopus 로고
    • Inducibility of the HS II Enhancer depends on binding of an erythroid specific nuclear protein
    • Ney PA, Sorrentino BP, Lowrey CH, Nienhuis AW. Inducibility of the HS II enhancer depends on binding of an erythroid specific nuclear protein. Nucleic Acids Res 1990; 18: 6011-7.
    • (1990) Nucleic Acids Res , vol.18 , pp. 6011-6017
    • Ney, P.A.1    Sorrentino, B.P.2    Lowrey, C.H.3    Nienhuis, A.W.4
  • 194
    • 0027295567 scopus 로고
    • Purification of the humanNF-E2 complex: CDNA cloning of the hematopoietic cell-specific subunit and evidence for an associated partner
    • Ney PA, Andrews NC, Jane SM, et al. Purification of the humanNF-E2 complex: cDNA cloning of the hematopoietic cell-specific subunit and evidence for an associated partner. Mol Cell Biol 1993;13: 5604-12.
    • (1993) Mol Cell Biol , vol.13 , pp. 5604-5612
    • Ney, P.A.1    Andrews, N.C.2    Jane, S.M.3
  • 195
    • 0026576256 scopus 로고
    • Structure of the human ferrochelatase gene. Exon/intron gene organization and location of the gene to chromosome 18
    • Taketani S, Inazawa J, Nakahashi Y, Abe T, Tokunaga R. Structure of the human ferrochelatase gene. Exon/intron gene organization and location of the gene to chromosome 18. Eur J Biochem 1992;205: 217-22.
    • (1992) Eur J Biochem , vol.205 , pp. 217-222
    • Taketani, S.1    Inazawa, J.2    Nakahashi, Y.3    Abe, T.4    Tokunaga, R.5
  • 196
    • 0029824043 scopus 로고    scopus 로고
    • Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5' hypersensitive site 2 of the beta-globin locus control region
    • Gong QH, McDowell JC, Dean A. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5' hypersensitive site 2 of the beta-globin locus control region. Mol Cell Biol 1996; 16: 6055-64.
    • (1996) Mol Cell Biol , vol.16 , pp. 6055-6064
    • Gong, Q.H.1    McDowell, J.C.2    Dean, A.3
  • 197
    • 0030865547 scopus 로고    scopus 로고
    • NF-E2regulates expression of thromboxane synthase in megakaryocytes
    • Deveaux S, Cohen-Kaminsky S, Shivdasani RA, et al. p45 NF-E2regulates expression of thromboxane synthase in megakaryocytes. EMBO J 1997; 16: 5654-61.
    • (1997) EMBO J , vol.16 , pp. 5654-5661
    • Deveaux, S.1    Cohen-Kaminsky, S.2    Shivdasani, R.A.3
  • 198
    • 0029050860 scopus 로고
    • Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2
    • Shivdasani RA, Orkin SH. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci USA 1995; 92: 8690-4.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 8690-8694
    • Shivdasani, R.A.1    Orkin, S.H.2
  • 199
    • 0033230336 scopus 로고    scopus 로고
    • Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2
    • Levin J, Peng JP, Baker GR, et al. Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2. Blood 1999; 94: 3037-47.
    • (1999) Blood , vol.94 , pp. 3037-3047
    • Levin, J.1    Peng, J.P.2    Baker, G.R.3
  • 200
    • 37249025769 scopus 로고    scopus 로고
    • NF-E2-mediated enhancement of megakaryocytic differentiation and platelet production in vitro and in vivo
    • Fock EL, Yan F, Pan S, Chong BH. NF-E2-mediated enhancement of megakaryocytic differentiation and platelet production in vitro and in vivo. Exp Hematol 2008; 36: 78-92.
    • (2008) Exp Hematol , vol.36 , pp. 78-92
    • Fock, E.L.1    Yan, F.2    Pan, S.3    Chong, B.H.4
  • 201
    • 0029055185 scopus 로고
    • Dependence of globin gene expression inmouse erythroleukemia cells on the NF-E2 heterodimer
    • Kotkow KJ, Orkin SH. Dependence of globin gene expression inmouse erythroleukemia cells on the NF-E2 heterodimer. Mol Cell Biol 1995; 15: 4640-7.
    • (1995) Mol Cell Biol , vol.15 , pp. 4640-4647
    • Kotkow, K.J.1    Orkin, S.H.2
  • 203
    • 0034653880 scopus 로고    scopus 로고
    • Perinatal synthetic lethality and hematopoietic defects in compound mafG: MafK mutant mice
    • Onodera K, Shavit JA, Motohashi H, Yamamoto M, Engel JD. Perinatal synthetic lethality and hematopoietic defects in compound mafG: mafK mutant mice. EMBO J 2000; 19: 1335-45.
    • (2000) EMBO J , vol.19 , pp. 1335-1345
    • Onodera, K.1    Shavit, J.A.2    Motohashi, H.3    Yamamoto, M.4    Engel, J.D.5
  • 204
    • 0034663319 scopus 로고    scopus 로고
    • Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2
    • Lecine P, Italiano JE, Jr., Kim SW, Villeval JL, Shivdasani RA. Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood 2000; 96: 1366-73.
    • (2000) Blood , vol.96 , pp. 1366-1373
    • Lecine, P.1    Italiano Jr., J.E.2    Kim, S.W.3    Villeval, J.L.4    Shivdasani, R.A.5
  • 205
    • 0345257364 scopus 로고    scopus 로고
    • A role for Rab27b inNF-E2-dependent pathways of platelet formation
    • Tiwari S, Italiano JE, Jr., Barral DC, et al. A role for Rab27b inNF-E2-dependent pathways of platelet formation. Blood 2003; 102:3970-9.
    • (2003) Blood , vol.102 , pp. 3970-3979
    • Tiwari, S.1    Italiano Jr., J.E.2    Barral, D.C.3
  • 206
    • 0346753738 scopus 로고    scopus 로고
    • Proplatelet formation of megakaryocytes is triggered by auto crine-synthesized estradiol
    • Nagata Y, Yoshikawa J, Hashimoto A, Yamamoto M, Payne AH, Todokoro K. Proplatelet formation of megakaryocytes is triggered by auto crine-synthesized estradiol. Genes Dev 2003; 17: 2864-9.
    • (2003) Genes Dev , vol.17 , pp. 2864-2869
    • Nagata, Y.1    Yoshikawa, J.2    Hashimoto, A.3    Yamamoto, M.4    Payne, A.H.5    Todokoro, K.6
  • 207
    • 77449114227 scopus 로고    scopus 로고
    • NF-E2 domination over Nrf2 promotes ROS accumulation and megakaryocytic maturation
    • Motohashi H, Kimura M, Fujita R, et al. NF-E2 domination over Nrf2 promotes ROS accumulation and megakaryocytic maturation. Blood 2010; 115(3): 677-86.
    • (2010) Blood , vol.115 , Issue.3 , pp. 677-686
    • Motohashi, H.1    Kimura, M.2    Fujita, R.3
  • 208
    • 0034673970 scopus 로고    scopus 로고
    • Roles of the NFI/CTF gene family in transcription and development
    • Gronostajski RM. Roles of the NFI/CTF gene family in transcription and development. Gene 2000; 249: 31-45.
    • (2000) Gene , vol.249 , pp. 31-45
    • Gronostajski, R.M.1
  • 209
    • 0034615781 scopus 로고    scopus 로고
    • Experimental analysis and computer prediction of CTF/NFI transcription factor DNA binding sites
    • Roulet E, Bucher P, Schneider R, et al. Experimental analysis and computer prediction of CTF/NFI transcription factor DNA binding sites. J Mol Biol 2000; 297: 833-48.
    • (2000) J Mol Biol , vol.297 , pp. 833-848
    • Roulet, E.1    Bucher, P.2    Schneider, R.3
  • 210
    • 0032528629 scopus 로고    scopus 로고
    • Neuronal expression of the5ht3 serotonin receptor gene requires nuclear factor 1 complexes
    • Bedford FK, Julius D, Ingraham HA. Neuronal expression of the5HT3 serotonin receptor gene requires nuclear factor 1 complexes. J Neurosci 1998; 18: 6186-94.
    • (1998) J Neurosci , vol.18 , pp. 6186-6194
    • Bedford, F.K.1    Julius, D.2    Ingraham, H.A.3
  • 211
    • 0031053157 scopus 로고    scopus 로고
    • Combination of MEF3 and NFI proteins activates transcription ina subset of fast-twitch muscles
    • Spitz F, Salminen M, Demignon J, Kahn A, Daegelen D, Maire P.A combination of MEF3 and NFI proteins activates transcription ina subset of fast-twitch muscles. Mol Cell Biol 1997; 17: 656-66.
    • (1997) Mol Cell Biol , vol.17 , pp. 656-666
    • Spitz, F.1    Salminen, M.2    Demignon, J.3    Kahn, A.4    Daegelen, D.5    Maire, P.A.6
  • 212
    • 0031455372 scopus 로고    scopus 로고
    • Nuclear factor I family members regulate the transcription of surfactant protein-C
    • Bachurski CJ, Kelly SE, Glasser SW, Currier TA. Nuclear factor I family members regulate the transcription of surfactant protein-C. J Biol Chem 1997; 272: 32759-66.
    • (1997) J Biol Chem , vol.272 , pp. 32759-32766
    • Bachurski, C.J.1    Kelly, S.E.2    Glasser, S.W.3    Currier, T.A.4
  • 213
    • 0027408752 scopus 로고
    • Modulation of liver-specific transcription by interactions between hepatocyte nuclear factor 3 and nuclear factor 1 binding DNA in close apposition
    • Jackson DA, Rowader KE, Stevens K, Jiang C, Milos P, Zaret KS. Modulation of liver-specific transcription by interactions between hepatocyte nuclear factor 3 and nuclear factor 1 binding DNA in close apposition. Mol Cell Biol 1993; 13: 2401-10.
    • (1993) Mol Cell Biol , vol.13 , pp. 2401-2410
    • Jackson, D.A.1    Rowader, K.E.2    Stevens, K.3    Jiang, C.4    Milos, P.5    Zaret, K.S.6
  • 214
    • 0033605587 scopus 로고    scopus 로고
    • CREB binding protein coordinates the function of multiple transcription factors including nuclear factor I to regulate phos-phoenolpyruvate carboxykinase (GTP) gene transcription
    • Leahy P, Crawford DR, Grossman G, Gronostajski RM, Hanson RW. CREB binding protein coordinates the function of multiple transcription factors including nuclear factor I to regulate phos-phoenolpyruvate carboxykinase (GTP) gene transcription. J Biol Chem 1999; 274: 8813-22.
    • (1999) J Biol Chem , vol.274 , pp. 8813-8822
    • Leahy, P.1    Crawford, D.R.2    Grossman, G.3    Gronostajski, R.M.4    Hanson, R.W.5
  • 215
    • 28344438648 scopus 로고    scopus 로고
    • A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis
    • Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123: 819-31.
    • (2005) Cell , vol.123 , pp. 819-831
    • Fazi, F.1    Rosa, A.2    Fatica, A.3
  • 216
    • 70349242211 scopus 로고    scopus 로고
    • NFI-A directs the fate of hematopoietic progenitors to the erythroid or granulocytic lineage and controls beta-globin and G-CSF receptor expression
    • Starnes LM, Sorrentino A, Pelosi E, et al. NFI-A directs the fate of hematopoietic progenitors to the erythroid or granulocytic lineage and controls beta-globin and G-CSF receptor expression. Blood 2009; 114: 1753-63.
    • (2009) Blood , vol.114 , pp. 1753-1763
    • Starnes, L.M.1    Sorrentino, A.2    Pelosi, E.3
  • 217
    • 29144440077 scopus 로고    scopus 로고
    • MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation
    • Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 2005; 102:18081-6.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 18081-18086
    • Felli, N.1    Fontana, L.2    Pelosi, E.3
  • 218
    • 42249108682 scopus 로고    scopus 로고
    • Regulation of hematopoietic stem cells by the steel factor/KIT signaling pathway
    • Kent D, Copley M, Benz C, Dykstra B, Bowie M, Eaves C. Regulation of hematopoietic stem cells by the steel factor/KIT signaling pathway. Clin Cancer Res 2008; 14: 1926-30.
    • (2008) Clin Cancer Res , vol.14 , pp. 1926-1930
    • Kent, D.1    Copley, M.2    Benz, C.3    Dykstra, B.4    Bowie, M.5    Eaves, C.6
  • 219
    • 38349146518 scopus 로고    scopus 로고
    • MicroRNA miR-24 inhibit serythropoiesis by targeting active in type I receptor ALK4
    • Wang Q, Huang Z, Xue H, et al. MicroRNA miR-24 inhibit serythropoiesis by targeting active in type I receptor ALK4. Blood 2008; 111: 588-95.
    • (2008) Blood , vol.111 , pp. 588-595
    • Wang, Q.1    Huang, Z.2    Xue, H.3
  • 220
    • 34547955952 scopus 로고    scopus 로고
    • A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway
    • O'Carroll D, Mecklenbrauker I, Das PP, et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev 2007; 21: 1999-2004.
    • (2007) Genes Dev , vol.21 , pp. 1999-2004
    • O'Carroll, D.1    Mecklenbrauker, I.2    Das, P.P.3
  • 221
    • 33645525964 scopus 로고    scopus 로고
    • MicroRNA fingerprints during human megakaryocytopoiesis
    • Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 2006; 103: 5078-83.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 5078-5083
    • Garzon, R.1    Pichiorri, F.2    Palumbo, T.3
  • 222
    • 46449092527 scopus 로고    scopus 로고
    • A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis
    • Labbaye C, Spinello I, Quaranta MT, et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 2008; 10: 788-801.
    • (2008) Nat Cell Biol , vol.10 , pp. 788-801
    • Labbaye, C.1    Spinello, I.2    Quaranta, M.T.3
  • 223
    • 54849429362 scopus 로고    scopus 로고
    • MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors
    • Romania P, Lulli V, Pelosi E, Biffoni M, Peschle C, Marziali G. MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors. Br J Haematol 2008; 143: 570-80.
    • (2008) Br J Haematol , vol.143 , pp. 570-580
    • Romania, P.1    Lulli, V.2    Pelosi, E.3    Biffoni, M.4    Peschle, C.5    Marziali, G.6
  • 224
    • 34548299507 scopus 로고    scopus 로고
    • Methods for genetic modification of megakaryocytes and platelets
    • Pendaries C, Watson SP, Spalton JC. Methods for genetic modification of megakaryocytes and platelets. Platelets 2007; 18: 393-408.
    • (2007) Platelets , vol.18 , pp. 393-408
    • Pendaries, C.1    Watson, S.P.2    Spalton, J.C.3
  • 225
    • 0037028506 scopus 로고    scopus 로고
    • Transcriptional mechanisms regulating myeloid-specific genes
    • Skalnik DG. Transcriptional mechanisms regulating myeloid-specific genes. Gene 2002; 284: 1-21.
    • (2002) Gene , vol.284 , pp. 1-21
    • Skalnik, D.G.1
  • 226
    • 37549052500 scopus 로고    scopus 로고
    • PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis
    • Huang G, Zhang P, Hirai H, et al. PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat Genet 2008; 40: 51-60.
    • (2008) Nat Genet , vol.40 , pp. 51-60
    • Huang, G.1    Zhang, P.2    Hirai, H.3
  • 227
    • 0034717335 scopus 로고    scopus 로고
    • Regulation of B lymphocyte and macrophage development by graded expression of PU.1
    • DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 2000;288: 1439-41.
    • (2000) Science , vol.288 , pp. 1439-1441
    • Dekoter, R.P.1    Singh, H.2
  • 228
    • 43149115856 scopus 로고    scopus 로고
    • PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells
    • Feng R, Desbordes SC, Xie H, et al. PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci USA 2008; 105: 6057-62.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 6057-6062
    • Feng, R.1    Desbordes, S.C.2    Xie, H.3
  • 229
    • 0028136726 scopus 로고
    • Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages
    • Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcriptionfactor PU.1 in the development of multiple hematopoietic lineages. Science 1994; 265: 1573-7.
    • (1994) Science , vol.265 , pp. 1573-1577
    • Scott, E.W.1    Simon, M.C.2    Anastasi, J.3    Singh, H.4
  • 230
    • 0242549003 scopus 로고    scopus 로고
    • Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities
    • McKercher SR, Torbett BE, Anderson KL, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 1996; 15: 5647-58.
    • (1996) EMBO J , vol.15 , pp. 5647-5658
    • McKercher, S.R.1    Torbett, B.E.2    Anderson, K.L.3
  • 231
    • 31944450531 scopus 로고    scopus 로고
    • Inactivation of PU.1 in adult mice leads to the development of myeloidleukemia
    • Metcalf D, Dakic A, Mifsud S, Di Rago L, Wu L, Nutt S. Inactivation of PU.1 in adult mice leads to the development of myeloidleukemia. Proc Natl Acad Sci USA 2006; 103: 1486-91.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 1486-1491
    • Metcalf, D.1    Dakic, A.2    Mifsud, S.3    Rago, L.D.4    Wu, L.5    Nutt, S.6
  • 232
    • 0027480748 scopus 로고
    • The proto-oncogene PU.1 regulates expression of the myeloid-specific CD11b promoter
    • Pahl HL, Scheibe RJ, Zhang DE, et al. The proto-oncogene PU.1 regulates expression of the myeloid-specific CD11b promoter. J Biol Chem 1993; 268: 5014-20.
    • (1993) J Biol Chem , vol.268 , pp. 5014-5020
    • Pahl, H.L.1    Scheibe, R.J.2    Zhang, D.E.3
  • 233
    • 0028120907 scopus 로고
    • The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor
    • Zhang DE, Hetherington CJ, Chen HM, Tenen DG. The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 1994; 14: 373-81.
    • (1994) Mol Cell Biol , vol.14 , pp. 373-381
    • Zhang, D.E.1    Hetherington, C.J.2    Chen, H.M.3    Tenen, D.G.4
  • 234
    • 0029793902 scopus 로고    scopus 로고
    • PU.1(Spi-1) and C/EBP alpha regulate the granulocyte colony stimulating factor receptor promoter in myeloid cells
    • Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG. PU.1(Spi-1) and C/EBP alpha regulate the granulocyte colony stimulating factor receptor promoter in myeloid cells. Blood 1996;88: 1234-47.
    • (1996) Blood , vol.88 , pp. 1234-1247
    • Smith, L.T.1    Hohaus, S.2    Gonzalez, D.A.3    Dziennis, S.E.4    Tenen, D.G.5
  • 235
    • 0029121366 scopus 로고
    • PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene
    • Hohaus S, Petrovick MS, Voso MT, Sun Z, Zhang DE, Tenen DG. PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. Mol Cell Biol 1995; 15: 5830-45.
    • (1995) Mol Cell Biol , vol.15 , pp. 5830-5845
    • Hohaus, S.1    Petrovick, M.S.2    Voso, M.T.3    Sun, Z.4    Zhang, D.E.5    Tenen, D.G.6
  • 236
    • 33846593911 scopus 로고    scopus 로고
    • A two-step, PU.1-dependent mechanism for developmentally regulated chromatinre modeling and transcription of the c-fms gene
    • Krysinska H, Hoogenkamp M, Ingram R, et al. A two-step, PU.1-dependent mechanism for developmentally regulated chromatinre modeling and transcription of the c-fms gene. Mol Cell Biol 2007; 27: 878-87.
    • (2007) Mol Cell Biol , vol.27 , pp. 878-887
    • Krysinska, H.1    Hoogenkamp, M.2    Ingram, R.3
  • 237
    • 0033135651 scopus 로고    scopus 로고
    • Commitment to the monocytic lineage occurs in the absence of the transcription factor PU.1
    • Henkel GW, McKercher SR, Leenen PJ, Maki RA. Commitment to the monocytic lineage occurs in the absence of the transcription factor PU.1. Blood 1999; 93: 2849-58.
    • (1999) Blood , vol.93 , pp. 2849-2858
    • Henkel, G.W.1    McKercher, S.R.2    Leenen, P.J.3    Maki, R.A.4
  • 238
    • 0027509059 scopus 로고
    • Proto-oncogenes of the fos/jun family of transcription factors arepositive regulators of myeloid differentiation
    • Lord KA, Abdollahi A, Hoffman-Liebermann B, Liebermann DA. Proto-oncogenes of the fos/jun family of transcription factors arepositive regulators of myeloid differentiation. Mol Cell Biol 1993;13: 841-51.
    • (1993) Mol Cell Biol , vol.13 , pp. 841-851
    • Lord, K.A.1    Abdollahi, A.2    Hoffman-Liebermann, B.3    Liebermann, D.A.4
  • 239
    • 38049146022 scopus 로고    scopus 로고
    • The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation
    • Rosa A, Ballarino M, Sorrentino A, et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc Natl Acad Sci USA 2007; 104: 19849-54.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 19849-19854
    • Rosa, A.1    Ballarino, M.2    Sorrentino, A.3
  • 240
    • 67349240823 scopus 로고    scopus 로고
    • A new molecular network comprising PU.1, interferon regulatory factor proteins and miR-342 stimulates ATRA-mediated granulocytic differentiation of acute promyelocytic leukemia cells
    • De Marchis ML, Ballarino M, Salvatori B, Puzzolo MC, Bozzoni I, Fatica A. A new molecular network comprising PU.1, interferon regulatory factor proteins and miR-342 stimulates ATRA-mediated granulocytic differentiation of acute promyelocytic leukemia cells. Leukemia 2009; 23: 856-62.
    • (2009) Leukemia , vol.23 , pp. 856-862
    • de Marchis, M.L.1    Ballarino, M.2    Salvatori, B.3    Puzzolo, M.C.4    Bozzoni, I.5    Fatica, A.6
  • 242
    • 41149130219 scopus 로고    scopus 로고
    • Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder
    • O'Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008; 205: 585-94.
    • (2008) J Exp Med , vol.205 , pp. 585-594
    • O'Connell, R.M.1    Rao, D.S.2    Chaudhuri, A.A.3
  • 243
    • 14844354250 scopus 로고    scopus 로고
    • Accumulation of miR-155 and BICRNA in human B cell lymphomas
    • Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BICRNA in human B cell lymphomas. Proc Natl Acad Sci U SA 2005;102: 3627-32.
    • (2005) Proc Natl Acad Sci U SA , vol.102 , pp. 3627-3632
    • Eis, P.S.1    Tam, W.2    Sun, L.3
  • 244
    • 33646471662 scopus 로고    scopus 로고
    • Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice
    • Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 2006; 103:7024-9.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 7024-7029
    • Costinean, S.1    Zanesi, N.2    Pekarsky, Y.3
  • 245
    • 48749089460 scopus 로고    scopus 로고
    • PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element
    • Ebralidze AK, Guibal FC, Steidl U, Zhang P, Lee S, Bartholdy B, et al. PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. Genes Dev 2008; 22: 2085-92.
    • (2008) Genes Dev , vol.22 , pp. 2085-2092
    • Ebralidze, A.K.1    Guibal, F.C.2    Steidl, U.3    Zhang, P.4    Lee, S.5    Bartholdy, B.6
  • 246
    • 0026758202 scopus 로고
    • A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells
    • Scott LM, Civin CI, Rorth P, Friedman AD. A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 1992; 80: 1725-35.
    • (1992) Blood , vol.80 , pp. 1725-1735
    • Scott, L.M.1    Civin, C.I.2    Rorth, P.3    Friedman, A.D.4
  • 247
    • 0031029557 scopus 로고    scopus 로고
    • Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice
    • Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 1997; 94:569-74.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 569-574
    • Zhang, D.E.1    Zhang, P.2    Wang, N.D.3    Hetherington, C.J.4    Darlington, G.J.5    Tenen, D.G.6
  • 248
    • 0142124320 scopus 로고    scopus 로고
    • Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor
    • Dahl R, Walsh JC, Lancki D, et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol 2003; 4: 1029-36.
    • (2003) Nat Immunol , vol.4 , pp. 1029-1036
    • Dahl, R.1    Walsh, J.C.2    Lancki, D.3
  • 249
    • 34247483919 scopus 로고    scopus 로고
    • An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling
    • Fukao T, Fukuda Y, Kiga K, et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 2007; 129: 617-31.
    • (2007) Cell , vol.129 , pp. 617-631
    • Fukao, T.1    Fukuda, Y.2    Kiga, K.3
  • 250
    • 39849096995 scopus 로고    scopus 로고
    • Regulation of progenitor cell proliferation and granulocyte function by microRNA-223
    • Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451: 1125-9.
    • (2008) Nature , vol.451 , pp. 1125-1129
    • Johnnidis, J.B.1    Harris, M.H.2    Wheeler, R.T.3
  • 251
    • 58149252151 scopus 로고    scopus 로고
    • Stable knockdown of microRNA in vivo by lentiviral vectors
    • Gentner B, Schira G, Giustacchini A, et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 2009; 6: 63-6.
    • (2009) Nat Methods , vol.6 , pp. 63-66
    • Gentner, B.1    Schira, G.2    Giustacchini, A.3
  • 252
    • 60749111430 scopus 로고    scopus 로고
    • Regulation of lymphoid versus myeloid fate 'choice' by the transcription factor Mef2c
    • Stehling-Sun S, Dade J, Nutt SL, DeKoter RP, Camargo FD. Regulation of lymphoid versus myeloid fate 'choice' by the transcription factor Mef2c. Nat Immunol 2009; 10: 289-96.
    • (2009) Nat Immunol , vol.10 , pp. 289-296
    • Stehling-Sun, S.1    Dade, J.2    Nutt, S.L.3    Dekoter, R.P.4    Camargo, F.D.5
  • 253
    • 47149093377 scopus 로고    scopus 로고
    • The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate
    • Schuler A, Schwieger M, Engelmann A, et al. The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate. Blood 2008; 111: 4532-41.
    • (2008) Blood , vol.111 , pp. 4532-4541
    • Schuler, A.1    Schwieger, M.2    Engelmann, A.3
  • 255
    • 77950354353 scopus 로고    scopus 로고
    • Cell cycle regulator E2F1 and microRNA-223 comprise an auto regulatory negative feedback loop in acute myeloid leukemia
    • Pulikkan JA, Dengler V, Paramangalam PS, et al. Cell cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 2010; 115(9):1768-78.
    • (2010) Blood , vol.115 , Issue.9 , pp. 1768-1778
    • Pulikkan, J.A.1    Dengler, V.2    Paramangalam, P.S.3
  • 256
    • 35748979703 scopus 로고    scopus 로고
    • Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein
    • Fazi F, Racanicchi S, Zardo G, et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 2007; 12: 457-66.
    • (2007) Cancer Cell , vol.12 , pp. 457-466
    • Fazi, F.1    Racanicchi, S.2    Zardo, G.3
  • 257
    • 0028853334 scopus 로고
    • Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages
    • Tanaka T, Akira S, Yoshida K, et al. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 1995; 80: 353-61.
    • (1995) Cell , vol.80 , pp. 353-361
    • Tanaka, T.1    Akira, S.2    Yoshida, K.3
  • 258
    • 0033559499 scopus 로고    scopus 로고
    • Modulation of endocytosis in nuclear factor IL-6(-/-) macrophagesis responsible for a high susceptibility to intracellular bacterial infection
    • Pizarro-Cerda J, Desjardins M, Moreno E, Akira S, Gorvel JP. Modulation of endocytosis in nuclear factor IL-6(-/-) macrophagesis responsible for a high susceptibility to intracellular bacterial infection. J Immunol 1999; 162: 3519-26.
    • (1999) J Immunol , vol.162 , pp. 3519-3526
    • Pizarro-Cerda, J.1    Desjardins, M.2    Moreno, E.3    Akira, S.4    Gorvel, J.P.5
  • 259
    • 0029024113 scopus 로고
    • Lymphoproliferative disorder and imbalanced T-helper response in C/EBP beta-deficient mice
    • Screpanti I, Romani L, Musiani P, et al. Lymphoproliferative disorder and imbalanced T-helper response in C/EBP beta-deficient mice. EMBO J 1995; 14: 1932-41.
    • (1995) EMBO J , vol.14 , pp. 1932-1941
    • Screpanti, I.1    Romani, L.2    Musiani, P.3
  • 260
    • 42449099998 scopus 로고    scopus 로고
    • Impaired response to GM-CSF and G-CSF, and enhanced apoptosis in C/EBP beta-deficient hematopoietic cells
    • Akagi T, Saitoh T, O'Kelly J, Akira S, Gombart AF, Koeffler HP. Impaired response to GM-CSF and G-CSF, and enhanced apoptosis in C/EBP beta-deficient hematopoietic cells. Blood 2008; 111:2999-3004.
    • (2008) Blood , vol.111 , pp. 2999-3004
    • Akagi, T.1    Saitoh, T.2    O'Kelly, J.3    Akira, S.4    Gombart, A.F.5    Koeffler, H.P.6
  • 262
    • 0031008479 scopus 로고    scopus 로고
    • CCAAT/enhancer binding protein epsilon is preferentially up-regulated during granulocytic differentiation and its functional versatility is determined by alternative use of promoters and differential splicing
    • Yamanaka R, Kim GD, Radomska HS, et al. CCAAT/enhancer binding protein epsilon is preferentially up-regulated during granulocytic differentiation and its functional versatility is determined by alternative use of promoters and differential splicing. Proc Natl Acad Sci USA 1997; 94: 6462-7.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 6462-6467
    • Yamanaka, R.1    Kim, G.D.2    Radomska, H.S.3
  • 263
    • 0030659176 scopus 로고    scopus 로고
    • Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice
    • Yamanaka R, Barlow C, Lekstrom-Himes J, et al. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice. Proc Natl Acad Sci USA 1997; 94: 13187-92.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 13187-13192
    • Yamanaka, R.1    Barlow, C.2    Lekstrom-Himes, J.3
  • 264
    • 0033532546 scopus 로고    scopus 로고
    • Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon
    • Lekstrom-Himes JA, Dorman SE, Kopar P, Holland SM, Gallin JI. Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon. J Exp Med 1999; 189:1847-52.
    • (1999) J Exp Med , vol.189 , pp. 1847-1852
    • Lekstrom-Himes, J.A.1    Dorman, S.E.2    Kopar, P.3    Holland, S.M.4    Gallin, J.I.5
  • 265
    • 0034746508 scopus 로고    scopus 로고
    • C/EBPepsilon -/- mice: Increased rate of myeloid proliferation andapoptosis
    • Verbeek W, Wachter M, Lekstrom-Himes J, Koeffler HP. C/EBPepsilon -/- mice: increased rate of myeloid proliferation andapoptosis. Leukemia 2001; 15: 103-11.
    • (2001) Leukemia , vol.15 , pp. 103-111
    • Verbeek, W.1    Wachter, M.2    Lekstrom-Himes, J.3    Koeffler, H.P.4
  • 266
    • 0033231036 scopus 로고    scopus 로고
    • Myeloid transcription factor C/EBPepsilon is involved in the positive regulation of lactoferrin gene expression in neutrophils
    • Verbeek W, Lekstrom-Himes J, Park DJ, et al. Myeloid transcription factor C/EBPepsilon is involved in the positive regulation of lactoferrin gene expression in neutrophils. Blood 1999; 94: 3141-50.
    • (1999) Blood , vol.94 , pp. 3141-3150
    • Verbeek, W.1    Lekstrom-Himes, J.2    Park, D.J.3
  • 267
    • 0032694990 scopus 로고    scopus 로고
    • CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment
    • Park DJ, Chumakov AM, Vuong PT, et al. CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment. J Clin Invest 1999; 103: 1399-408.
    • (1999) J Clin Invest , vol.103 , pp. 1399-1408
    • Park, D.J.1    Chumakov, A.M.2    Vuong, P.T.3
  • 268
    • 0037244284 scopus 로고    scopus 로고
    • Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation
    • Hock H, Hamblen MJ, Rooke HM, et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 2003; 18: 109-20.
    • (2003) Immunity , vol.18 , pp. 109-120
    • Hock, H.1    Hamblen, M.J.2    Rooke, H.M.3
  • 269
    • 85047697279 scopus 로고    scopus 로고
    • High levels of the onco-protein Gfi-1 accelerate T-cell proliferation and inhibit activation induced T-cell death in Jurkat T-cells
    • Karsunky H, Mende I, Schmidt T, Moroy T. High levels of the onco-protein Gfi-1 accelerate T-cell proliferation and inhibit activation induced T-cell death in Jurkat T-cells. Oncogene 2002; 21:1571-9.
    • (2002) Oncogene , vol.21 , pp. 1571-1579
    • Karsunky, H.1    Mende, I.2    Schmidt, T.3    Moroy, T.4
  • 270
    • 0037687417 scopus 로고    scopus 로고
    • Targets of the transcriptional repressor oncoprotein Gfi-1
    • Duan Z, Horwitz M. Targets of the transcriptional repressor oncoprotein Gfi-1. Proc Natl Acad Sci USA 2003; 100: 5932-7.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 5932-5937
    • Duan, Z.1    Horwitz, M.2
  • 271
    • 34249714440 scopus 로고    scopus 로고
    • The transcriptional repressor GFI-1 antagonizes PU.1 activity through protein-protein interaction
    • Dahl R, Iyer SR, Owens KS, Cuylear DD, Simon MC. The transcriptional repressor GFI-1 antagonizes PU.1 activity through protein-protein interaction. J Biol Chem 2007; 282: 6473-83.
    • (2007) J Biol Chem , vol.282 , pp. 6473-6483
    • Dahl, R.1    Iyer, S.R.2    Owens, K.S.3    Cuylear, D.D.4    Simon, M.C.5
  • 272
    • 67049108074 scopus 로고    scopus 로고
    • Gfi1 integrates progenitor versus granulocytic transcriptional programming
    • Horman SR, Velu CS, Chaubey A, et al. Gfi1 integrates progenitor versus granulocytic transcriptional programming. Blood 2009; 113:5466-75.
    • (2009) Blood , vol.113 , pp. 5466-5475
    • Horman, S.R.1    Velu, C.S.2    Chaubey, A.3
  • 273
    • 66549105485 scopus 로고    scopus 로고
    • Gfi1 regulates miR-21 andmiR-196b to control myelopoiesis
    • Velu CS, Baktula AM, Grimes HL. Gfi1 regulates miR-21 andmiR-196b to control myelopoiesis. Blood 2009; 113: 4720-8.
    • (2009) Blood , vol.113 , pp. 4720-4728
    • Velu, C.S.1    Baktula, A.M.2    Grimes, H.L.3
  • 275
    • 0028818983 scopus 로고
    • Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors
    • Reid A, Gould A, Brand N, et al. Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors. Blood 1995; 86: 4544-52.
    • (1995) Blood , vol.86 , pp. 4544-4552
    • Reid, A.1    Gould, A.2    Brand, N.3
  • 276
    • 0031842974 scopus 로고    scopus 로고
    • The promyelocytic leukemiazinc finger protein affects myeloid cell growth, differentiation, and apoptosis
    • Shaknovich R, Yeyati PL, Ivins S, et al. The promyelocytic leukemiazinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol Cell Biol 1998; 18: 5533-45.
    • (1998) Mol Cell Biol , vol.18 , pp. 5533-5545
    • Shaknovich, R.1    Yeyati, P.L.2    Ivins, S.3
  • 277
    • 0035761424 scopus 로고    scopus 로고
    • The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937cells through a physical interaction with vitamin D(3) receptor
    • Ward JO, McConnell MJ, Carlile GW, Pandolfi PP, Licht JD, Freedman LP. The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937cells through a physical interaction with vitamin D(3) receptor. Blood 2001; 98: 3290-300.
    • (2001) Blood , vol.98 , pp. 3290-3300
    • Ward, J.O.1    McConnell, M.J.2    Carlile, G.W.3    Pandolfi, P.P.4    Licht, J.D.5    Freedman, L.P.6
  • 278
    • 69749125286 scopus 로고    scopus 로고
    • PLZF is a regulator of homeostatic and cytokine-induced myeloid development
    • Doulatov S, Notta F, Rice KL, et al. PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes Dev 2009; 23: 2076-87.
    • (2009) Genes Dev , vol.23 , pp. 2076-2087
    • Doulatov, S.1    Notta, F.2    Rice, K.L.3
  • 280
    • 34547152101 scopus 로고    scopus 로고
    • SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb dependent transcriptional repression
    • Tillmanns S, Otto C, Jaffray E, et al. SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb dependent transcriptional repression. Mol Cell Biol 2007; 27:5554-64.
    • (2007) Mol Cell Biol , vol.27 , pp. 5554-5564
    • Tillmanns, S.1    Otto, C.2    Jaffray, E.3
  • 281
    • 0141765815 scopus 로고    scopus 로고
    • MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth
    • Blanchi B, Kelly LM, Viemari JC, et al. MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nat Neurosci 2003; 6: 1091-100.
    • (2003) Nat Neurosci , vol.6 , pp. 1091-1100
    • Blanchi, B.1    Kelly, L.M.2    Viemari, J.C.3
  • 282
    • 33748669268 scopus 로고    scopus 로고
    • Development of macrophages with altered actin organization in the absence of MafB
    • Aziz A, Vanhille L, Mohideen P, et al. Development of macrophages with altered actin organization in the absence of MafB. Mol Cell Biol 2006; 26: 6808-18.
    • (2006) Mol Cell Biol , vol.26 , pp. 6808-6818
    • Aziz, A.1    Vanhille, L.2    Mohideen, P.3
  • 283
    • 67650590934 scopus 로고    scopus 로고
    • MafB restricts MCSF-dependent myeloid commitment divisions of hematopoietic stem cells
    • Sarrazin S, Mossadegh-Keller N, Fukao T, et al. MafB restricts MCSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 2009; 138: 300-13.
    • (2009) Cell , vol.138 , pp. 300-313
    • Sarrazin, S.1    Mossadegh-Keller, N.2    Fukao, T.3
  • 284
    • 70449393651 scopus 로고    scopus 로고
    • MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages
    • Aziz A, Soucie E, Sarrazin S, Sieweke MH. MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. Science 2009; 326: 867-71.
    • (2009) Science , vol.326 , pp. 867-871
    • Aziz, A.1    Soucie, E.2    Sarrazin, S.3    Sieweke, M.H.4
  • 286
    • 34247571525 scopus 로고    scopus 로고
    • Cdk6 blocks myeloid differentiation by interfering with Runx1DNA binding and Runx1-C/EBPalpha interaction
    • Fujimoto T, Anderson K, Jacobsen SE, Nishikawa SI, Nerlov C. Cdk6 blocks myeloid differentiation by interfering with Runx1DNA binding and Runx1-C/EBPalpha interaction. EMBO J 2007;26: 2361-70.
    • (2007) EMBO J , vol.26 , pp. 2361-2370
    • Fujimoto, T.1    Anderson, K.2    Jacobsen, S.E.3    Nishikawa, S.I.4    Nerlov, C.5
  • 287
    • 34347383305 scopus 로고    scopus 로고
    • MicroRNAs 17-5p-20a-106acontrol monocytopoiesis through AML1 targeting and M-CSF receptor up regulation
    • Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p-20a-106acontrol monocytopoiesis through AML1 targeting and M-CSF receptor up regulation. Nat Cell Biol 2007; 9: 775-87.
    • (2007) Nat Cell Biol , vol.9 , pp. 775-787
    • Fontana, L.1    Pelosi, E.2    Greco, P.3
  • 288
    • 64149120256 scopus 로고    scopus 로고
    • MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally down regulating Runx1
    • Feng J, Iwama A, Satake M, Kohu K. MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally down regulating Runx1. Br J Haematol 2009; 145:412-23.
    • (2009) Br J Haematol , vol.145 , pp. 412-423
    • Feng, J.1    Iwama, A.2    Satake, M.3    Kohu, K.4
  • 289
    • 74049094042 scopus 로고    scopus 로고
    • Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification
    • Gandillet A, Serrano AG, Pearson S, Lie-A-Ling M, Lacaud G, Kouskoff V. Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood 2009; 23: 4813-22.
    • (2009) Blood , vol.23 , pp. 4813-4822
    • Gandillet, A.1    Serrano, A.G.2    Pearson, S.3    Lie-A-Ling, M.4    Lacaud, G.5    Kouskoff, V.6
  • 290
    • 7244231429 scopus 로고    scopus 로고
    • Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells
    • Hock H, Hambien MJ, Rooke HM, et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 2004; 7011: 1002-7.
    • (2004) Nature , vol.7011 , pp. 1002-1007
    • Hock, H.1    Hambien, M.J.2    Rooke, H.M.3
  • 291
    • 34147117905 scopus 로고    scopus 로고
    • Zfx controls theself-renewal of embryonic and hematopoietic stem cells
    • Galan-Caridad JM, Harel S, Arenzana TL, et al. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 2007;2: 345-57.
    • (2007) Cell , vol.2 , pp. 345-357
    • Galan-Caridad, J.M.1    Harel, S.2    Arenzana, T.L.3
  • 292
    • 77950353236 scopus 로고    scopus 로고
    • Slug deficiency enhances self-renewal of hematopoietic stem cells during hematopoieticre generation
    • Sun Y, Shao L, Bai H, Wang ZZ, Wu WS. Slug deficiency enhances self-renewal of hematopoietic stem cells during hematopoieticre generation. Blood 2010; 115(9): 1709-17.
    • (2010) Blood , vol.115 , Issue.9 , pp. 1709-1717
    • Sun, Y.1    Shao, L.2    Bai, H.3    Wang, Z.Z.4    Wu, W.S.5
  • 293
    • 34548462072 scopus 로고    scopus 로고
    • Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors
    • Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 2007; 3: 324-37.
    • (2007) Cell Stem Cell , vol.3 , pp. 324-337
    • Jude, C.D.1    Climer, L.2    Xu, D.3    Artinger, E.4    Fisher, J.K.5    Ernst, P.6
  • 294
    • 61849108629 scopus 로고    scopus 로고
    • Impaired function of primitive hematopoietic cells in mice lacking the Mixed-Lineage-Leukemia homolog MLL5
    • Madan V, Madan B, Brykczynska U, et al. Impaired function of primitive hematopoietic cells in mice lacking the Mixed-Lineage-Leukemia homolog MLL5. Blood 2009; 7: 1444-54.
    • (2009) Blood , vol.7 , pp. 1444-1454
    • Madan, V.1    Madan, B.2    Brykczynska, U.3
  • 295
    • 61849087292 scopus 로고    scopus 로고
    • MLL5 contributes to hematopoietic stem cell fitness and homeostasis
    • Zhang Y, Wong J, Klinger M, Tran MT, Shannon KM, Killeen N. MLL5 contributes to hematopoietic stem cell fitness and homeostasis. Blood 2009; 7: 1455-63.
    • (2009) Blood , vol.7 , pp. 1455-1463
    • Zhang, Y.1    Wong, J.2    Klinger, M.3    Tran, M.T.4    Shannon, K.M.5    Killeen, N.6
  • 296
    • 43249083123 scopus 로고    scopus 로고
    • The role of the chromatin remodelerMi-2β in hematopoietic stem cell self-renewal and multilineage differentiation
    • Yoshida T, Hazan I, Zhang J, et al. The role of the chromatin remodelerMi-2β in hematopoietic stem cell self-renewal and multilineagedifferentiation. Genes Dev 2008; 22: 1174-1189.
    • (2008) Genes Dev , vol.22 , pp. 1174-1189
    • Yoshida, T.1    Hazan, I.2    Zhang, J.3
  • 297
    • 0038349957 scopus 로고    scopus 로고
    • Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells
    • Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003;6937: 302-5.
    • (2003) Nature , vol.6937 , pp. 302-305
    • Park, I.K.1    Qian, D.2    Kiel, M.3
  • 298
    • 2942618531 scopus 로고    scopus 로고
    • Polycomb group gene mel-18 modulates the self-renewal activity andcell cycle status of hematopoietic stem cells
    • Kajiume T, Ninomiya Y, Ishihara H, Kanno R, Kanno M. Polycomb group gene mel-18 modulates the self-renewal activity andcell cycle status of hematopoietic stem cells. Exp Hematol 2004; 6:571-8.
    • (2004) Exp Hematol , vol.6 , pp. 571-578
    • Kajiume, T.1    Ninomiya, Y.2    Ishihara, H.3    Kanno, R.4    Kanno, M.5
  • 299
    • 3242759042 scopus 로고    scopus 로고
    • Defective long-term repopulating ability in hematopoietic stem cells lacking the Polycomb group gene rae28
    • Kim JY, Sawada A, Tokimasa S, et al. Defective long-term repopulating ability in hematopoietic stem cells lacking the Polycomb group gene rae28. Eur J Hematol 2004; 2: 75-84.
    • (2004) Eur J Hematol , vol.2 , pp. 75-84
    • Kim, J.Y.1    Sawada, A.2    Tokimasa, S.3
  • 300
    • 43249127096 scopus 로고    scopus 로고
    • Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity
    • Majewski IJ, Blewitt ME, de Graaf CA, et al. Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity. PLoS Biol 2008; 4: e93.
    • (2008) PLoS Biol , vol.4
    • Majewski, I.J.1    Blewitt, M.E.2    de Graaf, C.A.3
  • 301
    • 33344469959 scopus 로고    scopus 로고
    • The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion
    • Kamminga LM, Bystrykh LV, de Boer A, et al. The Polycom bgroup gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 2006; 5: 2170-9.
    • (2006) Blood , vol.5 , pp. 2170-2179
    • Kamminga, L.M.1    Bystrykh, L.V.2    de Boer, A.3
  • 302
    • 70450253358 scopus 로고    scopus 로고
    • Cited2 is an essential regulator of adult hematopoietic stem cells
    • Kranc KR, Schepers H, Rodrigues NP, et al. Cited2 is an essential regulator of adult hematopoietic stem cells. Cell Stem Cell 2009; 6:659-65.
    • (2009) Cell Stem Cell , vol.6 , pp. 659-665
    • Kranc, K.R.1    Schepers, H.2    Rodrigues, N.P.3
  • 303
    • 56549084319 scopus 로고    scopus 로고
    • Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity
    • Laurenti E, Varnum-Finney B, Wilson A, et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 2008; 6: 611-24.
    • (2008) Cell Stem Cell , vol.6 , pp. 611-624
    • Laurenti, E.1    Varnum-Finney, B.2    Wilson, A.3
  • 304
    • 8644219660 scopus 로고    scopus 로고
    • Oskarsson T, et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation
    • Wilson A, Murphy MJ, Oskarsson T, et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004; 22: 2747-63.
    • (2004) Genes Dev , vol.22 , pp. 2747-2763
    • Wilson, A.1    Murphy, M.J.2
  • 305
    • 33644819269 scopus 로고    scopus 로고
    • The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells
    • Lacorazza HD, Yamada T, Liu Y, et al. The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell 2006; 3: 175-87.
    • (2006) Cancer Cell , vol.3 , pp. 175-187
    • Lacorazza, H.D.1    Yamada, T.2    Liu, Y.3
  • 306
    • 58049216794 scopus 로고    scopus 로고
    • P53 regulates hematopoietic stem cell quiescence
    • Liu Y, Elf SE, Miyata Y, al. Regulates hematopoietic stem cell quiescence. Cell Stem Cell 2009; 1: 37-48.
    • (2009) Cell Stem Cell , vol.1 , pp. 37-48
    • Liu, Y.1    Elf, S.E.2    Miyata, Y.3
  • 308
    • 39749099315 scopus 로고    scopus 로고
    • MLLT3 regulates early human erythroid and megakaryocytic cell fatel
    • Pina C, May G, Soneji S, Hong D, Enver T. MLLT3 regulates early human erythroid and megakaryocytic cell fate. Cell Stem Cell 2008; 3: 264-73.
    • (2008) Cell Stem Cell , vol.3 , pp. 264-273
    • Pina, C.1    May, G.2    Soneji, S.3    Hong, D.4
  • 309
    • 57849083996 scopus 로고    scopus 로고
    • Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A
    • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 2008; 5909: 1839-42.
    • (2008) Science , vol.5909 , pp. 1839-1842
    • Sankaran, V.G.1    Menne, T.F.2    Xu, J.3
  • 310
    • 39449110058 scopus 로고    scopus 로고
    • Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis
    • Sankaran VG, Orkin SH, Walkley CR. Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev 2008; 4: 463-75.
    • (2008) Genes Dev , vol.4 , pp. 463-475
    • Sankaran, V.G.1    Orkin, S.H.2    Walkley, C.R.3
  • 311
    • 11144248047 scopus 로고    scopus 로고
    • Retinoblastoma promotes definitive erythropoiesis by repressing Id2 in fetal liver macrophages
    • Iavarone A, King ER, Dai XM, Leone G, Stanley ER, Lasorella A. Retinoblastoma promotes definitive erythropoiesis by repressing Id2 in fetal liver macrophages. Nature 2004; 7020: 1040-5.
    • (2004) Nature , vol.7020 , pp. 1040-1045
    • Iavarone, A.1    King, E.R.2    Dai, X.M.3    Leone, G.4    Stanley, E.R.5    Lasorella, A.6
  • 312
    • 51649131005 scopus 로고    scopus 로고
    • Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins
    • Ji M, Li H, Suh HC, Klarmann KD, Yokota Y, Keller JR. Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood 2008; 4: 1068-77.
    • (2008) Blood , vol.4 , pp. 1068-1077
    • Ji, M.1    Li, H.2    Suh, H.C.3    Klarmann, K.D.4    Yokota, Y.5    Keller, J.R.6
  • 313
    • 0037179844 scopus 로고    scopus 로고
    • PLZF induces megakaryocyticd evelopmenty, activates Tpo receptor expression and interacts with GATA1 protein
    • Labbaye C, Quaranta MT, Pagliuca A, et al. PLZF induces megakaryocytic developmenty, activates Tpo receptor expression and interacts with GATA1 protein. Oncogene 2002; 43: 6669-79.
    • (2002) Oncogene , vol.43 , pp. 6669-6679
    • Labbaye, C.1    Quaranta, M.T.2    Pagliuca, A.3
  • 314
    • 70349246859 scopus 로고    scopus 로고
    • C-Myc-mediated control of cell fatein megakaryocyte-erythrocyte progenitors
    • Guo Y, Niu C, Breslin P, et al. c-Myc-mediated control of cell fatein megakaryocyte-erythrocyte progenitors. Blood 2009; 10: 2097-106.
    • (2009) Blood , vol.10 , pp. 2097-2106
    • Guo, Y.1    Niu, C.2    Breslin, P.3
  • 315
    • 70349578960 scopus 로고    scopus 로고
    • Expression of miR-210 during erythroid differentiation and induction of gamma-globin gene expression
    • Bianchi N, Zuccato G, Lampronti I, Borgatti M, Gambari R. Expression of miR-210 during erythroid differentiation and induction of gamma-globin gene expression. BMB Rep 2009; 8: 493-9.
    • (2009) BMB Rep , vol.8 , pp. 493-499
    • Bianchi, N.1    Zuccato, G.2    Lampronti, I.3    Borgatti, M.4    Gambari, R.5
  • 316
    • 19344378494 scopus 로고    scopus 로고
    • Differentialregulation of granulopoiesis by the basic helix-loop-helix transcriptional inhibitors Id1 and Id2
    • Buitenhuis M, van Deutekom HW, Verhangen LP, et al. Differentialregulation of granulopoiesis by the basic helix-loop-helix transcriptional inhibitors Id1 and Id2. Blood 2005; 11: 4272-81.
    • (2005) Blood , vol.11 , pp. 4272-4281
    • Buitenhuis, M.1    van Deutekom, H.W.2    Verhangen, L.P.3
  • 317
    • 58149169001 scopus 로고    scopus 로고
    • Twist-2 controls myeloidlineage development and function
    • Sharabi AB, Aldrich M, Sosic D, et al. Twist-2 controls myeloidlineage development and function. PLoS Biol 2008; 12: e316.
    • (2008) PLoS Biol , vol.12
    • Sharabi, A.B.1    Aldrich, M.2    Sosic, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.