-
1
-
-
0035449355
-
Cell cycle checkpoint signaling through the ATM and ATR kinases
-
Abraham R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001, 15:2177-2196.
-
(2001)
Genes Dev.
, vol.15
, pp. 2177-2196
-
-
Abraham, R.T.1
-
2
-
-
0035941021
-
ATR and ATRIP: partners in checkpoint signaling
-
Cortez D., et al. ATR and ATRIP: partners in checkpoint signaling. Science 2001, 294:1713-1716.
-
(2001)
Science
, vol.294
, pp. 1713-1716
-
-
Cortez, D.1
-
3
-
-
37349014081
-
Tel2 regulates the stability of PI3K-related protein kinases
-
Takai H., et al. Tel2 regulates the stability of PI3K-related protein kinases. Cell 2007, 131:1248-1259.
-
(2007)
Cell
, vol.131
, pp. 1248-1259
-
-
Takai, H.1
-
4
-
-
77956856907
-
Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes
-
Takai H., et al. Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev. 2010, 24:2019-2030.
-
(2010)
Genes Dev.
, vol.24
, pp. 2019-2030
-
-
Takai, H.1
-
5
-
-
77956283656
-
A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability
-
Hurov K.E., et al. A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev. 2010, 24:1939-1950.
-
(2010)
Genes Dev.
, vol.24
, pp. 1939-1950
-
-
Hurov, K.E.1
-
6
-
-
0037567268
-
Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
-
Zou L., Elledge S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003, 300:1542-1548.
-
(2003)
Science
, vol.300
, pp. 1542-1548
-
-
Zou, L.1
Elledge, S.J.2
-
7
-
-
33845607102
-
The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint
-
Majka J., et al. The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol. Cell 2006, 24:891-901.
-
(2006)
Mol. Cell
, vol.24
, pp. 891-901
-
-
Majka, J.1
-
8
-
-
34247257202
-
The structural determinants of checkpoint activation
-
MacDougall C.A., et al. The structural determinants of checkpoint activation. Genes Dev. 2007, 21:898-903.
-
(2007)
Genes Dev.
, vol.21
, pp. 898-903
-
-
MacDougall, C.A.1
-
9
-
-
4243156107
-
Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA
-
Ellison V., Stillman B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol. 2003, 1:E33.
-
(2003)
PLoS Biol.
, vol.1
-
-
Ellison, V.1
Stillman, B.2
-
10
-
-
0345564858
-
Replication protein A-mediated recruitment and activation of Rad17 complexes
-
Zou L., et al. Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:13827-13832.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 13827-13832
-
-
Zou, L.1
-
11
-
-
0037080675
-
Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin
-
Zou L., et al. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 2002, 16:198-208.
-
(2002)
Genes Dev.
, vol.16
, pp. 198-208
-
-
Zou, L.1
-
12
-
-
42949130159
-
Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage
-
Bonilla C.Y., et al. Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol. Cell 2008, 30:267-276.
-
(2008)
Mol. Cell
, vol.30
, pp. 267-276
-
-
Bonilla, C.Y.1
-
13
-
-
34948889415
-
The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR
-
Lee J., et al. The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J. Biol. Chem. 2007, 282:28036-28044.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 28036-28044
-
-
Lee, J.1
-
14
-
-
34250705797
-
The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1
-
Delacroix S., et al. The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev. 2007, 21:1472-1477.
-
(2007)
Genes Dev.
, vol.21
, pp. 1472-1477
-
-
Delacroix, S.1
-
15
-
-
33644757806
-
TopBP1 activates the ATR-ATRIP complex
-
Kumagai A., et al. TopBP1 activates the ATR-ATRIP complex. Cell 2006, 124:943-955.
-
(2006)
Cell
, vol.124
, pp. 943-955
-
-
Kumagai, A.1
-
16
-
-
65249139994
-
ATR signaling at a glance
-
Shiotani B., Zou L. ATR signaling at a glance. J. Cell Sci. 2009, 122:301-304.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 301-304
-
-
Shiotani, B.1
Zou, L.2
-
17
-
-
47749141560
-
ATR: an essential regulator of genome integrity
-
Cimprich K.A., Cortez D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 2008, 9:616-627.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 616-627
-
-
Cimprich, K.A.1
Cortez, D.2
-
18
-
-
34247251276
-
Single- and double-stranded DNA: building a trigger of ATR-mediated DNA damage response
-
Zou L. Single- and double-stranded DNA: building a trigger of ATR-mediated DNA damage response. Genes Dev. 2007, 21:879-885.
-
(2007)
Genes Dev.
, vol.21
, pp. 879-885
-
-
Zou, L.1
-
19
-
-
33646777679
-
Rapid activation of ATR by ionizing radiation requires ATM and Mre11
-
Myers J.S., Cortez D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J. Biol. Chem. 2006, 281:9346-9350.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 9346-9350
-
-
Myers, J.S.1
Cortez, D.2
-
20
-
-
30344463835
-
ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks
-
Jazayeri A., et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 2006, 8:37-45.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 37-45
-
-
Jazayeri, A.1
-
21
-
-
61649093808
-
Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks
-
Shiotani B., Zou L. Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol. Cell 2009, 33:547-558.
-
(2009)
Mol. Cell
, vol.33
, pp. 547-558
-
-
Shiotani, B.1
Zou, L.2
-
22
-
-
18244371925
-
Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint
-
Byun T.S., et al. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 2005, 19:1040-1052.
-
(2005)
Genes Dev.
, vol.19
, pp. 1040-1052
-
-
Byun, T.S.1
-
23
-
-
0033637837
-
Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha
-
Walter J., Newport J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol. Cell 2000, 5:617-627.
-
(2000)
Mol. Cell
, vol.5
, pp. 617-627
-
-
Walter, J.1
Newport, J.2
-
24
-
-
75949092280
-
BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control
-
Gong Z., et al. BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol. Cell 2010, 37:438-446.
-
(2010)
Mol. Cell
, vol.37
, pp. 438-446
-
-
Gong, Z.1
-
25
-
-
72149132821
-
Identification of SMARCAL1 as a component of the DNA damage response
-
Postow L., et al. Identification of SMARCAL1 as a component of the DNA damage response. J. Biol. Chem. 2009, 284:35951-35961.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 35951-35961
-
-
Postow, L.1
-
26
-
-
70350118815
-
The annealing helicase HARP protects stalled replication forks
-
Yuan J., et al. The annealing helicase HARP protects stalled replication forks. Genes Dev. 2009, 23:2394-2399.
-
(2009)
Genes Dev.
, vol.23
, pp. 2394-2399
-
-
Yuan, J.1
-
27
-
-
70350103969
-
The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA
-
Yusufzai T., et al. The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev. 2009, 23:2400-2404.
-
(2009)
Genes Dev.
, vol.23
, pp. 2400-2404
-
-
Yusufzai, T.1
-
28
-
-
70350088521
-
The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart
-
Ciccia A., et al. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev. 2009, 23:2415-2425.
-
(2009)
Genes Dev.
, vol.23
, pp. 2415-2425
-
-
Ciccia, A.1
-
29
-
-
70350111290
-
The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks
-
Bansbach C.E., et al. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev. 2009, 23:2405-2414.
-
(2009)
Genes Dev.
, vol.23
, pp. 2405-2414
-
-
Bansbach, C.E.1
-
30
-
-
0034703330
-
Activation of the DNA replication checkpoint through RNA synthesis by primase
-
Michael W.M., et al. Activation of the DNA replication checkpoint through RNA synthesis by primase. Science 2000, 289:2133-2137.
-
(2000)
Science
, vol.289
, pp. 2133-2137
-
-
Michael, W.M.1
-
31
-
-
0037106186
-
A requirement for replication in activation of the ATR-dependent DNA damage checkpoint
-
Lupardus P.J., et al. A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. Genes Dev. 2002, 16:2327-2332.
-
(2002)
Genes Dev.
, vol.16
, pp. 2327-2332
-
-
Lupardus, P.J.1
-
32
-
-
77951193923
-
Continued primer synthesis at stalled replication forks contributes to checkpoint activation
-
Van C., et al. Continued primer synthesis at stalled replication forks contributes to checkpoint activation. J. Cell Biol. 2010, 189:233-246.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 233-246
-
-
Van, C.1
-
33
-
-
29544437558
-
Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
-
Lopes M., et al. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 2006, 21:15-27.
-
(2006)
Mol. Cell
, vol.21
, pp. 15-27
-
-
Lopes, M.1
-
34
-
-
77952413358
-
Postreplication gaps at UV lesions are signals for checkpoint activation
-
Callegari A.J., et al. Postreplication gaps at UV lesions are signals for checkpoint activation. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:8219-8224.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 8219-8224
-
-
Callegari, A.J.1
-
35
-
-
71149093704
-
The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms
-
Navadgi-Patil V.M., Burgers P.M. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Mol. Cell 2009, 36:743-753.
-
(2009)
Mol. Cell
, vol.36
, pp. 743-753
-
-
Navadgi-Patil, V.M.1
Burgers, P.M.2
-
36
-
-
58149102035
-
Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase
-
Navadgi-Patil V.M., Burgers P.M. Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase. J. Biol. Chem. 2008, 283:35853-35859.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 35853-35859
-
-
Navadgi-Patil, V.M.1
Burgers, P.M.2
-
37
-
-
57749099248
-
Dpb11 activates the Mec1-Ddc2 complex
-
Mordes D.A., et al. Dpb11 activates the Mec1-Ddc2 complex. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:18730-18734.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 18730-18734
-
-
Mordes, D.A.1
-
38
-
-
38949124412
-
ATR signaling can drive cells into senescence in the absence of DNA breaks
-
Toledo L.I., et al. ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes Dev. 2008, 22:297-302.
-
(2008)
Genes Dev.
, vol.22
, pp. 297-302
-
-
Toledo, L.I.1
-
39
-
-
44849093460
-
TopBP1 activates ATR through ATRIP and a PIKK regulatory domain
-
Mordes D.A., et al. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev. 2008, 22:1478-1489.
-
(2008)
Genes Dev.
, vol.22
, pp. 1478-1489
-
-
Mordes, D.A.1
-
40
-
-
64049105391
-
TopBP1 and DNA polymerase-alpha directly recruit the 9-1-1 complex to stalled DNA replication forks
-
Yan S., Michael W.M. TopBP1 and DNA polymerase-alpha directly recruit the 9-1-1 complex to stalled DNA replication forks. J. Cell Biol. 2009, 184:793-804.
-
(2009)
J. Cell Biol.
, vol.184
, pp. 793-804
-
-
Yan, S.1
Michael, W.M.2
-
41
-
-
77949467495
-
Rad17 plays a central role in establishment of the interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks
-
Lee J., Dunphy W.G. Rad17 plays a central role in establishment of the interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks. Mol. Biol. Cell 2010, 21:926-935.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 926-935
-
-
Lee, J.1
Dunphy, W.G.2
-
42
-
-
77956375008
-
Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling
-
Choi J.H., et al. Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:13660-13665.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 13660-13665
-
-
Choi, J.H.1
-
43
-
-
0034102337
-
ATR disruption leads to chromosomal fragmentation and early embryonic lethality
-
Brown E.J., Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 2000, 14:397-402.
-
(2000)
Genes Dev.
, vol.14
, pp. 397-402
-
-
Brown, E.J.1
Baltimore, D.2
-
44
-
-
20244388673
-
Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage
-
Syljuasen R.G., et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol. Cell Biol. 2005, 25:3553-3562.
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 3553-3562
-
-
Syljuasen, R.G.1
-
45
-
-
0037074013
-
ATR regulates fragile site stability
-
Casper A.M., et al. ATR regulates fragile site stability. Cell 2002, 111:779-789.
-
(2002)
Cell
, vol.111
, pp. 779-789
-
-
Casper, A.M.1
-
46
-
-
5044224075
-
ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage
-
Sorensen C.S., et al. ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle 2004, 3:941-945.
-
(2004)
Cell Cycle
, vol.3
, pp. 941-945
-
-
Sorensen, C.S.1
-
47
-
-
77957344278
-
Rad3 decorates critical chromosomal domains with gammaH2A to protect genome integrity during S-Phase in fission yeast
-
Rozenzhak S., et al. Rad3 decorates critical chromosomal domains with gammaH2A to protect genome integrity during S-Phase in fission yeast. PLoS Genet. 2010, 6:e1001032.
-
(2010)
PLoS Genet.
, vol.6
-
-
Rozenzhak, S.1
-
48
-
-
38049184488
-
Profiling of UV-induced ATM/ATR signaling pathways
-
Stokes M.P., et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:19855-19860.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 19855-19860
-
-
Stokes, M.P.1
-
49
-
-
34547107878
-
A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints
-
Mu J.J., et al. A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J. Biol. Chem. 2007, 282:17330-17334.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 17330-17334
-
-
Mu, J.J.1
-
50
-
-
34249947699
-
ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
-
Matsuoka S., et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007, 316:1160-1166.
-
(2007)
Science
, vol.316
, pp. 1160-1166
-
-
Matsuoka, S.1
-
51
-
-
70349652574
-
NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint
-
Melixetian M., et al. NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat. Cell Biol. 2009, 11:1247-1253.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1247-1253
-
-
Melixetian, M.1
-
52
-
-
0242497228
-
Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage
-
Busino L., et al. Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 2003, 426:87-91.
-
(2003)
Nature
, vol.426
, pp. 87-91
-
-
Busino, L.1
-
53
-
-
0347361537
-
SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase
-
Jin J., et al. SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev. 2003, 17:3062-3074.
-
(2003)
Genes Dev.
, vol.17
, pp. 3062-3074
-
-
Jin, J.1
-
54
-
-
0030611095
-
Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216
-
Peng C.Y., et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 1997, 277:1501-1505.
-
(1997)
Science
, vol.277
, pp. 1501-1505
-
-
Peng, C.Y.1
-
55
-
-
0030867582
-
Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25
-
Sanchez Y., et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 1997, 277:1497-1501.
-
(1997)
Science
, vol.277
, pp. 1497-1501
-
-
Sanchez, Y.1
-
56
-
-
0032497529
-
A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication
-
Santocanale C., Diffley J.F. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 1998, 395:615-618.
-
(1998)
Nature
, vol.395
, pp. 615-618
-
-
Santocanale, C.1
Diffley, J.F.2
-
57
-
-
0033215306
-
Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway
-
Weinreich M., Stillman B. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 1999, 18:5334-5346.
-
(1999)
EMBO J.
, vol.18
, pp. 5334-5346
-
-
Weinreich, M.1
Stillman, B.2
-
58
-
-
0033529791
-
Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication
-
Aparicio O.M., et al. Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc. Natl. Acad. Sci. U. S. A. 1999, 96:9130-9135.
-
(1999)
Proc. Natl. Acad. Sci. U. S. A.
, vol.96
, pp. 9130-9135
-
-
Aparicio, O.M.1
-
59
-
-
77957149919
-
Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation
-
Zegerman P., Diffley J.F. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 2010, 467:474-478.
-
(2010)
Nature
, vol.467
, pp. 474-478
-
-
Zegerman, P.1
Diffley, J.F.2
-
60
-
-
0037245862
-
An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication
-
Costanzo V., et al. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol. Cell 2003, 11:203-213.
-
(2003)
Mol. Cell
, vol.11
, pp. 203-213
-
-
Costanzo, V.1
-
61
-
-
57749116059
-
The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control
-
Tsuji T., et al. The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control. Mol. Cell 2008, 32:862-869.
-
(2008)
Mol. Cell
, vol.32
, pp. 862-869
-
-
Tsuji, T.1
-
62
-
-
33750053273
-
The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2-independent mechanism
-
Liu P., et al. The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2-independent mechanism. J. Biol. Chem. 2006, 281:30631-30644.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 30631-30644
-
-
Liu, P.1
-
63
-
-
77956944025
-
Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint
-
Liu H., et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 2010, 467:343-346.
-
(2010)
Nature
, vol.467
, pp. 343-346
-
-
Liu, H.1
-
64
-
-
0035797383
-
The DNA replication checkpoint response stabilizes stalled replication forks
-
Lopes M., et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 2001, 412:557-561.
-
(2001)
Nature
, vol.412
, pp. 557-561
-
-
Lopes, M.1
-
65
-
-
0035797444
-
Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint
-
Tercero J.A., Diffley J.F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 2001, 412:553-557.
-
(2001)
Nature
, vol.412
, pp. 553-557
-
-
Tercero, J.A.1
Diffley, J.F.2
-
66
-
-
29144486147
-
Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations
-
Cobb J.A., et al. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 2005, 19:3055-3069.
-
(2005)
Genes Dev.
, vol.19
, pp. 3055-3069
-
-
Cobb, J.A.1
-
67
-
-
46249122812
-
Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks
-
Segurado M., Diffley J.F. Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev. 2008, 22:1816-1827.
-
(2008)
Genes Dev.
, vol.22
, pp. 1816-1827
-
-
Segurado, M.1
Diffley, J.F.2
-
68
-
-
53149135030
-
Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint
-
Lou H., et al. Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol. Cell 2008, 32:106-117.
-
(2008)
Mol. Cell
, vol.32
, pp. 106-117
-
-
Lou, H.1
-
69
-
-
69149108736
-
Mrc1 phosphorylation in response to DNA replication stress is required for Mec1 accumulation at the stalled fork
-
Naylor M.L., et al. Mrc1 phosphorylation in response to DNA replication stress is required for Mec1 accumulation at the stalled fork. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:12765-12770.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 12765-12770
-
-
Naylor, M.L.1
-
70
-
-
33748623634
-
Common fragile sites as targets for chromosome rearrangements
-
Arlt M.F., et al. Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst.) 2006, 5:1126-1135.
-
(2006)
DNA Repair (Amst.)
, vol.5
, pp. 1126-1135
-
-
Arlt, M.F.1
-
71
-
-
11144227916
-
Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses
-
Yoo H.Y., et al. Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J. Biol. Chem. 2004, 279:53353-53364.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 53353-53364
-
-
Yoo, H.Y.1
-
72
-
-
2542459341
-
Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase
-
Yoo H.Y., et al. Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell 2004, 117:575-588.
-
(2004)
Cell
, vol.117
, pp. 575-588
-
-
Yoo, H.Y.1
-
73
-
-
40949133430
-
Plx1 is required for chromosomal DNA replication under stressful conditions
-
Trenz K., et al. Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J. 2008, 27:876-885.
-
(2008)
EMBO J.
, vol.27
, pp. 876-885
-
-
Trenz, K.1
-
74
-
-
38349050087
-
The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks
-
Gari K., et al. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell 2008, 29:141-148.
-
(2008)
Mol. Cell
, vol.29
, pp. 141-148
-
-
Gari, K.1
-
75
-
-
55849133052
-
Remodeling of DNA replication structures by the branch point translocase FANCM
-
Gari K., et al. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:16107-16112.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 16107-16112
-
-
Gari, K.1
-
76
-
-
77149135723
-
ATR activation and replication fork restart are defective in FANCM-deficient cells
-
Schwab R.A., et al. ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J. 2010, 29:806-818.
-
(2010)
EMBO J.
, vol.29
, pp. 806-818
-
-
Schwab, R.A.1
-
77
-
-
77149123028
-
FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling
-
Luke-Glaser S., et al. FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J. 2010, 29:795-805.
-
(2010)
EMBO J.
, vol.29
, pp. 795-805
-
-
Luke-Glaser, S.1
-
78
-
-
55049111236
-
FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex
-
Collis S.J., et al. FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol. Cell 2008, 32:313-324.
-
(2008)
Mol. Cell
, vol.32
, pp. 313-324
-
-
Collis, S.J.1
-
79
-
-
77955505023
-
The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response
-
Huang M., et al. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol. Cell 2010, 39:259-268.
-
(2010)
Mol. Cell
, vol.39
, pp. 259-268
-
-
Huang, M.1
-
80
-
-
1842576658
-
The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways
-
Pichierri P., Rosselli F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J. 2004, 23:1178-1187.
-
(2004)
EMBO J.
, vol.23
, pp. 1178-1187
-
-
Pichierri, P.1
Rosselli, F.2
-
81
-
-
69749095427
-
Checkpoint signaling from a single DNA interstrand crosslink
-
Ben-Yehoyada M., et al. Checkpoint signaling from a single DNA interstrand crosslink. Mol. Cell 2009, 35:704-715.
-
(2009)
Mol. Cell
, vol.35
, pp. 704-715
-
-
Ben-Yehoyada, M.1
-
82
-
-
0037123768
-
Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways
-
Taniguchi T., et al. Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell 2002, 109:459-472.
-
(2002)
Cell
, vol.109
, pp. 459-472
-
-
Taniguchi, T.1
-
83
-
-
34249281152
-
FANCI is a second monoubiquitinated member of the Fanconi anemia pathway
-
Sims A.E., et al. FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 2007, 14:564-567.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 564-567
-
-
Sims, A.E.1
-
84
-
-
34247110291
-
Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair
-
Smogorzewska A., et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 2007, 129:289-301.
-
(2007)
Cell
, vol.129
, pp. 289-301
-
-
Smogorzewska, A.1
-
85
-
-
33748656748
-
Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance
-
Ho G.P., et al. Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance. Mol. Cell Biol. 2006, 26:7005-7015.
-
(2006)
Mol. Cell Biol.
, vol.26
, pp. 7005-7015
-
-
Ho, G.P.1
-
86
-
-
4043133287
-
ATR couples FANCD2 monoubiquitination to the DNA-damage response
-
Andreassen P.R., et al. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 2004, 18:1958-1963.
-
(2004)
Genes Dev.
, vol.18
, pp. 1958-1963
-
-
Andreassen, P.R.1
-
87
-
-
55549137026
-
FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway
-
Ishiai M., et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 2008, 15:1138-1146.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 1138-1146
-
-
Ishiai, M.1
-
88
-
-
72949123930
-
The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair
-
Knipscheer P., et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 2009, 326:1698-1701.
-
(2009)
Science
, vol.326
, pp. 1698-1701
-
-
Knipscheer, P.1
-
89
-
-
77955290719
-
FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair
-
Liu T., et al. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 2010, 329:693-696.
-
(2010)
Science
, vol.329
, pp. 693-696
-
-
Liu, T.1
-
90
-
-
77954286076
-
A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair
-
Smogorzewska A., et al. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 2010, 39:36-47.
-
(2010)
Mol. Cell
, vol.39
, pp. 36-47
-
-
Smogorzewska, A.1
-
91
-
-
77954279611
-
Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents
-
Kratz K., et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 2010, 142:77-88.
-
(2010)
Cell
, vol.142
, pp. 77-88
-
-
Kratz, K.1
-
92
-
-
77954274685
-
Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2
-
MacKay C., et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 2010, 142:65-76.
-
(2010)
Cell
, vol.142
, pp. 65-76
-
-
MacKay, C.1
-
93
-
-
77953879925
-
Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway
-
Pace P., et al. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 2010, 329:219-223.
-
(2010)
Science
, vol.329
, pp. 219-223
-
-
Pace, P.1
-
94
-
-
77955476243
-
DNA damage signaling recruits the Rtt107-Slx4 scaffolds via Dpb11 to mediate replication stress response
-
Ohouo P.Y., et al. DNA damage signaling recruits the Rtt107-Slx4 scaffolds via Dpb11 to mediate replication stress response. Mol. Cell 2010, 39:300-306.
-
(2010)
Mol. Cell
, vol.39
, pp. 300-306
-
-
Ohouo, P.Y.1
-
95
-
-
67649655402
-
Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases
-
Fekairi S., et al. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 2009, 138:78-89.
-
(2009)
Cell
, vol.138
, pp. 78-89
-
-
Fekairi, S.1
-
96
-
-
67649662604
-
Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair
-
Svendsen J.M., et al. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 2009, 138:63-77.
-
(2009)
Cell
, vol.138
, pp. 63-77
-
-
Svendsen, J.M.1
-
97
-
-
70350783732
-
Involvement of a chromatin remodeling complex in damage tolerance during DNA replication
-
Falbo K.B., et al. Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nat. Struct. Mol. Biol. 2009, 16:1167-1172.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 1167-1172
-
-
Falbo, K.B.1
-
98
-
-
42049094866
-
Ino80 chromatin remodeling complex promotes recovery of stalled replication forks
-
Shimada K., et al. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr. Biol. 2008, 18:566-575.
-
(2008)
Curr. Biol.
, vol.18
, pp. 566-575
-
-
Shimada, K.1
-
99
-
-
41649111513
-
The Ino80 chromatin-remodeling enzyme regulates replisome function and stability
-
Papamichos-Chronakis M., Peterson C.L. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat. Struct. Mol. Biol. 2008, 15:338-345.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 338-345
-
-
Papamichos-Chronakis, M.1
Peterson, C.L.2
-
100
-
-
36949005417
-
DNA damage signalling guards against activated oncogenes and tumour progression
-
Bartek J., et al. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 2007, 26:7773-7779.
-
(2007)
Oncogene
, vol.26
, pp. 7773-7779
-
-
Bartek, J.1
|