메뉴 건너뛰기




Volumn 36, Issue 3, 2011, Pages 133-140

ATR: A master conductor of cellular responses to DNA replication stress

Author keywords

[No Author keywords available]

Indexed keywords

ATM PROTEIN; ATR PROTEIN; BRCA1 PROTEIN; CHECKPOINT KINASE 1; CHECKPOINT KINASE 2; CYCLIN DEPENDENT KINASE 1; CYCLIN DEPENDENT KINASE 2; DNA DIRECTED DNA POLYMERASE ALPHA; DOUBLE STRANDED DNA; FANCONI ANEMIA PROTEIN; PROTEIN RAD9; PROTEIN TYROSINE PHOSPHATASE; SINGLE STRANDED DNA;

EID: 79952454660     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2010.09.005     Document Type: Review
Times cited : (235)

References (100)
  • 1
    • 0035449355 scopus 로고    scopus 로고
    • Cell cycle checkpoint signaling through the ATM and ATR kinases
    • Abraham R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001, 15:2177-2196.
    • (2001) Genes Dev. , vol.15 , pp. 2177-2196
    • Abraham, R.T.1
  • 2
    • 0035941021 scopus 로고    scopus 로고
    • ATR and ATRIP: partners in checkpoint signaling
    • Cortez D., et al. ATR and ATRIP: partners in checkpoint signaling. Science 2001, 294:1713-1716.
    • (2001) Science , vol.294 , pp. 1713-1716
    • Cortez, D.1
  • 3
    • 37349014081 scopus 로고    scopus 로고
    • Tel2 regulates the stability of PI3K-related protein kinases
    • Takai H., et al. Tel2 regulates the stability of PI3K-related protein kinases. Cell 2007, 131:1248-1259.
    • (2007) Cell , vol.131 , pp. 1248-1259
    • Takai, H.1
  • 4
    • 77956856907 scopus 로고    scopus 로고
    • Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes
    • Takai H., et al. Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev. 2010, 24:2019-2030.
    • (2010) Genes Dev. , vol.24 , pp. 2019-2030
    • Takai, H.1
  • 5
    • 77956283656 scopus 로고    scopus 로고
    • A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability
    • Hurov K.E., et al. A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev. 2010, 24:1939-1950.
    • (2010) Genes Dev. , vol.24 , pp. 1939-1950
    • Hurov, K.E.1
  • 6
    • 0037567268 scopus 로고    scopus 로고
    • Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
    • Zou L., Elledge S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003, 300:1542-1548.
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge, S.J.2
  • 7
    • 33845607102 scopus 로고    scopus 로고
    • The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint
    • Majka J., et al. The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol. Cell 2006, 24:891-901.
    • (2006) Mol. Cell , vol.24 , pp. 891-901
    • Majka, J.1
  • 8
    • 34247257202 scopus 로고    scopus 로고
    • The structural determinants of checkpoint activation
    • MacDougall C.A., et al. The structural determinants of checkpoint activation. Genes Dev. 2007, 21:898-903.
    • (2007) Genes Dev. , vol.21 , pp. 898-903
    • MacDougall, C.A.1
  • 9
    • 4243156107 scopus 로고    scopus 로고
    • Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA
    • Ellison V., Stillman B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol. 2003, 1:E33.
    • (2003) PLoS Biol. , vol.1
    • Ellison, V.1    Stillman, B.2
  • 10
    • 0345564858 scopus 로고    scopus 로고
    • Replication protein A-mediated recruitment and activation of Rad17 complexes
    • Zou L., et al. Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:13827-13832.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 13827-13832
    • Zou, L.1
  • 11
    • 0037080675 scopus 로고    scopus 로고
    • Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin
    • Zou L., et al. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 2002, 16:198-208.
    • (2002) Genes Dev. , vol.16 , pp. 198-208
    • Zou, L.1
  • 12
    • 42949130159 scopus 로고    scopus 로고
    • Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage
    • Bonilla C.Y., et al. Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol. Cell 2008, 30:267-276.
    • (2008) Mol. Cell , vol.30 , pp. 267-276
    • Bonilla, C.Y.1
  • 13
    • 34948889415 scopus 로고    scopus 로고
    • The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR
    • Lee J., et al. The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J. Biol. Chem. 2007, 282:28036-28044.
    • (2007) J. Biol. Chem. , vol.282 , pp. 28036-28044
    • Lee, J.1
  • 14
    • 34250705797 scopus 로고    scopus 로고
    • The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1
    • Delacroix S., et al. The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev. 2007, 21:1472-1477.
    • (2007) Genes Dev. , vol.21 , pp. 1472-1477
    • Delacroix, S.1
  • 15
    • 33644757806 scopus 로고    scopus 로고
    • TopBP1 activates the ATR-ATRIP complex
    • Kumagai A., et al. TopBP1 activates the ATR-ATRIP complex. Cell 2006, 124:943-955.
    • (2006) Cell , vol.124 , pp. 943-955
    • Kumagai, A.1
  • 16
    • 65249139994 scopus 로고    scopus 로고
    • ATR signaling at a glance
    • Shiotani B., Zou L. ATR signaling at a glance. J. Cell Sci. 2009, 122:301-304.
    • (2009) J. Cell Sci. , vol.122 , pp. 301-304
    • Shiotani, B.1    Zou, L.2
  • 17
    • 47749141560 scopus 로고    scopus 로고
    • ATR: an essential regulator of genome integrity
    • Cimprich K.A., Cortez D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 2008, 9:616-627.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 616-627
    • Cimprich, K.A.1    Cortez, D.2
  • 18
    • 34247251276 scopus 로고    scopus 로고
    • Single- and double-stranded DNA: building a trigger of ATR-mediated DNA damage response
    • Zou L. Single- and double-stranded DNA: building a trigger of ATR-mediated DNA damage response. Genes Dev. 2007, 21:879-885.
    • (2007) Genes Dev. , vol.21 , pp. 879-885
    • Zou, L.1
  • 19
    • 33646777679 scopus 로고    scopus 로고
    • Rapid activation of ATR by ionizing radiation requires ATM and Mre11
    • Myers J.S., Cortez D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J. Biol. Chem. 2006, 281:9346-9350.
    • (2006) J. Biol. Chem. , vol.281 , pp. 9346-9350
    • Myers, J.S.1    Cortez, D.2
  • 20
    • 30344463835 scopus 로고    scopus 로고
    • ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks
    • Jazayeri A., et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 2006, 8:37-45.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 37-45
    • Jazayeri, A.1
  • 21
    • 61649093808 scopus 로고    scopus 로고
    • Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks
    • Shiotani B., Zou L. Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol. Cell 2009, 33:547-558.
    • (2009) Mol. Cell , vol.33 , pp. 547-558
    • Shiotani, B.1    Zou, L.2
  • 22
    • 18244371925 scopus 로고    scopus 로고
    • Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint
    • Byun T.S., et al. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 2005, 19:1040-1052.
    • (2005) Genes Dev. , vol.19 , pp. 1040-1052
    • Byun, T.S.1
  • 23
    • 0033637837 scopus 로고    scopus 로고
    • Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha
    • Walter J., Newport J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol. Cell 2000, 5:617-627.
    • (2000) Mol. Cell , vol.5 , pp. 617-627
    • Walter, J.1    Newport, J.2
  • 24
    • 75949092280 scopus 로고    scopus 로고
    • BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control
    • Gong Z., et al. BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol. Cell 2010, 37:438-446.
    • (2010) Mol. Cell , vol.37 , pp. 438-446
    • Gong, Z.1
  • 25
    • 72149132821 scopus 로고    scopus 로고
    • Identification of SMARCAL1 as a component of the DNA damage response
    • Postow L., et al. Identification of SMARCAL1 as a component of the DNA damage response. J. Biol. Chem. 2009, 284:35951-35961.
    • (2009) J. Biol. Chem. , vol.284 , pp. 35951-35961
    • Postow, L.1
  • 26
    • 70350118815 scopus 로고    scopus 로고
    • The annealing helicase HARP protects stalled replication forks
    • Yuan J., et al. The annealing helicase HARP protects stalled replication forks. Genes Dev. 2009, 23:2394-2399.
    • (2009) Genes Dev. , vol.23 , pp. 2394-2399
    • Yuan, J.1
  • 27
    • 70350103969 scopus 로고    scopus 로고
    • The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA
    • Yusufzai T., et al. The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev. 2009, 23:2400-2404.
    • (2009) Genes Dev. , vol.23 , pp. 2400-2404
    • Yusufzai, T.1
  • 28
    • 70350088521 scopus 로고    scopus 로고
    • The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart
    • Ciccia A., et al. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev. 2009, 23:2415-2425.
    • (2009) Genes Dev. , vol.23 , pp. 2415-2425
    • Ciccia, A.1
  • 29
    • 70350111290 scopus 로고    scopus 로고
    • The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks
    • Bansbach C.E., et al. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev. 2009, 23:2405-2414.
    • (2009) Genes Dev. , vol.23 , pp. 2405-2414
    • Bansbach, C.E.1
  • 30
    • 0034703330 scopus 로고    scopus 로고
    • Activation of the DNA replication checkpoint through RNA synthesis by primase
    • Michael W.M., et al. Activation of the DNA replication checkpoint through RNA synthesis by primase. Science 2000, 289:2133-2137.
    • (2000) Science , vol.289 , pp. 2133-2137
    • Michael, W.M.1
  • 31
    • 0037106186 scopus 로고    scopus 로고
    • A requirement for replication in activation of the ATR-dependent DNA damage checkpoint
    • Lupardus P.J., et al. A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. Genes Dev. 2002, 16:2327-2332.
    • (2002) Genes Dev. , vol.16 , pp. 2327-2332
    • Lupardus, P.J.1
  • 32
    • 77951193923 scopus 로고    scopus 로고
    • Continued primer synthesis at stalled replication forks contributes to checkpoint activation
    • Van C., et al. Continued primer synthesis at stalled replication forks contributes to checkpoint activation. J. Cell Biol. 2010, 189:233-246.
    • (2010) J. Cell Biol. , vol.189 , pp. 233-246
    • Van, C.1
  • 33
    • 29544437558 scopus 로고    scopus 로고
    • Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
    • Lopes M., et al. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 2006, 21:15-27.
    • (2006) Mol. Cell , vol.21 , pp. 15-27
    • Lopes, M.1
  • 34
    • 77952413358 scopus 로고    scopus 로고
    • Postreplication gaps at UV lesions are signals for checkpoint activation
    • Callegari A.J., et al. Postreplication gaps at UV lesions are signals for checkpoint activation. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:8219-8224.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 8219-8224
    • Callegari, A.J.1
  • 35
    • 71149093704 scopus 로고    scopus 로고
    • The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms
    • Navadgi-Patil V.M., Burgers P.M. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Mol. Cell 2009, 36:743-753.
    • (2009) Mol. Cell , vol.36 , pp. 743-753
    • Navadgi-Patil, V.M.1    Burgers, P.M.2
  • 36
    • 58149102035 scopus 로고    scopus 로고
    • Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase
    • Navadgi-Patil V.M., Burgers P.M. Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase. J. Biol. Chem. 2008, 283:35853-35859.
    • (2008) J. Biol. Chem. , vol.283 , pp. 35853-35859
    • Navadgi-Patil, V.M.1    Burgers, P.M.2
  • 37
    • 57749099248 scopus 로고    scopus 로고
    • Dpb11 activates the Mec1-Ddc2 complex
    • Mordes D.A., et al. Dpb11 activates the Mec1-Ddc2 complex. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:18730-18734.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 18730-18734
    • Mordes, D.A.1
  • 38
    • 38949124412 scopus 로고    scopus 로고
    • ATR signaling can drive cells into senescence in the absence of DNA breaks
    • Toledo L.I., et al. ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes Dev. 2008, 22:297-302.
    • (2008) Genes Dev. , vol.22 , pp. 297-302
    • Toledo, L.I.1
  • 39
    • 44849093460 scopus 로고    scopus 로고
    • TopBP1 activates ATR through ATRIP and a PIKK regulatory domain
    • Mordes D.A., et al. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev. 2008, 22:1478-1489.
    • (2008) Genes Dev. , vol.22 , pp. 1478-1489
    • Mordes, D.A.1
  • 40
    • 64049105391 scopus 로고    scopus 로고
    • TopBP1 and DNA polymerase-alpha directly recruit the 9-1-1 complex to stalled DNA replication forks
    • Yan S., Michael W.M. TopBP1 and DNA polymerase-alpha directly recruit the 9-1-1 complex to stalled DNA replication forks. J. Cell Biol. 2009, 184:793-804.
    • (2009) J. Cell Biol. , vol.184 , pp. 793-804
    • Yan, S.1    Michael, W.M.2
  • 41
    • 77949467495 scopus 로고    scopus 로고
    • Rad17 plays a central role in establishment of the interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks
    • Lee J., Dunphy W.G. Rad17 plays a central role in establishment of the interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks. Mol. Biol. Cell 2010, 21:926-935.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 926-935
    • Lee, J.1    Dunphy, W.G.2
  • 42
    • 77956375008 scopus 로고    scopus 로고
    • Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling
    • Choi J.H., et al. Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:13660-13665.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 13660-13665
    • Choi, J.H.1
  • 43
    • 0034102337 scopus 로고    scopus 로고
    • ATR disruption leads to chromosomal fragmentation and early embryonic lethality
    • Brown E.J., Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 2000, 14:397-402.
    • (2000) Genes Dev. , vol.14 , pp. 397-402
    • Brown, E.J.1    Baltimore, D.2
  • 44
    • 20244388673 scopus 로고    scopus 로고
    • Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage
    • Syljuasen R.G., et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol. Cell Biol. 2005, 25:3553-3562.
    • (2005) Mol. Cell Biol. , vol.25 , pp. 3553-3562
    • Syljuasen, R.G.1
  • 45
    • 0037074013 scopus 로고    scopus 로고
    • ATR regulates fragile site stability
    • Casper A.M., et al. ATR regulates fragile site stability. Cell 2002, 111:779-789.
    • (2002) Cell , vol.111 , pp. 779-789
    • Casper, A.M.1
  • 46
    • 5044224075 scopus 로고    scopus 로고
    • ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage
    • Sorensen C.S., et al. ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle 2004, 3:941-945.
    • (2004) Cell Cycle , vol.3 , pp. 941-945
    • Sorensen, C.S.1
  • 47
    • 77957344278 scopus 로고    scopus 로고
    • Rad3 decorates critical chromosomal domains with gammaH2A to protect genome integrity during S-Phase in fission yeast
    • Rozenzhak S., et al. Rad3 decorates critical chromosomal domains with gammaH2A to protect genome integrity during S-Phase in fission yeast. PLoS Genet. 2010, 6:e1001032.
    • (2010) PLoS Genet. , vol.6
    • Rozenzhak, S.1
  • 48
    • 38049184488 scopus 로고    scopus 로고
    • Profiling of UV-induced ATM/ATR signaling pathways
    • Stokes M.P., et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:19855-19860.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 19855-19860
    • Stokes, M.P.1
  • 49
    • 34547107878 scopus 로고    scopus 로고
    • A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints
    • Mu J.J., et al. A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J. Biol. Chem. 2007, 282:17330-17334.
    • (2007) J. Biol. Chem. , vol.282 , pp. 17330-17334
    • Mu, J.J.1
  • 50
    • 34249947699 scopus 로고    scopus 로고
    • ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
    • Matsuoka S., et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007, 316:1160-1166.
    • (2007) Science , vol.316 , pp. 1160-1166
    • Matsuoka, S.1
  • 51
    • 70349652574 scopus 로고    scopus 로고
    • NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint
    • Melixetian M., et al. NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat. Cell Biol. 2009, 11:1247-1253.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1247-1253
    • Melixetian, M.1
  • 52
    • 0242497228 scopus 로고    scopus 로고
    • Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage
    • Busino L., et al. Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 2003, 426:87-91.
    • (2003) Nature , vol.426 , pp. 87-91
    • Busino, L.1
  • 53
    • 0347361537 scopus 로고    scopus 로고
    • SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase
    • Jin J., et al. SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev. 2003, 17:3062-3074.
    • (2003) Genes Dev. , vol.17 , pp. 3062-3074
    • Jin, J.1
  • 54
    • 0030611095 scopus 로고    scopus 로고
    • Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216
    • Peng C.Y., et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 1997, 277:1501-1505.
    • (1997) Science , vol.277 , pp. 1501-1505
    • Peng, C.Y.1
  • 55
    • 0030867582 scopus 로고    scopus 로고
    • Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25
    • Sanchez Y., et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 1997, 277:1497-1501.
    • (1997) Science , vol.277 , pp. 1497-1501
    • Sanchez, Y.1
  • 56
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale C., Diffley J.F. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 1998, 395:615-618.
    • (1998) Nature , vol.395 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.2
  • 57
    • 0033215306 scopus 로고    scopus 로고
    • Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway
    • Weinreich M., Stillman B. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 1999, 18:5334-5346.
    • (1999) EMBO J. , vol.18 , pp. 5334-5346
    • Weinreich, M.1    Stillman, B.2
  • 58
    • 0033529791 scopus 로고    scopus 로고
    • Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication
    • Aparicio O.M., et al. Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc. Natl. Acad. Sci. U. S. A. 1999, 96:9130-9135.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 9130-9135
    • Aparicio, O.M.1
  • 59
    • 77957149919 scopus 로고    scopus 로고
    • Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation
    • Zegerman P., Diffley J.F. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 2010, 467:474-478.
    • (2010) Nature , vol.467 , pp. 474-478
    • Zegerman, P.1    Diffley, J.F.2
  • 60
    • 0037245862 scopus 로고    scopus 로고
    • An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication
    • Costanzo V., et al. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol. Cell 2003, 11:203-213.
    • (2003) Mol. Cell , vol.11 , pp. 203-213
    • Costanzo, V.1
  • 61
    • 57749116059 scopus 로고    scopus 로고
    • The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control
    • Tsuji T., et al. The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control. Mol. Cell 2008, 32:862-869.
    • (2008) Mol. Cell , vol.32 , pp. 862-869
    • Tsuji, T.1
  • 62
    • 33750053273 scopus 로고    scopus 로고
    • The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2-independent mechanism
    • Liu P., et al. The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2-independent mechanism. J. Biol. Chem. 2006, 281:30631-30644.
    • (2006) J. Biol. Chem. , vol.281 , pp. 30631-30644
    • Liu, P.1
  • 63
    • 77956944025 scopus 로고    scopus 로고
    • Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint
    • Liu H., et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 2010, 467:343-346.
    • (2010) Nature , vol.467 , pp. 343-346
    • Liu, H.1
  • 64
    • 0035797383 scopus 로고    scopus 로고
    • The DNA replication checkpoint response stabilizes stalled replication forks
    • Lopes M., et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 2001, 412:557-561.
    • (2001) Nature , vol.412 , pp. 557-561
    • Lopes, M.1
  • 65
    • 0035797444 scopus 로고    scopus 로고
    • Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint
    • Tercero J.A., Diffley J.F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 2001, 412:553-557.
    • (2001) Nature , vol.412 , pp. 553-557
    • Tercero, J.A.1    Diffley, J.F.2
  • 66
    • 29144486147 scopus 로고    scopus 로고
    • Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations
    • Cobb J.A., et al. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 2005, 19:3055-3069.
    • (2005) Genes Dev. , vol.19 , pp. 3055-3069
    • Cobb, J.A.1
  • 67
    • 46249122812 scopus 로고    scopus 로고
    • Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks
    • Segurado M., Diffley J.F. Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev. 2008, 22:1816-1827.
    • (2008) Genes Dev. , vol.22 , pp. 1816-1827
    • Segurado, M.1    Diffley, J.F.2
  • 68
    • 53149135030 scopus 로고    scopus 로고
    • Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint
    • Lou H., et al. Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol. Cell 2008, 32:106-117.
    • (2008) Mol. Cell , vol.32 , pp. 106-117
    • Lou, H.1
  • 69
    • 69149108736 scopus 로고    scopus 로고
    • Mrc1 phosphorylation in response to DNA replication stress is required for Mec1 accumulation at the stalled fork
    • Naylor M.L., et al. Mrc1 phosphorylation in response to DNA replication stress is required for Mec1 accumulation at the stalled fork. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:12765-12770.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 12765-12770
    • Naylor, M.L.1
  • 70
    • 33748623634 scopus 로고    scopus 로고
    • Common fragile sites as targets for chromosome rearrangements
    • Arlt M.F., et al. Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst.) 2006, 5:1126-1135.
    • (2006) DNA Repair (Amst.) , vol.5 , pp. 1126-1135
    • Arlt, M.F.1
  • 71
    • 11144227916 scopus 로고    scopus 로고
    • Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses
    • Yoo H.Y., et al. Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J. Biol. Chem. 2004, 279:53353-53364.
    • (2004) J. Biol. Chem. , vol.279 , pp. 53353-53364
    • Yoo, H.Y.1
  • 72
    • 2542459341 scopus 로고    scopus 로고
    • Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase
    • Yoo H.Y., et al. Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell 2004, 117:575-588.
    • (2004) Cell , vol.117 , pp. 575-588
    • Yoo, H.Y.1
  • 73
    • 40949133430 scopus 로고    scopus 로고
    • Plx1 is required for chromosomal DNA replication under stressful conditions
    • Trenz K., et al. Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J. 2008, 27:876-885.
    • (2008) EMBO J. , vol.27 , pp. 876-885
    • Trenz, K.1
  • 74
    • 38349050087 scopus 로고    scopus 로고
    • The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks
    • Gari K., et al. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell 2008, 29:141-148.
    • (2008) Mol. Cell , vol.29 , pp. 141-148
    • Gari, K.1
  • 75
    • 55849133052 scopus 로고    scopus 로고
    • Remodeling of DNA replication structures by the branch point translocase FANCM
    • Gari K., et al. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:16107-16112.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 16107-16112
    • Gari, K.1
  • 76
    • 77149135723 scopus 로고    scopus 로고
    • ATR activation and replication fork restart are defective in FANCM-deficient cells
    • Schwab R.A., et al. ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J. 2010, 29:806-818.
    • (2010) EMBO J. , vol.29 , pp. 806-818
    • Schwab, R.A.1
  • 77
    • 77149123028 scopus 로고    scopus 로고
    • FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling
    • Luke-Glaser S., et al. FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J. 2010, 29:795-805.
    • (2010) EMBO J. , vol.29 , pp. 795-805
    • Luke-Glaser, S.1
  • 78
    • 55049111236 scopus 로고    scopus 로고
    • FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex
    • Collis S.J., et al. FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol. Cell 2008, 32:313-324.
    • (2008) Mol. Cell , vol.32 , pp. 313-324
    • Collis, S.J.1
  • 79
    • 77955505023 scopus 로고    scopus 로고
    • The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response
    • Huang M., et al. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol. Cell 2010, 39:259-268.
    • (2010) Mol. Cell , vol.39 , pp. 259-268
    • Huang, M.1
  • 80
    • 1842576658 scopus 로고    scopus 로고
    • The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways
    • Pichierri P., Rosselli F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J. 2004, 23:1178-1187.
    • (2004) EMBO J. , vol.23 , pp. 1178-1187
    • Pichierri, P.1    Rosselli, F.2
  • 81
    • 69749095427 scopus 로고    scopus 로고
    • Checkpoint signaling from a single DNA interstrand crosslink
    • Ben-Yehoyada M., et al. Checkpoint signaling from a single DNA interstrand crosslink. Mol. Cell 2009, 35:704-715.
    • (2009) Mol. Cell , vol.35 , pp. 704-715
    • Ben-Yehoyada, M.1
  • 82
    • 0037123768 scopus 로고    scopus 로고
    • Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways
    • Taniguchi T., et al. Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell 2002, 109:459-472.
    • (2002) Cell , vol.109 , pp. 459-472
    • Taniguchi, T.1
  • 83
    • 34249281152 scopus 로고    scopus 로고
    • FANCI is a second monoubiquitinated member of the Fanconi anemia pathway
    • Sims A.E., et al. FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 2007, 14:564-567.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 564-567
    • Sims, A.E.1
  • 84
    • 34247110291 scopus 로고    scopus 로고
    • Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair
    • Smogorzewska A., et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 2007, 129:289-301.
    • (2007) Cell , vol.129 , pp. 289-301
    • Smogorzewska, A.1
  • 85
    • 33748656748 scopus 로고    scopus 로고
    • Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance
    • Ho G.P., et al. Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance. Mol. Cell Biol. 2006, 26:7005-7015.
    • (2006) Mol. Cell Biol. , vol.26 , pp. 7005-7015
    • Ho, G.P.1
  • 86
    • 4043133287 scopus 로고    scopus 로고
    • ATR couples FANCD2 monoubiquitination to the DNA-damage response
    • Andreassen P.R., et al. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 2004, 18:1958-1963.
    • (2004) Genes Dev. , vol.18 , pp. 1958-1963
    • Andreassen, P.R.1
  • 87
    • 55549137026 scopus 로고    scopus 로고
    • FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway
    • Ishiai M., et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 2008, 15:1138-1146.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1138-1146
    • Ishiai, M.1
  • 88
    • 72949123930 scopus 로고    scopus 로고
    • The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair
    • Knipscheer P., et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 2009, 326:1698-1701.
    • (2009) Science , vol.326 , pp. 1698-1701
    • Knipscheer, P.1
  • 89
    • 77955290719 scopus 로고    scopus 로고
    • FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair
    • Liu T., et al. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 2010, 329:693-696.
    • (2010) Science , vol.329 , pp. 693-696
    • Liu, T.1
  • 90
    • 77954286076 scopus 로고    scopus 로고
    • A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair
    • Smogorzewska A., et al. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 2010, 39:36-47.
    • (2010) Mol. Cell , vol.39 , pp. 36-47
    • Smogorzewska, A.1
  • 91
    • 77954279611 scopus 로고    scopus 로고
    • Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents
    • Kratz K., et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 2010, 142:77-88.
    • (2010) Cell , vol.142 , pp. 77-88
    • Kratz, K.1
  • 92
    • 77954274685 scopus 로고    scopus 로고
    • Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2
    • MacKay C., et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 2010, 142:65-76.
    • (2010) Cell , vol.142 , pp. 65-76
    • MacKay, C.1
  • 93
    • 77953879925 scopus 로고    scopus 로고
    • Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway
    • Pace P., et al. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 2010, 329:219-223.
    • (2010) Science , vol.329 , pp. 219-223
    • Pace, P.1
  • 94
    • 77955476243 scopus 로고    scopus 로고
    • DNA damage signaling recruits the Rtt107-Slx4 scaffolds via Dpb11 to mediate replication stress response
    • Ohouo P.Y., et al. DNA damage signaling recruits the Rtt107-Slx4 scaffolds via Dpb11 to mediate replication stress response. Mol. Cell 2010, 39:300-306.
    • (2010) Mol. Cell , vol.39 , pp. 300-306
    • Ohouo, P.Y.1
  • 95
    • 67649655402 scopus 로고    scopus 로고
    • Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases
    • Fekairi S., et al. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 2009, 138:78-89.
    • (2009) Cell , vol.138 , pp. 78-89
    • Fekairi, S.1
  • 96
    • 67649662604 scopus 로고    scopus 로고
    • Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair
    • Svendsen J.M., et al. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 2009, 138:63-77.
    • (2009) Cell , vol.138 , pp. 63-77
    • Svendsen, J.M.1
  • 97
    • 70350783732 scopus 로고    scopus 로고
    • Involvement of a chromatin remodeling complex in damage tolerance during DNA replication
    • Falbo K.B., et al. Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nat. Struct. Mol. Biol. 2009, 16:1167-1172.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1167-1172
    • Falbo, K.B.1
  • 98
    • 42049094866 scopus 로고    scopus 로고
    • Ino80 chromatin remodeling complex promotes recovery of stalled replication forks
    • Shimada K., et al. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr. Biol. 2008, 18:566-575.
    • (2008) Curr. Biol. , vol.18 , pp. 566-575
    • Shimada, K.1
  • 99
    • 41649111513 scopus 로고    scopus 로고
    • The Ino80 chromatin-remodeling enzyme regulates replisome function and stability
    • Papamichos-Chronakis M., Peterson C.L. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat. Struct. Mol. Biol. 2008, 15:338-345.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 338-345
    • Papamichos-Chronakis, M.1    Peterson, C.L.2
  • 100
    • 36949005417 scopus 로고    scopus 로고
    • DNA damage signalling guards against activated oncogenes and tumour progression
    • Bartek J., et al. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 2007, 26:7773-7779.
    • (2007) Oncogene , vol.26 , pp. 7773-7779
    • Bartek, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.