메뉴 건너뛰기




Volumn 15, Issue 3, 2010, Pages 245-263

A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: Part 1

(1)  Kelly, Greg a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords

AMIDE; NICOTINAMIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINIC ACID; POLYPHENOL DERIVATIVE; RESVERATROL; SILENT INFORMATION REGULATOR PROTEIN; SIRTUIN;

EID: 77957975705     PISSN: 10895159     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (108)

References (186)
  • 1
    • 77952180745 scopus 로고    scopus 로고
    • SIRT1 in muscle physiology and disease: Lessons from mouse models
    • Vinciguerra M, Fulco M, Ladurner A, et al. SIRT1 in muscle physiology and disease: lessons from mouse models. Dis Model Mech 2010;3:298-303.
    • (2010) Dis Model Mech , vol.3 , pp. 298-303
    • Vinciguerra, M.1    Fulco, M.2    Ladurner, A.3
  • 2
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • DOI 10.1091/mbc.E05-01-0033
    • Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005;16:4623-4635. (Pubitemid 41416446)
    • (2005) Molecular Biology of the Cell , vol.16 , Issue.10 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3    Barrett, J.C.4    Horikawa, I.5
  • 3
    • 77950035354 scopus 로고    scopus 로고
    • Functional dissection of SIRT6: Identification of domains that regulate histone deacetylase activity and chromatin localization
    • Tennen RI, Berber E, Chua KF. Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization. Mech Ageing Dev 2010;131:185-192.
    • (2010) Mech Ageing Dev , vol.131 , pp. 185-192
    • Tennen, R.I.1    Berber, E.2    Chua, K.F.3
  • 4
    • 62149127767 scopus 로고    scopus 로고
    • Porcine sirtuin 1 gene clone, expression pattern, and regulation by resveratrol
    • Shan T, Wang Y, Wu T, et al. Porcine sirtuin 1 gene clone, expression pattern, and regulation by resveratrol. J Anim Sci 2009;87:895-904.
    • (2009) J Anim Sci , vol.87 , pp. 895-904
    • Shan, T.1    Wang, Y.2    Wu, T.3
  • 5
    • 77149172855 scopus 로고    scopus 로고
    • SIRT2-mediated protein deacetylation: An emerging key regulator in brain physiology and pathology
    • Harting K, Knöll B. SIRT2-mediated protein deacetylation: an emerging key regulator in brain physiology and pathology. Eur J Cell Biol 2010;89:262-269.
    • (2010) Eur J Cell Biol , vol.89 , pp. 262-269
    • Harting, K.1    Knöll, B.2
  • 6
    • 34547397081 scopus 로고    scopus 로고
    • SIRT2 regulates adipocyte differentiation through FOXO1 acetylation/deacetylation
    • Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FOXO1 acetylation/deacetylation. Cell Metab 2007;6:105-114.
    • (2007) Cell Metab , vol.6 , pp. 105-114
    • Jing, E.1    Gesta, S.2    Kahn, C.R.3
  • 7
    • 77952413052 scopus 로고    scopus 로고
    • SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis
    • Luthi-Carter R, Taylor DM, Pallos J, et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci U S A 2010;107:7927-7932.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 7927-7932
    • Luthi-Carter, R.1    Taylor, D.M.2    Pallos, J.3
  • 8
    • 33846930889 scopus 로고    scopus 로고
    • Microtubule deacetylases, SirT2 and HDAC6, in the nervous system
    • DOI 10.1007/s11064-006-9127-6
    • Southwood CM, Peppi M, Dryden S, et al. Microtubule deacetylases, SIRT2 and HDAC6, in the nervous system. Neurochem Res 2007;32:187-195. (Pubitemid 46238864)
    • (2007) Neurochemical Research , vol.32 , Issue.2 , pp. 187-195
    • Southwood, C.M.1    Peppi, M.2    Dryden, S.3    Tainsky, M.A.4    Gow, A.5
  • 9
    • 64049089450 scopus 로고    scopus 로고
    • SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma
    • Wang F, Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol Biol Cell 2009;20:801-808.
    • (2009) Mol Biol Cell , vol.20 , pp. 801-808
    • Wang, F.1    Tong, Q.2
  • 11
    • 34249083199 scopus 로고    scopus 로고
    • Sirtuins in mammals: Insights into their biological function
    • DOI 10.1042/BJ20070140
    • Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007;404:1-13. (Pubitemid 46788079)
    • (2007) Biochemical Journal , vol.404 , Issue.1 , pp. 1-13
    • Michan, S.1    Sinclair, D.2
  • 12
    • 77955615635 scopus 로고    scopus 로고
    • Muscle contractile activity regulates SIRT3 protein expression in rat skeletal muscles
    • Hokari F, Kawasaki E, Sakai A, et al. Muscle contractile activity regulates SIRT3 protein expression in rat skeletal muscles. J Appl Physiol 2010;109:332-340.
    • (2010) J Appl Physiol , vol.109 , pp. 332-340
    • Hokari, F.1    Kawasaki, E.2    Sakai, A.3
  • 13
    • 33751113602 scopus 로고    scopus 로고
    • Mammalian sirtuins - Emerging roles in physiology, aging, and calorie restriction
    • Haigis MC, Guarente LP. Mammalian sirtuins - emerging roles in physiology, aging, and calorie restriction. Genes Dev 2006;20:2913-2921.
    • (2006) Genes Dev , vol.20 , pp. 2913-2921
    • Haigis, M.C.1    Guarente, L.P.2
  • 14
    • 53549105529 scopus 로고    scopus 로고
    • SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
    • Sundaresan NR, Samant SA, Pillai VB, et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 2008;28:6384-6401.
    • (2008) Mol Cell Biol , vol.28 , pp. 6384-6401
    • Sundaresan, N.R.1    Samant, S.A.2    Pillai, V.B.3
  • 16
    • 77249128352 scopus 로고    scopus 로고
    • Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1
    • Ogura M, Nakamura Y, Tanaka D, et al. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun 2010;393:73-78.
    • (2010) Biochem Biophys Res Commun , vol.393 , pp. 73-78
    • Ogura, M.1    Nakamura, Y.2    Tanaka, D.3
  • 17
    • 77953244349 scopus 로고    scopus 로고
    • SIRT6 protects against pathological damage caused by diet-induced obesity
    • Kanfi Y, Peshti V, Gil R, et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 2010;9:162-173.
    • (2010) Aging Cell , vol.9 , pp. 162-173
    • Kanfi, Y.1    Peshti, V.2    Gil, R.3
  • 18
    • 74149085437 scopus 로고    scopus 로고
    • Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats
    • Koltai E, Szabo Z, Atalay M, et al. Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev 2010;131:21-28.
    • (2010) Mech Ageing Dev , vol.131 , pp. 21-28
    • Koltai, E.1    Szabo, Z.2    Atalay, M.3
  • 19
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
    • DOI 10.1074/jbc.M413296200
    • Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005;280:21313-21320. (Pubitemid 40805693)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.22 , pp. 21313-21320
    • Liszt, G.1    Ford, E.2    Kurtev, M.3    Guarente, L.4
  • 20
    • 33744466971 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
    • Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006;20:1075-1080.
    • (2006) Genes Dev , vol.20 , pp. 1075-1080
    • Ford, E.1    Voit, R.2    Liszt, G.3
  • 23
    • 77953291365 scopus 로고    scopus 로고
    • Sirtuin chemical mechanisms
    • Sauve AA. Sirtuin chemical mechanisms. Biochim Biophys Acta 2010;1804;1591-1603.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1591-1603
    • Sauve, A.A.1
  • 24
    • 3943054839 scopus 로고    scopus 로고
    • The Sir2 family of protein deacetylases
    • Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004;73:417-435.
    • (2004) Annu Rev Biochem , vol.73 , pp. 417-435
    • Blander, G.1    Guarente, L.2
  • 25
    • 2942564591 scopus 로고    scopus 로고
    • Sirtuins: Sir2-related NAD-dependent protein deacetylases
    • North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 2004;5:224.
    • (2004) Genome Biol , vol.5 , pp. 224
    • North, B.J.1    Verdin, E.2
  • 26
    • 0034023238 scopus 로고    scopus 로고
    • New functions of a long-known molecule. Emerging roles of NAD in cellular signaling
    • Ziegler M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem 2000;267:1550-1564.
    • (2000) Eur J Biochem , vol.267 , pp. 1550-1564
    • Ziegler, M.1
  • 27
    • 58749099124 scopus 로고    scopus 로고
    • SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention - The TULIP Study
    • Weyrich P, Machicao F, Reinhardt J, et al. SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention - the TULIP Study. BMC Med Genet 2008;9:100.
    • (2008) BMC Med Genet , vol.9 , pp. 100
    • Weyrich, P.1    Machicao, F.2    Reinhardt, J.3
  • 28
    • 55749086379 scopus 로고    scopus 로고
    • Association of SIRT1 gene variation with visceral obesity
    • Peeters AV, Beckers S, Verrijken A, et al. Association of SIRT1 gene variation with visceral obesity. Hum Genet 2008;124:431-436.
    • (2008) Hum Genet , vol.124 , pp. 431-436
    • Peeters, A.V.1    Beckers, S.2    Verrijken, A.3
  • 29
    • 73249152036 scopus 로고    scopus 로고
    • SIRT1 genetic variation is related to BMI and risk of obesity
    • Zillikens MC, van Meurs JB, Rivadeneira F, et al. SIRT1 genetic variation is related to BMI and risk of obesity. Diabetes 2009;58:2828-2834.
    • (2009) Diabetes , vol.58 , pp. 2828-2834
    • Zillikens, M.C.1    Van Meurs, J.B.2    Rivadeneira, F.3
  • 30
    • 60449118870 scopus 로고    scopus 로고
    • SIRT1 genetic variation and mortality in type 2 diabetes: Interaction with smoking and dietary niacin
    • Zillikens MC, van Meurs JB, Sijbrands EJ, et al. SIRT1 genetic variation and mortality in type 2 diabetes: interaction with smoking and dietary niacin. Free Radic Biol Med 2009;46:836-841.
    • (2009) Free Radic Biol Med , vol.46 , pp. 836-841
    • Zillikens, M.C.1    Van Meurs, J.B.2    Sijbrands, E.J.3
  • 31
    • 34948846024 scopus 로고    scopus 로고
    • SIRT1 gene, age-related diseases, and mortality: The Leiden 85-plus study
    • Kuningas M, Putters M, Westendorp RG, et al. SIRT1 gene, age-related diseases, and mortality: the Leiden 85-plus study. J Gerontol A Biol Sci Med Sci 2007;62:960-965.
    • (2007) J Gerontol A Biol Sci Med Sci , vol.62 , pp. 960-965
    • Kuningas, M.1    Putters, M.2    Westendorp, R.G.3
  • 32
    • 29744463503 scopus 로고    scopus 로고
    • Sirtuin 1 (SIRT1) sequence variation is not associated with exceptional human longevity
    • Flachsbart F, Croucher PJ, Nikolaus S, et al. Sirtuin 1 (SIRT1) sequence variation is not associated with exceptional human longevity. Exp Gerontol 2006;41:98-102.
    • (2006) Exp Gerontol , vol.41 , pp. 98-102
    • Flachsbart, F.1    Croucher, P.J.2    Nikolaus, S.3
  • 33
    • 10744232772 scopus 로고    scopus 로고
    • Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly
    • Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 2003;38:1065-1070.
    • (2003) Exp Gerontol , vol.38 , pp. 1065-1070
    • Rose, G.1    Dato, S.2    Altomare, K.3
  • 34
    • 67749137221 scopus 로고    scopus 로고
    • Genetic association analysis of 13 nuclear-encoded mitochondrial candidate genes with type II diabetes mellitus: The DAMAGE study
    • Reiling E, van Vliet-Ostaptchouk JV, van 't Riet E, et al. Genetic association analysis of 13 nuclear-encoded mitochondrial candidate genes with type II diabetes mellitus: the DAMAGE study. Eur J Hum Genet 2009;17:1056-1062.
    • (2009) Eur J Hum Genet , vol.17 , pp. 1056-1062
    • Reiling, E.1    Van Vliet-Ostaptchouk, J.V.2    Van 'T Riet, E.3
  • 35
    • 71849105308 scopus 로고    scopus 로고
    • The Caenorhabditis elegans sirtuin gene, sir-2.1, is widely expressed and induced upon caloric restriction
    • Bamps S, Wirtz J, Savory FR, et al. The Caenorhabditis elegans sirtuin gene, sir-2.1, is widely expressed and induced upon caloric restriction. Mech Ageing Dev 2009;130:762-770.
    • (2009) Mech Ageing Dev , vol.130 , pp. 762-770
    • Bamps, S.1    Wirtz, J.2    Savory, F.R.3
  • 37
    • 63549108476 scopus 로고    scopus 로고
    • Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans
    • Greer EL, Brunet A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 2009;8:113-127.
    • (2009) Aging Cell , vol.8 , pp. 113-127
    • Greer, E.L.1    Brunet, A.2
  • 38
    • 77953288455 scopus 로고    scopus 로고
    • + metabolism and calorie restriction
    • + metabolism and calorie restriction. Biochim Biophys Acta 2010;1804:1567-1575.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1567-1575
    • Lu, S.P.1    Lin, S.J.2
  • 39
    • 45549098657 scopus 로고    scopus 로고
    • SIRT1 regulates energy metabolism and response to caloric restriction in mice
    • Boily G, Seifert EL, Bevilacqua L, et al. SIRT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 2008;3:e1759.
    • (2008) PLoS One , vol.3
    • Boily, G.1    Seifert, E.L.2    Bevilacqua, L.3
  • 40
    • 65349191234 scopus 로고    scopus 로고
    • Short-term calorie restriction in male mice feminizes gene expression and alters key regulators of conserved aging regulatory pathways
    • Estep PW 3rd, Warner JB, Bulyk ML. Short-term calorie restriction in male mice feminizes gene expression and alters key regulators of conserved aging regulatory pathways. PLoS One 2009;4:e5242.
    • (2009) PLoS One , vol.4
    • Estep III, P.W.1    Warner, J.B.2    Bulyk, M.L.3
  • 41
    • 52449135100 scopus 로고    scopus 로고
    • In vitro cellular adaptations of indicators of longevity in response to treatment with serum collected from humans on calorie restricted diets
    • Allard JS, Heilbronn LK, Smith C, et al. In vitro cellular adaptations of indicators of longevity in response to treatment with serum collected from humans on calorie restricted diets. PLoS One 2008;3:e3211.
    • (2008) PLoS One , vol.3
    • Allard, J.S.1    Heilbronn, L.K.2    Smith, C.3
  • 42
    • 33947710793 scopus 로고    scopus 로고
    • Calorie restriction increases muscle mitochondrial biogenesis in healthy humans
    • Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 2007;4:e76.
    • (2007) PLoS Med , vol.4
    • Civitarese, A.E.1    Carling, S.2    Heilbronn, L.K.3
  • 43
    • 49749088697 scopus 로고    scopus 로고
    • Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction
    • Crujeiras AB, Parra D, Goyenechea E, Martinez JA. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest 2008;38:672-678.
    • (2008) Eur J Clin Invest , vol.38 , pp. 672-678
    • Crujeiras, A.B.1    Parra, D.2    Goyenechea, E.3    Martinez, J.A.4
  • 44
    • 57349147307 scopus 로고    scopus 로고
    • Contribution of energy restriction and macronutrient composition to changes in adipose tissue gene expression during dietary weight-loss programs in obese women
    • Capel F, Viguerie N, Vega N, et al. Contribution of energy restriction and macronutrient composition to changes in adipose tissue gene expression during dietary weight-loss programs in obese women. J Clin Endocrinol Metab 2008;93:4315-4322.
    • (2008) J Clin Endocrinol Metab , vol.93 , pp. 4315-4322
    • Capel, F.1    Viguerie, N.2    Vega, N.3
  • 45
    • 44849096876 scopus 로고    scopus 로고
    • The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
    • Firestein R, Blander G, Michan S, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 2008;3:e2020.
    • (2008) PLoS One , vol.3
    • Firestein, R.1    Blander, G.2    Michan, S.3
  • 47
    • 77951157657 scopus 로고    scopus 로고
    • Calorie restriction enhances cell adaptation to hypoxia through SIRT1-dependent mitochondrial autophagy in mouse aged kidney
    • Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through SIRT1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 2010;120:1043-1055.
    • (2010) J Clin Invest , vol.120 , pp. 1043-1055
    • Kume, S.1    Uzu, T.2    Horiike, K.3
  • 49
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010;464:121-125.
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1    Shimazu, T.2    Goetzman, E.3
  • 50
    • 77952940043 scopus 로고    scopus 로고
    • Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
    • Palados OM, Carmona JJ, Michan S, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY) 2009;1:771-783.
    • (2009) Aging (Albany NY) , vol.1 , pp. 771-783
    • Palados, O.M.1    Carmona, J.J.2    Michan, S.3
  • 51
    • 76349125988 scopus 로고    scopus 로고
    • SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells
    • Shi T, Fan GQ, Xiao SD. SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells. J Dig Dis 2010;11:55-62.
    • (2010) J Dig Dis , vol.11 , pp. 55-62
    • Shi, T.1    Fan, G.Q.2    Xiao, S.D.3
  • 52
    • 77956191450 scopus 로고    scopus 로고
    • Acetate metabolism and aging: An emerging connection
    • May 15. [Epub ahead of print]
    • Shimazu T, Hirschey MD, Huang JY, et al. Acetate metabolism and aging: an emerging connection. Mech Ageing Dev 2010 May 15. [Epub ahead of print]
    • (2010) Mech Ageing Dev
    • Shimazu, T.1    Hirschey, M.D.2    Huang, J.Y.3
  • 53
    • 77953933813 scopus 로고    scopus 로고
    • Urea cycle regulation by mitochondrial sirtuin, SIRT5
    • Nakagawa T, Guarente L. Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging (Albany NY) 2009;1:578-581.
    • (2009) Aging (Albany NY) , vol.1 , pp. 578-581
    • Nakagawa, T.1    Guarente, L.2
  • 54
    • 67650488877 scopus 로고    scopus 로고
    • SIRT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats
    • Erion DM, Yonemitsu S, Nie Y, et al. SIRT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc Natl Acad Sci U S A 2009;106:11288-11293.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 11288-11293
    • Erion, D.M.1    Yonemitsu, S.2    Nie, Y.3
  • 55
    • 64049109876 scopus 로고    scopus 로고
    • STAT3 inhibition of gluconeogenesis is downregulated by SIRT1
    • Nie Y, Erion DM, Yuan Z, et al. STAT3 inhibition of gluconeogenesis is downregulated by SIRT1. Nat Cell Biol 2009;11:492-500.
    • (2009) Nat Cell Biol , vol.11 , pp. 492-500
    • Nie, Y.1    Erion, D.M.2    Yuan, Z.3
  • 56
    • 63449112017 scopus 로고    scopus 로고
    • Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
    • Purushotham A, Schug TT, Xu Q, et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009;9:327-338.
    • (2009) Cell Metab , vol.9 , pp. 327-338
    • Purushotham, A.1    Schug, T.T.2    Xu, Q.3
  • 57
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • DOI 10.1038/nature03354
    • Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113-118. (Pubitemid 40349395)
    • (2005) Nature , vol.434 , Issue.7029 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4    Spiegelman, B.M.5    Puigserver, P.6
  • 59
    • 54049158932 scopus 로고    scopus 로고
    • Brain SIRT1: Anatomical distribution and regulation by energy availability
    • Ramadori G, Lee CE, Bookout AL, et al. Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci 2008;28:9989-9996.
    • (2008) J Neurosci , vol.28 , pp. 9989-9996
    • Ramadori, G.1    Lee, C.E.2    Bookout, A.L.3
  • 60
    • 77949506721 scopus 로고    scopus 로고
    • Hypothalamic SIRT1 regulates food intake in a rodent model system
    • Cakir I, Perello M, Lansari O, et al. Hypothalamic SIRT1 regulates food intake in a rodent model system. PLoS One 2009;4:e8322.
    • (2009) PLoS One , vol.4
    • Cakir, I.1    Perello, M.2    Lansari, O.3
  • 61
    • 28844469898 scopus 로고    scopus 로고
    • Increase in activity during calorie restriction requires Sirt1
    • Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirt1. Science 2005;310:1641.
    • (2005) Science , vol.310 , pp. 1641
    • Chen, D.1    Steele, A.D.2    Lindquist, S.3    Guarente, L.4
  • 62
    • 44949188628 scopus 로고    scopus 로고
    • Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle
    • Suwa M, Nakano H, Radak Z, Kumagai S. Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle. Metabolism 2008;57:986-998.
    • (2008) Metabolism , vol.57 , pp. 986-998
    • Suwa, M.1    Nakano, H.2    Radak, Z.3    Kumagai, S.4
  • 63
    • 73449125908 scopus 로고    scopus 로고
    • Relationship between SIRT1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse
    • Chabi B, Adhihetty PJ, O'Leary MF, et al. Relationship between SIRT1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse. J Appl Physiol 2009;107:1730-1735.
    • (2009) J Appl Physiol , vol.107 , pp. 1730-1735
    • Chabi, B.1    Adhihetty, P.J.2    O'Leary, M.F.3
  • 65
    • 70350257622 scopus 로고    scopus 로고
    • Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis
    • Dumke CL, Mark Davis J, Angela Murphy E, et al. Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis. Eur J Appl Physiol 2009;107:419-427.
    • (2009) Eur J Appl Physiol , vol.107 , pp. 419-427
    • Dumke, C.L.1    Mark Davis, J.2    Angela Murphy, E.3
  • 66
    • 77951998780 scopus 로고    scopus 로고
    • The effect of marathon on mRNA expression of anti-apoptotic and pro-apoptotic proteins and sirtuins family in male recreational long-distance runners
    • Marfe G, Tafani M, Pucci B, et al. The effect of marathon on mRNA expression of anti-apoptotic and pro-apoptotic proteins and sirtuins family in male recreational long-distance runners. BMC Physiol 2010;10:7.
    • (2010) BMC Physiol , vol.10 , pp. 7
    • Marfe, G.1    Tafani, M.2    Pucci, B.3
  • 67
    • 58149345928 scopus 로고    scopus 로고
    • Endurance exercise as a countermeasure for aging
    • Lanza IR, Short DK, Short KR, et al. Endurance exercise as a countermeasure for aging. Diabetes 2008;57:2933-2942.
    • (2008) Diabetes , vol.57 , pp. 2933-2942
    • Lanza, I.R.1    Short, D.K.2    Short, K.R.3
  • 68
    • 56749173575 scopus 로고    scopus 로고
    • SIRT1 is involved in energy metabolism: The role of chronic ethanol feeding and resveratrol
    • Oliva J, French BA, Li J, et al. SIRT1 is involved in energy metabolism: the role of chronic ethanol feeding and resveratrol. Exp Mol Pathol 2008;85:155-159.
    • (2008) Exp Mol Pathol , vol.85 , pp. 155-159
    • Oliva, J.1    French, B.A.2    Li, J.3
  • 70
    • 41849102675 scopus 로고    scopus 로고
    • Effect of chronic alcohol consumption on hepatic SIRT1 and PGC-1alpha in rats
    • Lieber CS, Leo MA, Wang X, Decarli LM. Effect of chronic alcohol consumption on hepatic SIRT1 and PGC-1alpha in rats. Biochem Biophys Res Commun 2008;370:44-48.
    • (2008) Biochem Biophys Res Commun , vol.370 , pp. 44-48
    • Lieber, C.S.1    Leo, M.A.2    Wang, X.3    Decarli, L.M.4
  • 71
    • 70449701441 scopus 로고    scopus 로고
    • Red wine decreases asymmetric dimethylarginine via SIRT1 induction in human endothelial cells
    • Scalera F, Fulge B, Martens-Lobenhoffer J, et al. Red wine decreases asymmetric dimethylarginine via SIRT1 induction in human endothelial cells. Biochem Biophys Res Commun 2009;390:703-709.
    • (2009) Biochem Biophys Res Commun , vol.390 , pp. 703-709
    • Scalera, F.1    Fulge, B.2    Martens-Lobenhoffer, J.3
  • 72
    • 59249084680 scopus 로고    scopus 로고
    • Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosol
    • Mukherjee S, Lekli I, Gurusamy N, et al. Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosol. Free Radic Biol Med 2009;46:573-578.
    • (2009) Free Radic Biol Med , vol.46 , pp. 573-578
    • Mukherjee, S.1    Lekli, I.2    Gurusamy, N.3
  • 74
    • 42649146208 scopus 로고    scopus 로고
    • SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease
    • Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;177:861-870.
    • (2008) Am J Respir Crit Care Med , vol.177 , pp. 861-870
    • Rajendrasozhan, S.1    Yang, S.R.2    Kinnula, V.L.3    Rahman, I.4
  • 75
    • 33847060910 scopus 로고    scopus 로고
    • Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: Implications for chronic inflammation and aging
    • Yang SR, Wright J, Bauter M, et al. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol 2007;292:L567-L576.
    • (2007) Am J Physiol Lung Cell Mol Physiol , vol.292
    • Yang, S.R.1    Wright, J.2    Bauter, M.3
  • 76
    • 77956180402 scopus 로고    scopus 로고
    • SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress
    • Apr 12. [Epub ahead of print]
    • Caito S, Rajendrasozhan S, Cook S, et al. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J 2010 Apr 12. [Epub ahead of print]
    • (2010) FASEB J
    • Caito, S.1    Rajendrasozhan, S.2    Cook, S.3
  • 77
    • 77249158771 scopus 로고    scopus 로고
    • SIRT1 regulates oxidant- and cigarette smoke-induced eNOS acetylation in endothelial cells: Role of resveratrol
    • Arunachalam G, Yao H, Sundar IK, et al. SIRT1 regulates oxidant- and cigarette smoke-induced eNOS acetylation in endothelial cells: role of resveratrol. Biochem Biophys Res Commun 2010;393:66-72.
    • (2010) Biochem Biophys Res Commun , vol.393 , pp. 66-72
    • Arunachalam, G.1    Yao, H.2    Sundar, I.K.3
  • 78
    • 36949021068 scopus 로고    scopus 로고
    • Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes
    • DOI 10.1007/s11010-007-9592-5
    • Bai L, Pang WJ, Yang YJ, Yang GS. Modulation of SIRT1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem 2008;307:129-140. (Pubitemid 350238655)
    • (2008) Molecular and Cellular Biochemistry , vol.307 , Issue.1-2 , pp. 129-140
    • Bai, L.1    Pang, W.-J.2    Yang, Y.-J.3    Yang, G.-S.4
  • 79
    • 47749148061 scopus 로고    scopus 로고
    • Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK
    • Breen DM, Sanli T, Giacca A, Tsiani E. Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem Biophys Res Commun 2008;374:117-122.
    • (2008) Biochem Biophys Res Commun , vol.374 , pp. 117-122
    • Breen, D.M.1    Sanli, T.2    Giacca, A.3    Tsiani, E.4
  • 80
    • 60549098942 scopus 로고    scopus 로고
    • Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via SIRT1-FOXO1 signaling pathway
    • Wang GL, Fu YC, Xu WC, et al. Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via SIRT1-FOXO1 signaling pathway. Biochem Biophys Res Commun 2009;380:644-649.
    • (2009) Biochem Biophys Res Commun , vol.380 , pp. 644-649
    • Wang, G.L.1    Fu, Y.C.2    Xu, W.C.3
  • 81
    • 63249112836 scopus 로고    scopus 로고
    • Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway
    • Lee JH, Song MY, Song EK, et al. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes 2009;58:344-351.
    • (2009) Diabetes , vol.58 , pp. 344-351
    • Lee, J.H.1    Song, M.Y.2    Song, E.K.3
  • 82
    • 77951165669 scopus 로고    scopus 로고
    • SIRT1 activation protects the mouse renal medulla from oxidative injury
    • He W, Wang Y, Zhang MZ, et al. SIRT1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 2010;120:1056-1068.
    • (2010) J Clin Invest , vol.120 , pp. 1056-1068
    • He, W.1    Wang, Y.2    Zhang, M.Z.3
  • 83
    • 57749197168 scopus 로고    scopus 로고
    • Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FOXO1 pathway
    • Chen CJ, Yu W, Fu YC, et al. Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FOXO1 pathway. Biochem Biophys Res Commun 2009;378:389-393.
    • (2009) Biochem Biophys Res Commun , vol.378 , pp. 389-393
    • Chen, C.J.1    Yu, W.2    Fu, Y.C.3
  • 84
    • 74249099068 scopus 로고    scopus 로고
    • Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype
    • Grada-Sancho J, Villarreal G Jr, Zhang Y, García-Cardeña G. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc Res 2010;85:514-519.
    • (2010) Cardiovasc Res , vol.85 , pp. 514-519
    • Grada-Sancho, J.1    Villarreal Jr., G.2    Zhang, Y.3    García-Cardeña, G.4
  • 85
    • 46249095235 scopus 로고    scopus 로고
    • SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells
    • Miyazaki R, Ichiki T, Hashimoto T, et al. SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2008;28:1263-1269.
    • (2008) Arterioscler Thromb Vasc Biol , vol.28 , pp. 1263-1269
    • Miyazaki, R.1    Ichiki, T.2    Hashimoto, T.3
  • 86
    • 49949091740 scopus 로고    scopus 로고
    • Enhanced tolerance against early and late apoptotic oxidative stress in mammalian neurons through nicotinamidase and sirtuin mediated pathways
    • Chong ZZ, Maiese K. Enhanced tolerance against early and late apoptotic oxidative stress in mammalian neurons through nicotinamidase and sirtuin mediated pathways. Curr Neurovasc Res 2008;5:159-170.
    • (2008) Curr Neurovasc Res , vol.5 , pp. 159-170
    • Chong, Z.Z.1    Maiese, K.2
  • 88
    • 68949113934 scopus 로고    scopus 로고
    • SIRT1-null mice develop tumors at normal rates but are poorly protected by resveratrol
    • Boily G, He XH, Pearce B, et al. SIRT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 2009;28:2882-2893.
    • (2009) Oncogene , vol.28 , pp. 2882-2893
    • Boily, G.1    He, X.H.2    Pearce, B.3
  • 89
    • 58149360793 scopus 로고    scopus 로고
    • SIRT1 promotes differentiation of normal human keratinocytes
    • Blander G, Bhimavarapu A, Mammone T, et al. SIRT1 promotes differentiation of normal human keratinocytes. J Invest Dermatol 2009;129:41-49.
    • (2009) J Invest Dermatol , vol.129 , pp. 41-49
    • Blander, G.1    Bhimavarapu, A.2    Mammone, T.3
  • 90
    • 33745514431 scopus 로고    scopus 로고
    • Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells
    • DOI 10.1359/jbmr.060415
    • Bäckesjo CM, Li Y, Lindgren U, Haldosén LA. Activation of SIRT1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res 2006;21:993-1002. (Pubitemid 43962828)
    • (2006) Journal of Bone and Mineral Research , vol.21 , Issue.7 , pp. 993-1002
    • Backesjo, C.-M.1    Li, Y.2    Lindgren, U.3    Haldosen, L.-A.4
  • 91
    • 67650070375 scopus 로고    scopus 로고
    • Effects of resveratrol on H(2)O(2)-induced apoptosis and expression of SIRTs in H9c2 cells
    • Yu W, Fu YC, Zhou XH, et al. Effects of resveratrol on H(2)O(2)-induced apoptosis and expression of SIRTs in H9c2 cells. J Cell Biochem 2009;107:741-747.
    • (2009) J Cell Biochem , vol.107 , pp. 741-747
    • Yu, W.1    Fu, Y.C.2    Zhou, X.H.3
  • 92
    • 74449093522 scopus 로고    scopus 로고
    • Resveratrol is neuroprotective because it is not a direct activator of SIRT1 - A hypothesis
    • Tang BL. Resveratrol is neuroprotective because it is not a direct activator of SIRT1 - a hypothesis. Brain Res Bull 2010;81:359-361.
    • (2010) Brain Res Bull , vol.81 , pp. 359-361
    • Tang, B.L.1
  • 93
    • 77950348878 scopus 로고    scopus 로고
    • AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol
    • Um JH, Park SJ, Rang H, et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010;59:554-563.
    • (2010) Diabetes , vol.59 , pp. 554-563
    • Um, J.H.1    Park, S.J.2    Rang, H.3
  • 94
    • 77649213393 scopus 로고    scopus 로고
    • Metabolic effects of resveratrol in mammals - A link between improved insulin action and aging
    • Fröjdö S, Durand C, Pirola L. Metabolic effects of resveratrol in mammals - a link between improved insulin action and aging. Curr Aging Sci 2008;1:145-151.
    • (2008) Curr Aging Sci , vol.1 , pp. 145-151
    • Fröjdö, S.1    Durand, C.2    Pirola, L.3
  • 95
    • 33746862126 scopus 로고    scopus 로고
    • Resveratrol inhibits insulin responses in a SIRT1-independent pathway
    • Zhang J. Resveratrol inhibits insulin responses in a SIRT1-independent pathway. Biochem J 2006;397:519-527.
    • (2006) Biochem J , vol.397 , pp. 519-527
    • Zhang, J.1
  • 97
    • 75149152490 scopus 로고    scopus 로고
    • Quercetin's influence on exercise performance and muscle mitochondrial biogenesis
    • Nieman DC, Williams AS, Shanely RA, et al. Quercetin's influence on exercise performance and muscle mitochondrial biogenesis. Med Sci Sports Exerc 2010;42:338-345.
    • (2010) Med Sci Sports Exerc , vol.42 , pp. 338-345
    • Nieman, D.C.1    Williams, A.S.2    Shanely, R.A.3
  • 98
    • 45849131315 scopus 로고    scopus 로고
    • Protective effect of persimmon (Diospyros kaki) peel proanthocyanidin against oxidative damage under H2O2-induced cellular senescence
    • Lee YA, Cho EJ, Yokozawa T. Protective effect of persimmon (Diospyros kaki) peel proanthocyanidin against oxidative damage under H2O2-induced cellular senescence. Biol Pharm Bull 2008;31:1265-1269.
    • (2008) Biol Pharm Bull , vol.31 , pp. 1265-1269
    • Lee, Y.A.1    Cho, E.J.2    Yokozawa, T.3
  • 99
    • 74349129280 scopus 로고    scopus 로고
    • Persimmon oligomeric proanthocyanidins extend life span of senescence-accelerated mice
    • Yokozawa T, Lee YA, Zhao Q, et al. Persimmon oligomeric proanthocyanidins extend life span of senescence-accelerated mice. J Med Food 2009;12:1199-1205.
    • (2009) J Med Food , vol.12 , pp. 1199-1205
    • Yokozawa, T.1    Lee, Y.A.2    Zhao, Q.3
  • 100
    • 36348975290 scopus 로고    scopus 로고
    • SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription
    • DOI 10.1074/jbc.M707114200
    • Amat R, Solanes G, Giralt M, Villarroya F. SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription. J Biol Chem 2007;282:34066-34076. (Pubitemid 350159429)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.47 , pp. 34066-34076
    • Amat, R.1    Solanes, G.2    Giralt, M.3    Villarroya, F.4
  • 102
    • 47549102014 scopus 로고    scopus 로고
    • SIRT1 Is a Circadian Deacetylase for Core Clock Components
    • DOI 10.1016/j.cell.2008.07.010, PII S0092867408008878
    • Belden WJ, Dunlap JC. SIRT1 is a circadian deacetylase for core clock components. Cell 2008;134:212-214. (Pubitemid 352010342)
    • (2008) Cell , vol.134 , Issue.2 , pp. 212-214
    • Belden, W.J.1    Dunlap, J.C.2
  • 103
    • 62149114892 scopus 로고    scopus 로고
    • NAD(+), sirtuins, and cardiovascular disease
    • Borradaile NM, Pickering JG. NAD(+), sirtuins, and cardiovascular disease. Curr Pharm Des 2009;15:110-117.
    • (2009) Curr Pharm des , vol.15 , pp. 110-117
    • Borradaile, N.M.1    Pickering, J.G.2
  • 104
    • 12144290563 scopus 로고    scopus 로고
    • Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    • Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011-2015.
    • (2004) Science , vol.303 , pp. 2011-2015
    • Brunet, A.1    Sweeney, L.B.2    Sturgill, J.F.3
  • 106
    • 33750367457 scopus 로고    scopus 로고
    • Hormonal control of androgen receptor function through SIRT1
    • Fu M, Liu M, Sauve AA, et al. Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol 2006;26:8122-8135.
    • (2006) Mol Cell Biol , vol.26 , pp. 8122-8135
    • Fu, M.1    Liu, M.2    Sauve, A.A.3
  • 107
    • 67651210858 scopus 로고    scopus 로고
    • SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1
    • Rajamohan SB, Pillai VB, Gupta M, et al. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol 2009;29:4116-4129.
    • (2009) Mol Cell Biol , vol.29 , pp. 4116-4129
    • Rajamohan, S.B.1    Pillai, V.B.2    Gupta, M.3
  • 108
    • 0037474507 scopus 로고    scopus 로고
    • Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression
    • Takata T, Ishikawa F. Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun 2003;301:250-257.
    • (2003) Biochem Biophys Res Commun , vol.301 , pp. 250-257
    • Takata, T.1    Ishikawa, F.2
  • 109
    • 72949123238 scopus 로고    scopus 로고
    • Is systemic activation of SIRT1 beneficial for ageing-associated metabolic disorders?
    • Tang BL, Chua CE. Is systemic activation of SIRT1 beneficial for ageing-associated metabolic disorders? Biochem Biophys Res Commun 2010;391:6-10.
    • (2010) Biochem Biophys Res Commun , vol.391 , pp. 6-10
    • Tang, B.L.1    Chua, C.E.2
  • 110
    • 77950351604 scopus 로고    scopus 로고
    • SIRT1 deacetylates APE1 and regulates cellular base excision repair
    • Yamamori T, DeRicco J, Naqvi A, et al. SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res 2010;38:832-845.
    • (2010) Nucleic Acids Res , vol.38 , pp. 832-845
    • Yamamori, T.1    DeRicco, J.2    Naqvi, A.3
  • 111
    • 77950896568 scopus 로고    scopus 로고
    • Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling
    • Yao Y, Li H, Gu Y, et al. Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling. Carcinogenesis 2010;31:382-387.
    • (2010) Carcinogenesis , vol.31 , pp. 382-387
    • Yao, Y.1    Li, H.2    Gu, Y.3
  • 113
    • 40449093056 scopus 로고    scopus 로고
    • Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice
    • You M, Cao Q, Liang X, et al. Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice. J Nutr 2008;138:497-501.
    • (2008) J Nutr , vol.138 , pp. 497-501
    • You, M.1    Cao, Q.2    Liang, X.3
  • 114
    • 3142548829 scopus 로고    scopus 로고
    • Human histone deacetylase SIRT2 interacts with the homeobox transcription factor HOXA10
    • Bae NS, Swanson MJ, Vassilev A, Howard BH. Human histone deacetylase SIRT2 interacts with the homeobox transcription factor HOXA10. J Biochem 2004;135:695-700.
    • (2004) J Biochem , vol.135 , pp. 695-700
    • Bae, N.S.1    Swanson, M.J.2    Vassilev, A.3    Howard, B.H.4
  • 115
    • 55049117907 scopus 로고    scopus 로고
    • The SIRT2 deacetylase regulates autoacetylation of p300
    • Black JC, Mosley A, Kitada T, et al. The SIRT2 deacetylase regulates autoacetylation of p300. Mol Cell 2008;32:449-455.
    • (2008) Mol Cell , vol.32 , pp. 449-455
    • Black, J.C.1    Mosley, A.2    Kitada, T.3
  • 116
    • 65949099936 scopus 로고    scopus 로고
    • SIRT2 downregulation confers resistance to microtubule inhibitors by prolonging chronic mitotic arrest
    • Inoue T, Nakayama Y, Yamada H, et al. SIRT2 downregulation confers resistance to microtubule inhibitors by prolonging chronic mitotic arrest. Cell Cycle 2009;8:1279-1291.
    • (2009) Cell Cycle , vol.8 , pp. 1279-1291
    • Inoue, T.1    Nakayama, Y.2    Yamada, H.3
  • 117
    • 34248151365 scopus 로고    scopus 로고
    • The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation
    • Inoue T, Hiratsuka M, Osaki M, Oshimura M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 2007;6:1011-1018.
    • (2007) Cell Cycle , vol.6 , pp. 1011-1018
    • Inoue, T.1    Hiratsuka, M.2    Osaki, M.3    Oshimura, M.4
  • 118
    • 39749143163 scopus 로고    scopus 로고
    • SIRT2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53
    • Jin YH, Kim YJ, Kim DW, et al. SIRT2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem Biophys Res Commun 2008;368:690-695.
    • (2008) Biochem Biophys Res Commun , vol.368 , pp. 690-695
    • Jin, Y.H.1    Kim, Y.J.2    Kim, D.W.3
  • 119
    • 33847793039 scopus 로고    scopus 로고
    • Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin
    • Li W, Zhang B, Tang J, et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. J Neurosci 2007;27:2606-2616.
    • (2007) J Neurosci , vol.27 , pp. 2606-2616
    • Li, W.1    Zhang, B.2    Tang, J.3
  • 120
    • 77950835404 scopus 로고    scopus 로고
    • SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2
    • Peck B, Chen CY, Ho KK, et al. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther 2010;9:844-855.
    • (2010) Mol Cancer Ther , vol.9 , pp. 844-855
    • Peck, B.1    Chen, C.Y.2    Ho, K.K.3
  • 121
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A 2006;103:10230-10235.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 122
    • 77956295588 scopus 로고    scopus 로고
    • P53-Induced growth arrest is regulated by the mitochondrial SIRT3 deacetylase
    • Li S, Banck M, Mujtaba S, et al. p53-Induced growth arrest is regulated by the mitochondrial SIRT3 deacetylase. PLoS One 2010;5:e10486.
    • (2010) PLoS One , vol.5
    • Li, S.1    Banck, M.2    Mujtaba, S.3
  • 123
    • 50149103440 scopus 로고    scopus 로고
    • Substrates and regulation mechanisms for the human mitochondrial sirtuins SIRT3 and SIRT5
    • Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins SIRT3 and SIRT5. J Mol Biol 2008;382:790-801.
    • (2008) J Mol Biol , vol.382 , pp. 790-801
    • Schlicker, C.1    Gertz, M.2    Papatheodorou, P.3
  • 124
    • 17144424946 scopus 로고    scopus 로고
    • SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
    • Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005;280:13560-13567.
    • (2005) J Biol Chem , vol.280 , pp. 13560-13567
    • Shi, T.1    Wang, F.2    Stieren, E.3    Tong, Q.4
  • 125
    • 70349208608 scopus 로고    scopus 로고
    • SIRT3 blocks the cardiac hypertrophic response by augmenting FOXO3a-dependent antioxidant defense mechanisms in mice
    • Sundaresan NR, Gupta M, Kim G, et al. SIRT3 blocks the cardiac hypertrophic response by augmenting FOXO3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009;119:2758-2771.
    • (2009) J Clin Invest , vol.119 , pp. 2758-2771
    • Sundaresan, N.R.1    Gupta, M.2    Kim, G.3
  • 126
    • 77951235122 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
    • +-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J Biol Chem 2010;285:7417-7429.
    • (2010) J Biol Chem , vol.285 , pp. 7417-7429
    • Yang, Y.1    Cimen, H.2    Han, M.J.3
  • 127
    • 66049150672 scopus 로고    scopus 로고
    • SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair
    • McCord RA, Michishita E, Hong T, et al. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 2009;1:109-121.
    • (2009) Aging (Albany NY) , vol.1 , pp. 109-121
    • McCord, R.A.1    Michishita, E.2    Hong, T.3
  • 128
    • 59649117804 scopus 로고    scopus 로고
    • Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner
    • Van Gool F, Gallí M, Gueydan C, et al. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat Med 2009;15:206-210.
    • (2009) Nat Med , vol.15 , pp. 206-210
    • Van Gool, F.1    Gallí, M.2    Gueydan, C.3
  • 129
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006;126:941-954.
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3
  • 131
    • 43649087274 scopus 로고    scopus 로고
    • High glucose downregulates endothelial progenitor cell number via SIRT1
    • Balestrieri ML, Rienzo M, Felice F, et al. High glucose downregulates endothelial progenitor cell number via SIRT1. Biochim Biophys Acta 2008;1784:936-945.
    • (2008) Biochim Biophys Acta , vol.1784 , pp. 936-945
    • Balestrieri, M.L.1    Rienzo, M.2    Felice, F.3
  • 132
    • 33244486764 scopus 로고    scopus 로고
    • SIRT1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
    • Bordone L, Motta MC, Picard F, et al. SIRT1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006;4:e31.
    • (2006) PLoS Biol , vol.4
    • Bordone, L.1    Motta, M.C.2    Picard, F.3
  • 133
    • 24744467838 scopus 로고    scopus 로고
    • Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2alpha)
    • Hisahara S, Chiba S, Matsumoto H, Horio Y. Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2alpha). J Pharmacol Sci 2005;98:200-204
    • (2005) J Pharmacol Sci , vol.98 , pp. 200-204
    • Hisahara, S.1    Chiba, S.2    Matsumoto, H.3    Horio, Y.4
  • 134
    • 0035913911 scopus 로고    scopus 로고
    • Negative control of p53 by Sir2alpha promotes cell survival under stress
    • Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001;107:137-148.
    • (2001) Cell , vol.107 , pp. 137-148
    • Luo, J.1    Nikolaev, A.Y.2    Imai, S.3
  • 135
    • 0035913903 scopus 로고    scopus 로고
    • HSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase
    • Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001;107:149-159.
    • (2001) Cell , vol.107 , pp. 149-159
    • Vaziri, H.1    Dessain, S.K.2    Ng Eaton, E.3
  • 136
    • 16344384026 scopus 로고    scopus 로고
    • Suppression of FOXO1 activity by FHL2 through SIRTl-mediated deacetylation
    • Yang Y, Hou H, Haller EM, et al. Suppression of FOXO1 activity by FHL2 through SIRTl-mediated deacetylation. EMBOJ 2005;24:1021-1032.
    • (2005) EMBOJ , vol.24 , pp. 1021-1032
    • Yang, Y.1    Hou, H.2    Haller, E.M.3
  • 137
    • 47549088250 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008;134:329-340.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1    Kaluzova, M.2    Grimaldi, B.3
  • 140
    • 76649085804 scopus 로고    scopus 로고
    • Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice
    • Escande C, Chini CC, Nin V, et al. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. J Clin Invest 2010;120:545-558.
    • (2010) J Clin Invest , vol.120 , pp. 545-558
    • Escande, C.1    Chini, C.C.2    Nin, V.3
  • 141
    • 51449123628 scopus 로고    scopus 로고
    • Acetylation of SIRT2 by p300 attenuates its deacetylase activity
    • Han Y, Jin YH, Kim YJ, et al. Acetylation of SIRT2 by p300 attenuates its deacetylase activity. Biochem Biophys Res Commun 2008;375:576-580.
    • (2008) Biochem Biophys Res Commun , vol.375 , pp. 576-580
    • Han, Y.1    Jin, Y.H.2    Kim, Y.J.3
  • 142
    • 41649102028 scopus 로고    scopus 로고
    • Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FOXO3a in C2C12 myocytes
    • Nedachi T, Kadotani A, Ariga M, et al. Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FOXO3a in C2C12 myocytes. Am J Physiol Endocrinol Metab 2008;294:E668-E678.
    • (2008) Am J Physiol Endocrinol Metab , vol.294
    • Nedachi, T.1    Kadotani, A.2    Ariga, M.3
  • 143
    • 34548857700 scopus 로고    scopus 로고
    • SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B
    • Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007;6:307-319.
    • (2007) Cell Metab , vol.6 , pp. 307-319
    • Sun, C.1    Zhang, F.2    Ge, X.3
  • 144
    • 58149202185 scopus 로고    scopus 로고
    • Phosphorylation regulates SIRT1 function
    • Sasaki T, Maier B, Koclega KD, et al. Phosphorylation regulates SIRT1 function. PLoS One 2008;3:e4020.
    • (2008) PLoS One , vol.3
    • Sasaki, T.1    Maier, B.2    Koclega, K.D.3
  • 145
    • 77949539030 scopus 로고    scopus 로고
    • JNK1 phosphorylates SIRT1 and promotes its enzymatic activity
    • Nasrin N, Kaushik VK, Fortier E, et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One 2009;4:e8414.
    • (2009) PLoS One , vol.4
    • Nasrin, N.1    Kaushik, V.K.2    Fortier, E.3
  • 146
    • 23944452543 scopus 로고    scopus 로고
    • 3 and sirtuin function
    • 3 and sirtuin function. Trends Biochem Sci 2005;30:479-483.
    • (2005) Trends Biochem Sci , vol.30 , pp. 479-483
    • Denu, J.M.1
  • 147
    • 63149089930 scopus 로고    scopus 로고
    • The NAD World: A new systemic regulatory network for metabolism and aging - SIRT1, systemic NAD biosynthesis, and their importance
    • Imai S. The NAD World: a new systemic regulatory network for metabolism and aging - SIRT1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys 2009;53:65-74.
    • (2009) Cell Biochem Biophys , vol.53 , pp. 65-74
    • Imai, S.1
  • 148
    • 15244355745 scopus 로고    scopus 로고
    • Mechanism of sirtuin inhibition by nicotinamide: Altering the NAD(+) cosubstrate specificity of a Sir2 enzyme
    • Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 2005;17:855-868.
    • (2005) Mol Cell , vol.17 , pp. 855-868
    • Avalos, J.L.1    Bever, K.M.2    Wolberger, C.3
  • 150
    • 0037160097 scopus 로고    scopus 로고
    • Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
    • Bitterman KJ, Anderson RM, Cohen HY, et al. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 2002;277:45099-45107.
    • (2002) J Biol Chem , vol.277 , pp. 45099-45107
    • Bitterman, K.J.1    Anderson, R.M.2    Cohen, H.Y.3
  • 152
    • 13944258164 scopus 로고    scopus 로고
    • Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition
    • Sauve AA, Moir RD, Schramm VL, Willis IM. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition. Mol Cell 2005;17:595-601.
    • (2005) Mol Cell , vol.17 , pp. 595-601
    • Sauve, A.A.1    Moir, R.D.2    Schramm, V.L.3    Willis, I.M.4
  • 153
    • 4544243684 scopus 로고    scopus 로고
    • Coenzyme specificity of Sir2 protein deacetylases: Implications for physiological regulation
    • Schmidt MT, Smith BC, Jackson MD, Denu JM. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J Biol Chem 2004;279:40122-40129.
    • (2004) J Biol Chem , vol.279 , pp. 40122-40129
    • Schmidt, M.T.1    Smith, B.C.2    Jackson, M.D.3    Denu, J.M.4
  • 154
    • 65249173918 scopus 로고    scopus 로고
    • + consumption by SIRT1 may endanger energetically compromised neurons
    • + consumption by SIRT1 may endanger energetically compromised neurons. Neuromolecular Med 2009;11:28-42.
    • (2009) Neuromolecular Med , vol.11 , pp. 28-42
    • Liu, D.1    Gharavi, R.2    Pitta, M.3
  • 155
    • 34248357083 scopus 로고    scopus 로고
    • Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery
    • DOI 10.1517/14728222.11.5.695
    • Khan JA, Forouhar F, Tao X, Tong L. Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin Ther Targets 2007;11:695-705. (Pubitemid 46730083)
    • (2007) Expert Opinion on Therapeutic Targets , vol.11 , Issue.5 , pp. 695-705
    • Khan, J.A.1    Forouhar, F.2    Tao, X.3    Tong, L.4
  • 158
    • 33750445309 scopus 로고    scopus 로고
    • NAD metabolism and sirtuins: Metabolic regulation of protein deacetylation in stress and toxicity
    • Yang T, Sauve AA. NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity. AAPS J 2006;8:E632-E643.
    • (2006) AAPS J , vol.8
    • Yang, T.1    Sauve, A.A.2
  • 160
    • 33846693322 scopus 로고    scopus 로고
    • The regulation of nicotinamide adenine dinucleotide biosynthesis by NAMPT/PBEF/visfatin in mammals
    • Revollo JR, Grimm AA, Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by NAMPT/PBEF/visfatin in mammals. Curr Opin Gastroenterol 2007;23:164-170.
    • (2007) Curr Opin Gastroenterol , vol.23 , pp. 164-170
    • Revollo, J.R.1    Grimm, A.A.2    Imai, S.3
  • 162
    • 0026695006 scopus 로고
    • Differences in metabolism of time-release and unmodified nicotinic acid: Explanation of the differences in hypolipidemic action?
    • Stern RH, Freeman D, Spence JD. Differences in metabolism of time-release and unmodified nicotinic acid: explanation of the differences in hypolipidemic action? Metabolism 1992;41:879-881.
    • (1992) Metabolism , vol.41 , pp. 879-881
    • Stern, R.H.1    Freeman, D.2    Spence, J.D.3
  • 163
    • 4544327718 scopus 로고    scopus 로고
    • Effects of excess nicotinamide administration on the urinary excretion of nicotinamide N-oxide and nicotinuric acid by rats
    • DOI 10.1271/bbb.68.44
    • Fukuwatari T, Wada H, Sasaki R, Shibata K. Effects of excess nicotinamide administration on the urinary excretion of nicotinamide N-oxide and nicotinuric acid by rats. Biosci Biotechnol Biochem 2004;68:44-50. (Pubitemid 39251562)
    • (2004) Bioscience, Biotechnology and Biochemistry , vol.68 , Issue.1 , pp. 44-50
    • Fukuwatari, T.1    Wada, H.2    Sasaki, R.3    Shibata, K.4
  • 164
    • 74049120204 scopus 로고    scopus 로고
    • Nicotinamide overload may play a role in the development of type 2 diabetes
    • Zhou SS, Li D, Sun WP, et al. Nicotinamide overload may play a role in the development of type 2 diabetes. World J Gastroenterol 2009;15:5674-5684.
    • (2009) World J Gastroenterol , vol.15 , pp. 5674-5684
    • Zhou, S.S.1    Li, D.2    Sun, W.P.3
  • 165
    • 40849119972 scopus 로고    scopus 로고
    • 3: From metabolism to therapies
    • 3: from metabolism to therapies. J Pharmacol Exp Ther 2008;324:883-893.
    • (2008) J Pharmacol Exp Ther , vol.324 , pp. 883-893
    • Sauve, A.A.1
  • 166
    • 0015500271 scopus 로고
    • The management of nicotinamide and nicotinic acid in the mouse
    • Collins PB, Chaykin S. The management of nicotinamide and nicotinic acid in the mouse. J Biol Chem 1972;247:778-783.
    • (1972) J Biol Chem , vol.247 , pp. 778-783
    • Collins, P.B.1    Chaykin, S.2
  • 167
    • 0029050644 scopus 로고
    • + and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats
    • + and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats. J Nutr 1995;125:1455-1461.
    • (1995) J Nutr , vol.125 , pp. 1455-1461
    • Jackson, T.M.1    Rawling, J.M.2    Roebuck, B.D.3    Kirkland, J.B.4
  • 169
    • 2342550554 scopus 로고    scopus 로고
    • +in fungi and humans
    • DOI 10.1016/S0092-8674(04)00416-7, PII S0092867404004167
    • + in fungi and humans. Cell 2004;117:495-502. (Pubitemid 38610234)
    • (2004) Cell , vol.117 , Issue.4 , pp. 495-502
    • Bieganowski, P.1    Brenner, C.2
  • 170
    • 0034703217 scopus 로고    scopus 로고
    • Requirement of NAD and Sir2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • Lin SJ, Defossez PA, Guarente L. Requirement of NAD and Sir2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000;289:2126-2128.
    • (2000) Science , vol.289 , pp. 2126-2128
    • Lin, S.J.1    Defossez, P.A.2    Guarente, L.3
  • 171
    • 0038329323 scopus 로고    scopus 로고
    • Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae
    • Anderson RM, Bitterman KJ, Wood JG, et al. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 2003;423:181-185.
    • (2003) Nature , vol.423 , pp. 181-185
    • Anderson, R.M.1    Bitterman, K.J.2    Wood, J.G.3
  • 173
    • 63549150420 scopus 로고    scopus 로고
    • Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment
    • Borradaile NM, Pickering JG. Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell 2009;8:100-112.
    • (2009) Aging Cell , vol.8 , pp. 100-112
    • Borradaile, N.M.1    Pickering, J.G.2
  • 174
    • 43049121395 scopus 로고    scopus 로고
    • Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt
    • DOI 10.1016/j.devcel.2008.02.004, PII S1534580708000749
    • Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of NAMPT. Dev Cell 2008;14:661-673. (Pubitemid 351622608)
    • (2008) Developmental Cell , vol.14 , Issue.5 , pp. 661-673
    • Fulco, M.1    Cen, Y.2    Zhao, P.3    Hoffman, E.P.4    McBurney, M.W.5    Sauve, A.A.6    Sartorelli, V.7
  • 177
    • 67650550813 scopus 로고    scopus 로고
    • Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae
    • Lu SP, Kato M, Lin SJ. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae. J Biol Chem 2009;284:17110-17119.
    • (2009) J Biol Chem , vol.284 , pp. 17110-17119
    • Lu, S.P.1    Kato, M.2    Lin, S.J.3
  • 178
    • 35549002189 scopus 로고    scopus 로고
    • NAMPT/PBEF/visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme
    • Revollo JR, Körner A, Mills KF, et al. NAMPT/PBEF/visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 2007;6:363-375.
    • (2007) Cell Metab , vol.6 , pp. 363-375
    • Revollo, J.R.1    Körner, A.2    Mills, K.F.3
  • 179
    • 24744458598 scopus 로고    scopus 로고
    • The sirtuin inhibitor nicotinamide enhances neuronal cell survival during acute anoxic injury through AKT, BAD, PARP, and mitochondrial associated "anti-apoptotic" pathways
    • Chong ZZ, Lin SH, Li F, Maiese K. The sirtuin inhibitor nicotinamide enhances neuronal cell survival during acute anoxic injury through AKT, BAD, PARP, and mitochondrial associated "anti-apoptotic" pathways. Curr Neurovasc Res 2005;2:271-285.
    • (2005) Curr Neurovasc Res , vol.2 , pp. 271-285
    • Chong, Z.Z.1    Lin, S.H.2    Li, F.3    Maiese, K.4
  • 180
    • 1642580758 scopus 로고    scopus 로고
    • Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity
    • Gallo CM, Smith DL Jr, Smith JS. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol Cell Biol 2004;24:1301-1312.
    • (2004) Mol Cell Biol , vol.24 , pp. 1301-1312
    • Gallo, C.M.1    Smith Jr., D.L.2    Smith, J.S.3
  • 181
    • 58149267462 scopus 로고    scopus 로고
    • Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau
    • Green KN, Steffan JS, Martinez-Coria H, et al. Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 2008;28:11500-11510.
    • (2008) J Neurosci , vol.28 , pp. 11500-11510
    • Green, K.N.1    Steffan, J.S.2    Martinez-Coria, H.3
  • 182
    • 0036194785 scopus 로고    scopus 로고
    • + salvage pathway
    • Sandmeier JJ, Celic I, Boeke JD, Smith JS. Telomeric and rDNA silencing in Saccharomyces cerevisiae are dependent on a nuclear NAD(+) salvage pathway. Genetics 2002;160:877-889. (Pubitemid 34263455)
    • (2002) Genetics , vol.160 , Issue.3 , pp. 877-889
    • Sandmeier, J.J.1    Celic, I.2    Boeke, J.D.3    Smith, J.S.4
  • 183
    • 34548329953 scopus 로고    scopus 로고
    • Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells
    • Hara N, Yamada K, Shibata T, et al. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J Biol Chem 2007;282:24574-24582.
    • (2007) J Biol Chem , vol.282 , pp. 24574-24582
    • Hara, N.1    Yamada, K.2    Shibata, T.3
  • 184
    • 0032417883 scopus 로고    scopus 로고
    • Nicotinic acid supplementation: Effects on niacin status, cytogenetic damage, and poly(ADP-ribosylation) in lymphocytes of smokers
    • Hageman GJ, Stierum RH, van Herwijnen MH, et al. Nicotinic acid supplementation: effects on niacin status, cytogenetic damage, and poly(ADP-ribosylation) in lymphocytes of smokers. Nutr Cancer 1998;32:113-120.
    • (1998) Nutr Cancer , vol.32 , pp. 113-120
    • Hageman, G.J.1    Stierum, R.H.2    Van Herwijnen, M.H.3
  • 185
    • 34247520466 scopus 로고    scopus 로고
    • + synthesis
    • + synthesis. Cell 2007;129:453-454.
    • (2007) Cell , vol.129 , pp. 453-454
    • Denu, J.M.1
  • 186
    • 37349085288 scopus 로고    scopus 로고
    • Syntheses of nicotinamide riboside and derivatives: Effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells
    • DOI 10.1021/jm701001c
    • Yang T, Chan NY, Sauve AA. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells. J Med Chem 2007;50:6458-6461. (Pubitemid 350309084)
    • (2007) Journal of Medicinal Chemistry , vol.50 , Issue.26 , pp. 6458-6461
    • Yang, T.1    Chan, N.Y.-K.2    Sauve, A.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.