메뉴 건너뛰기




Volumn 20, Issue 1, 2019, Pages

Current status and applications of genome-scale metabolic models

Author keywords

[No Author keywords available]

Indexed keywords

ARABIDOPSIS THALIANA; BACILLUS SUBTILIS; BACTERIAL STRAIN; CAENORHABDITIS ELEGANS; CELL INTERACTION; CHLAMYDOMONAS REINHARDTII; DISEASES; DRUG TARGETING; ENZYME ANALYSIS; ESCHERICHIA COLI; GENETIC DATABASE; GENETIC MODEL; GENOME SCALE METABOLIC MODEL; HUMAN; INFECTIOUS AGENT; METHANOSARCINA ACETIVORANS; MYCOBACTERIUM TUBERCULOSIS; NONHUMAN; ORGANISMAL INTERACTION; PREDICTION; PROTEIN FUNCTION; REVIEW; SACCHAROMYCES CEREVISIAE; ANIMAL; BIOLOGICAL MODEL; GENETICS; GENOMICS; METABOLISM; TRENDS;

EID: 85067295598     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-019-1730-3     Document Type: Review
Times cited : (464)

References (172)
  • 1
    • 0033580813 scopus 로고    scopus 로고
    • Systems properties of the Haemophilus influenzae Rd metabolic genotype
    • 1:CAS:528:DyaK1MXktVymt7c%3D 10364169
    • Edwards JS, Palsson BO. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem. 1999;274:17410-6.
    • (1999) J Biol Chem , vol.274 , pp. 17410-17416
    • Edwards, J.S.1    Palsson, B.O.2
  • 2
    • 38349151554 scopus 로고    scopus 로고
    • Metabolic flux analysis and metabolic engineering of microorganisms
    • 18213404
    • Kim HU, Kim TY, Lee SY. Metabolic flux analysis and metabolic engineering of microorganisms. Mol BioSyst. 2008;4:113-20.
    • (2008) Mol BioSyst , vol.4 , pp. 113-120
    • Kim, H.U.1    Kim, T.Y.2    Lee, S.Y.3
  • 3
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • 1:CAS:528:DC%2BC3cXks12hsA%3D%3D 3125167 3125167
    • Thiele I, Palsson BO. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5:93-121.
    • (2010) Nat Protoc , vol.5 , pp. 93-121
    • Thiele, I.1    Palsson, B.O.2
  • 4
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • 1:CAS:528:DC%2BC3cXivV2rtL4%3D 20212490 3108565
    • Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol. 2010;28:245-8.
    • (2010) Nat Biotechnol , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.O.3
  • 5
    • 84938683599 scopus 로고    scopus 로고
    • Reconstruction of genome-scale human metabolic models using omics data
    • 25730289
    • Ryu JY, Kim HU, Lee SY. Reconstruction of genome-scale human metabolic models using omics data. Integr Biol (Camb). 2015;7:859-68.
    • (2015) Integr Biol (Camb). , vol.7 , pp. 859-868
    • Ryu, J.Y.1    Kim, H.U.2    Lee, S.Y.3
  • 6
    • 84925485244 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic network model in metabolic engineering
    • 1:CAS:528:DC%2BC2cXitVWgt7jE 25465049
    • Kim B, Kim WJ, Kim DI, Lee SY. Applications of genome-scale metabolic network model in metabolic engineering. J Ind Microbiol Biotechnol. 2015;42:339-48.
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 339-348
    • Kim, B.1    Kim, W.J.2    Kim, D.I.3    Lee, S.Y.4
  • 7
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • 1:CAS:528:DC%2BC2MXpt1Sgtbc%3D 26000478 4451052
    • O'Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. Cell. 2015;161:971-87.
    • (2015) Cell. , vol.161 , pp. 971-987
    • O'Brien, E.J.1    Monk, J.M.2    Palsson, B.O.3
  • 8
    • 0034625143 scopus 로고    scopus 로고
    • The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities
    • 1:CAS:528:DC%2BD3cXjsVWms7g%3D 10805808 25862
    • Edwards JS, Palsson BO. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A. 2000;97:5528-33.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 5528-5533
    • Edwards, J.S.1    Palsson, B.O.2
  • 9
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • 1:CAS:528:DC%2BD3sXhtlCrsLo%3D 12566402 420374
    • Forster J, Famili I, Fu P, Palsson BO, Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003;13:244-53.
    • (2003) Genome Res , vol.13 , pp. 244-253
    • Forster, J.1    Famili, I.2    Fu, P.3    Palsson, B.O.4    Nielsen, J.5
  • 10
    • 33846910173 scopus 로고    scopus 로고
    • Global reconstruction of the human metabolic network based on genomic and bibliomic data
    • 1:CAS:528:DC%2BD2sXitVaqu7w%3D 17267599 1794290
    • Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A. 2007;104:1777-82.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 1777-1782
    • Duarte, N.C.1    Becker, S.A.2    Jamshidi, N.3    Thiele, I.4    Mo, M.L.5    Vo, T.D.6
  • 11
    • 75949088191 scopus 로고    scopus 로고
    • AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis
    • 20044452 2815881 1:CAS:528:DC%2BC3cXmsFegtr8%3D
    • de Oliveira Dal'Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK. AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol. 2010;152:579-89.
    • (2010) Plant Physiol , vol.152 , pp. 579-589
    • De Oliveira Dal'Molin, C.G.1    Quek, L.E.2    Palfreyman, R.W.3    Brumbley, S.M.4    Nielsen, L.K.5
  • 12
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • 1:CAS:528:DC%2BC38XislyntLw%3D 22367118 3536058
    • Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol. 2012;10:291-305.
    • (2012) Nat Rev Microbiol. , vol.10 , pp. 291-305
    • Lewis, N.E.1    Nagarajan, H.2    Palsson, B.O.3
  • 13
    • 84886740491 scopus 로고    scopus 로고
    • Path2Models: Large-scale generation of computational models from biochemical pathway maps
    • 24180668 4228421 1:CAS:528:DC%2BC2cXmvVamsbs%3D
    • Buchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R, et al. Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst Biol. 2013;7:116.
    • (2013) BMC Syst Biol , vol.7 , pp. 116
    • Buchel, F.1    Rodriguez, N.2    Swainston, N.3    Wrzodek, C.4    Czauderna, T.5    Keller, R.6
  • 14
    • 85011094697 scopus 로고    scopus 로고
    • Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
    • 1:CAS:528:DC%2BC28XhvFKjsrzF 27893703
    • Magnusdottir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol. 2017;35:81-9.
    • (2017) Nat Biotechnol , vol.35 , pp. 81-89
    • Magnusdottir, S.1    Heinken, A.2    Kutt, L.3    Ravcheev, D.A.4    Bauer, E.5    Noronha, A.6
  • 15
    • 85054504207 scopus 로고    scopus 로고
    • Fast automated reconstruction of genome-scale metabolic models for microbial species and communities
    • 1:CAS:528:DC%2BC1MXosFanu7c%3D 30192979 6125623
    • Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 2018;46:7542-53.
    • (2018) Nucleic Acids Res , vol.46 , pp. 7542-7553
    • Machado, D.1    Andrejev, S.2    Tramontano, M.3    Patil, K.R.4
  • 16
    • 85014768147 scopus 로고    scopus 로고
    • Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees
    • 1:CAS:528:DC%2BC2sXhtV2isbbF 27095192 4987883
    • Letunic I, Bork P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242-5.
    • (2016) Nucleic Acids Res , vol.44 , pp. W242-W245
    • Letunic, I.1    Bork, P.2
  • 18
    • 0344328817 scopus 로고    scopus 로고
    • An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)
    • 12952533 193654
    • Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 2003;4:R54.
    • (2003) Genome Biol , vol.4 , pp. R54
    • Reed, J.L.1    Vo, T.D.2    Schilling, C.H.3    Palsson, B.O.4
  • 19
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
    • 17593909 1911197 1:CAS:528:DC%2BD2sXptlKlt7g%3D
    • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol. 2007;3:121.
    • (2007) Mol Syst Biol , vol.3 , pp. 121
    • Feist, A.M.1    Henry, C.S.2    Reed, J.L.3    Krummenacker, M.4    Joyce, A.R.5    Karp, P.D.6
  • 20
    • 80054069179 scopus 로고    scopus 로고
    • A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011
    • 21988831 3261703
    • Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol Syst Biol. 2011;7:535.
    • (2011) Mol Syst Biol , vol.7 , pp. 535
    • Orth, J.D.1    Conrad, T.M.2    Na, J.3    Lerman, J.A.4    Nam, H.5    Feist, A.M.6
  • 21
    • 85031310018 scopus 로고    scopus 로고
    • IML1515, a knowledgebase that computes Escherichia coli traits
    • 1:CAS:528:DC%2BC2sXhs1egtbfI 29020004 6521705
    • Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol. 2017;35:904-8.
    • (2017) Nat Biotechnol , vol.35 , pp. 904-908
    • Monk, J.M.1    Lloyd, C.J.2    Brunk, E.3    Mih, N.4    Sastry, A.5    King, Z.6
  • 22
    • 42549084919 scopus 로고    scopus 로고
    • Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes
    • 1:CAS:528:DC%2BD1cXlsleisL8%3D
    • Zweers JC, Barak I, Becher D, Driessen AJ, Hecker M, Kontinen VP, et al. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb Cell Factories. 2008;7:10.
    • (2008) Microb Cell Factories , vol.7 , pp. 10
    • Zweers, J.C.1    Barak, I.2    Becher, D.3    Driessen, A.J.4    Hecker, M.5    Kontinen, V.P.6
  • 23
    • 39049125071 scopus 로고    scopus 로고
    • Bacillus protein secretion: An unfolding story
    • 1:CAS:528:DC%2BD1cXhslOlsbw%3D 18182292 18182292
    • Harwood CR, Cranenburgh R. Bacillus protein secretion: An unfolding story. Trends Microbiol. 2008;16:73-9.
    • (2008) Trends Microbiol , vol.16 , pp. 73-79
    • Harwood, C.R.1    Cranenburgh, R.2
  • 24
    • 35348934254 scopus 로고    scopus 로고
    • Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-Throughput phenotyping and gene essentiality data
    • 1:CAS:528:DC%2BD2sXhtVOmtbrE 17573341
    • Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-Throughput phenotyping and gene essentiality data. J Biol Chem. 2007;282:28791-9.
    • (2007) J Biol Chem , vol.282 , pp. 28791-28799
    • Oh, Y.K.1    Palsson, B.O.2    Park, S.M.3    Schilling, C.H.4    Mahadevan, R.5
  • 25
    • 42449123222 scopus 로고    scopus 로고
    • Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis
    • 18302748 2311275 1:CAS:528:DC%2BD1cXntleqtL0%3D
    • Goelzer A, Bekkal Brikci F, Martin-Verstraete I, Noirot P, Bessieres P, Aymerich S, et al. Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis. BMC Syst Biol. 2008;2:20.
    • (2008) BMC Syst Biol , vol.2 , pp. 20
    • Goelzer, A.1    Bekkal Brikci, F.2    Martin-Verstraete, I.3    Noirot, P.4    Bessieres, P.5    Aymerich, S.6
  • 26
    • 67650573077 scopus 로고    scopus 로고
    • IBsu1103: A new genome-scale metabolic model of Bacillus subtilis based on SEED annotations
    • 19555510 2718503 1:CAS:528:DC%2BD1MXotlektro%3D
    • Henry CS, Zinner JF, Cohoon MP, Stevens RL. iBsu1103: A new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol. 2009;10:R69.
    • (2009) Genome Biol , vol.10 , pp. R69
    • Henry, C.S.1    Zinner, J.F.2    Cohoon, M.P.3    Stevens, R.L.4
  • 27
    • 84871769668 scopus 로고    scopus 로고
    • Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model
    • 1:CAS:528:DC%2BC3sXhsFemsA%3D%3D 23109554
    • Tanaka K, Henry CS, Zinner JF, Jolivet E, Cohoon MP, Xia F, et al. Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res. 2013;41:687-99.
    • (2013) Nucleic Acids Res , vol.41 , pp. 687-699
    • Tanaka, K.1    Henry, C.S.2    Zinner, J.F.3    Jolivet, E.4    Cohoon, M.P.5    Xia, F.6
  • 28
    • 84879977002 scopus 로고    scopus 로고
    • In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol
    • 1:CAS:528:DC%2BC3sXhtValtb%2FM 23666098
    • Hao T, Han B, Ma H, Fu J, Wang H, Wang Z, et al. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. Mol BioSyst. 2013;9:2034-44.
    • (2013) Mol BioSyst , vol.9 , pp. 2034-2044
    • Hao, T.1    Han, B.2    Ma, H.3    Fu, J.4    Wang, H.5    Wang, Z.6
  • 29
    • 85028613164 scopus 로고    scopus 로고
    • Analyses of extracellular protein production in Bacillus subtilis-I: Genome-scale metabolic model reconstruction based on updated gene-enzyme-reaction data
    • 1:CAS:528:DC%2BC2sXhsVWmt77M
    • Kocabas P, Calik P, Calik G, Ozdamar TH. Analyses of extracellular protein production in Bacillus subtilis-I: genome-scale metabolic model reconstruction based on updated gene-enzyme-reaction data. Biochem Eng J. 2017;127:229-41.
    • (2017) Biochem Eng J , vol.127 , pp. 229-241
    • Kocabas, P.1    Calik, P.2    Calik, G.3    Ozdamar, T.H.4
  • 30
    • 84875720514 scopus 로고    scopus 로고
    • An updated metabolic view of the Bacillus subtilis 168 genome
    • 1:CAS:528:DC%2BC3sXotFait74%3D 23429746 23429746
    • Belda E, Sekowska A, Le Fevre F, Morgat A, Mornico D, Ouzounis C, et al. An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology. 2013;159:757-70.
    • (2013) Microbiology. , vol.159 , pp. 757-770
    • Belda, E.1    Sekowska, A.2    Le Fevre, F.3    Morgat, A.4    Mornico, D.5    Ouzounis, C.6
  • 31
    • 85050616156 scopus 로고    scopus 로고
    • Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: An in silico approach
    • 30053801 6064076 1:CAS:528:DC%2BC1cXisV2iurzO
    • Bose T, Das C, Dutta A, Mahamkali V, Sadhu S, Mande SS. Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: An in silico approach. BMC Genomics. 2018;19:555.
    • (2018) BMC Genomics , vol.19 , pp. 555
    • Bose, T.1    Das, C.2    Dutta, A.3    Mahamkali, V.4    Sadhu, S.5    Mande, S.S.6
  • 32
    • 34548861262 scopus 로고    scopus 로고
    • GSMN-TB: A web-based genome-scale network model of Mycobacterium tuberculosis metabolism
    • 17521419 1929162 1:CAS:528:DC%2BD2sXntlGgtbw%3D
    • Beste DJ, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, et al. GSMN-TB: A web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol. 2007;8:R89.
    • (2007) Genome Biol , vol.8 , pp. R89
    • Beste, D.J.1    Hooper, T.2    Stewart, G.3    Bonde, B.4    Avignone-Rossa, C.5    Bushell, M.E.6
  • 33
    • 34447317247 scopus 로고    scopus 로고
    • Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets
    • 17555602 1925256 1:CAS:528:DC%2BD2sXot1Sru7Y%3D
    • Jamshidi N, Palsson BO. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol. 2007;1:26.
    • (2007) BMC Syst Biol , vol.1 , pp. 26
    • Jamshidi, N.1    Palsson, B.O.2
  • 34
    • 85168846837 scopus 로고    scopus 로고
    • Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets
    • 25304862 4201925 1:CAS:528:DC%2BC2MXnt1Sntg%3D%3D
    • Vashisht R, Bhat AG, Kushwaha S, Bhardwaj A, Consortium O, Brahmachari SK. Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets. J Transl Med. 2014;12:263.
    • (2014) J Transl Med , vol.12 , pp. 263
    • Vashisht, R.1    Bhat, A.G.2    Kushwaha, S.3    Bhardwaj, A.4    Consortium, O.5    Brahmachari, S.K.6
  • 35
    • 84920022371 scopus 로고    scopus 로고
    • Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets
    • 1:CAS:528:DC%2BC2cXhslGrsLbL 25453232 25453232
    • Rienksma RA, Suarez-Diez M, Spina L, Schaap PJ, Martins dos Santos VA. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Semin Immunol. 2014;26:610-22.
    • (2014) Semin Immunol , vol.26 , pp. 610-622
    • Rienksma, R.A.1    Suarez-Diez, M.2    Spina, L.3    Schaap, P.J.4    Martins Dos Santos, V.A.5
  • 36
    • 84941645291 scopus 로고    scopus 로고
    • Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis
    • 26377923 4574064 1:CAS:528:DC%2BC28XhtF2ksb%2FN
    • Garay CD, Dreyfuss JM, Galagan JE. Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis. BMC Syst Biol. 2015;9:57.
    • (2015) BMC Syst Biol , vol.9 , pp. 57
    • Garay, C.D.1    Dreyfuss, J.M.2    Galagan, J.E.3
  • 37
    • 84949257852 scopus 로고    scopus 로고
    • Integrated modeling of gene regulatory and metabolic networks in Mycobacterium tuberculosis
    • 26618656 4664399 1:CAS:528:DC%2BC28Xmt1Crt74%3D
    • Ma S, Minch KJ, Rustad TR, Hobbs S, Zhou SL, Sherman DR, et al. Integrated modeling of gene regulatory and metabolic networks in Mycobacterium tuberculosis. PLoS Comput Biol. 2015;11:e1004543.
    • (2015) PLoS Comput Biol , vol.11 , pp. e1004543
    • Ma, S.1    Minch, K.J.2    Rustad, T.R.3    Hobbs, S.4    Zhou, S.L.5    Sherman, D.R.6
  • 38
    • 85042845980 scopus 로고    scopus 로고
    • Updated and standardized genome-scale reconstruction of Mycobacterium tuberculosis H37Rv, iEK1011, simulates flux states indicative of physiological conditions
    • 29499714 5834885 1:CAS:528:DC%2BC1cXit1SksLfP
    • Kavvas ES, Seif Y, Yurkovich JT, Norsigian C, Poudel S, Greenwald WW, et al. Updated and standardized genome-scale reconstruction of Mycobacterium tuberculosis H37Rv, iEK1011, simulates flux states indicative of physiological conditions. BMC Syst Biol. 2018;12:25.
    • (2018) BMC Syst Biol , vol.12 , pp. 25
    • Kavvas, E.S.1    Seif, Y.2    Yurkovich, J.T.3    Norsigian, C.4    Poudel, S.5    Greenwald, W.W.6
  • 39
    • 77958537509 scopus 로고    scopus 로고
    • Insight into human alveolar macrophage and M tuberculosis interactions via metabolic reconstructions
    • 20959820 2990636 1:CAS:528:DC%2BC3cXhtlCis7fL
    • Bordbar A, Lewis NE, Schellenberger J, Palsson BO, Jamshidi N. Insight into human alveolar macrophage and M tuberculosis interactions via metabolic reconstructions. Mol Syst Biol. 2010;6:422.
    • (2010) Mol Syst Biol , vol.6 , pp. 422
    • Bordbar, A.1    Lewis, N.E.2    Schellenberger, J.3    Palsson, B.O.4    Jamshidi, N.5
  • 40
    • 79851515763 scopus 로고    scopus 로고
    • Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans
    • 21324125 3048526
    • Satish Kumar V, Ferry JG, Maranas CD. Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans. BMC Syst Biol. 2011;5:28.
    • (2011) BMC Syst Biol , vol.5 , pp. 28
    • Satish Kumar, V.1    Ferry, J.G.2    Maranas, C.D.3
  • 41
    • 84857080094 scopus 로고    scopus 로고
    • Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A
    • 1:CAS:528:DC%2BC38XhvFKhsrk%3D 22139506 3272958
    • Benedict MN, Gonnerman MC, Metcalf WW, Price ND. Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A. J Bacteriol. 2012;194:855-65.
    • (2012) J Bacteriol , vol.194 , pp. 855-865
    • Benedict, M.N.1    Gonnerman, M.C.2    Metcalf, W.W.3    Price, N.D.4
  • 42
    • 84954348839 scopus 로고    scopus 로고
    • Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans
    • 1:CAS:528:DC%2BC2sXltFKgtQ%3D%3D
    • Nazem-Bokaee H, Gopalakrishnan S, Ferry JG, Wood TK, Maranas CD. Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. Microb Cell Factories. 2016;15:10.
    • (2016) Microb Cell Factories , vol.15 , pp. 10
    • Nazem-Bokaee, H.1    Gopalakrishnan, S.2    Ferry, J.G.3    Wood, T.K.4    Maranas, C.D.5
  • 43
    • 84996605317 scopus 로고    scopus 로고
    • Genome-wide gene expression and RNA half-life measurements allow predictions of regulation and metabolic behavior in Methanosarcina acetivorans
    • 27852217 5112694 1:CAS:528:DC%2BC1cXhtlWkur0%3D
    • Peterson JR, Thor S, Kohler L, Kohler PR, Metcalf WW, Luthey-Schulten Z. Genome-wide gene expression and RNA half-life measurements allow predictions of regulation and metabolic behavior in Methanosarcina acetivorans. BMC Genomics. 2016;17:924.
    • (2016) BMC Genomics , vol.17 , pp. 924
    • Peterson, J.R.1    Thor, S.2    Kohler, L.3    Kohler, P.R.4    Metcalf, W.W.5    Luthey-Schulten, Z.6
  • 44
    • 0031685510 scopus 로고    scopus 로고
    • Biochemistry of methanogenesis: A tribute to Marjory Stephenson. 1998 Marjory Stephenson prize lecture
    • 1:CAS:528:DyaK1cXmt1ygurc%3D 9782487 9782487
    • Thauer RK. Biochemistry of methanogenesis: A tribute to Marjory Stephenson. 1998 Marjory Stephenson prize lecture. Microbiology. 1998;144:2377-406.
    • (1998) Microbiology. , vol.144 , pp. 2377-2406
    • Thauer, R.K.1
  • 46
    • 3843128481 scopus 로고    scopus 로고
    • Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
    • 1:CAS:528:DC%2BD2cXlvFWjtrc%3D 15197165 442145
    • Duarte NC, Herrgard MJ, Palsson BO. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004;14:1298-309.
    • (2004) Genome Res , vol.14 , pp. 1298-1309
    • Duarte, N.C.1    Herrgard, M.J.2    Palsson, B.O.3
  • 47
    • 25844463806 scopus 로고    scopus 로고
    • Metabolic functions of duplicate genes in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD2MXhtFajurnI 16204195 1240085
    • Kuepfer L, Sauer U, Blank LM. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 2005;15:1421-30.
    • (2005) Genome Res , vol.15 , pp. 1421-1430
    • Kuepfer, L.1    Sauer, U.2    Blank, L.M.3
  • 48
    • 52649105455 scopus 로고    scopus 로고
    • The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: A scaffold to query lipid metabolism
    • 18687109 2542360 1:CAS:528:DC%2BD1cXhsVekt7nL
    • Nookaew I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, et al. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: A scaffold to query lipid metabolism. BMC Syst Biol. 2008;2:71.
    • (2008) BMC Syst Biol , vol.2 , pp. 71
    • Nookaew, I.1    Jewett, M.C.2    Meechai, A.3    Thammarongtham, C.4    Laoteng, K.5    Cheevadhanarak, S.6
  • 49
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast
    • 19321003 2679711 1:CAS:528:DC%2BD1MXltFahsLs%3D
    • Mo ML, Palsson BO, Herrgard MJ. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol. 2009;3:37.
    • (2009) BMC Syst Biol , vol.3 , pp. 37
    • Mo, M.L.1    Palsson, B.O.2    Herrgard, M.J.3
  • 50
    • 78650595350 scopus 로고    scopus 로고
    • Improving the iMM904 S. Cerevisiae metabolic model using essentiality and synthetic lethality data
    • 21190580 3023687
    • Zomorrodi AR, Maranas CD. Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol. 2010;4:178.
    • (2010) BMC Syst Biol , vol.4 , pp. 178
    • Zomorrodi, A.R.1    Maranas, C.D.2
  • 51
    • 84876789665 scopus 로고    scopus 로고
    • Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling
    • 23631471 3648345
    • Osterlund T, Nookaew I, Bordel S, Nielsen J. Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol. 2013;7:36.
    • (2013) BMC Syst Biol , vol.7 , pp. 36
    • Osterlund, T.1    Nookaew, I.2    Bordel, S.3    Nielsen, J.4
  • 52
    • 53749085229 scopus 로고    scopus 로고
    • A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
    • 1:CAS:528:DC%2BD1cXht1aisrvM 18846089 4018421
    • Herrgard MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol. 2008;26:1155-60.
    • (2008) Nat Biotechnol , vol.26 , pp. 1155-1160
    • Herrgard, M.J.1    Swainston, N.2    Dobson, P.3    Dunn, W.B.4    Arga, K.Y.5    Arvas, M.6
  • 54
    • 84861744439 scopus 로고    scopus 로고
    • Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network
    • 22663945 3413506
    • Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP. Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol. 2012;6:55.
    • (2012) BMC Syst Biol , vol.6 , pp. 55
    • Heavner, B.D.1    Smallbone, K.2    Barker, B.3    Mendes, P.4    Walker, L.P.5
  • 55
    • 84885911432 scopus 로고    scopus 로고
    • Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
    • 1:CAS:528:DC%2BC3sXhsVagsL%2FL
    • Heavner BD, Smallbone K, Price ND, Walker LP. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database (Oxford). 2013;2013:bat059.
    • (2013) Database (Oxford) , vol.2013 , pp. bat059
    • Heavner, B.D.1    Smallbone, K.2    Price, N.D.3    Walker, L.P.4
  • 56
    • 84881540727 scopus 로고    scopus 로고
    • Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism
    • 1:CAS:528:DC%2BC3sXht1Oisr7F
    • Aung HW, Henry SA, Walker LP. Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol (New Rochelle N Y). 2013;9:215-28.
    • (2013) Ind Biotechnol (New Rochelle N Y) , vol.9 , pp. 215-228
    • Aung, H.W.1    Henry, S.A.2    Walker, L.P.3
  • 57
    • 85059914936 scopus 로고    scopus 로고
    • Extension of the yeast metabolic model to include iron metabolism and its use to estimate global levels of iron-recruiting enzyme abundance from cofactor requirements
    • 1:CAS:528:DC%2BC1MXotVKqsg%3D%3D 30578666 6492170
    • Dikicioglu D, Oliver SG. Extension of the yeast metabolic model to include iron metabolism and its use to estimate global levels of iron-recruiting enzyme abundance from cofactor requirements. Biotechnol Bioeng. 2019;116:610-21.
    • (2019) Biotechnol Bioeng , vol.116 , pp. 610-621
    • Dikicioglu, D.1    Oliver, S.G.2
  • 58
    • 84929045550 scopus 로고    scopus 로고
    • Chlamydomonas as a model for biofuels and bio-products production
    • 1:CAS:528:DC%2BC2MXntVWmt7c%3D 25641390 5531182
    • Scranton MA, Ostrand JT, Fields FJ, Mayfield SP. Chlamydomonas as a model for biofuels and bio-products production. Plant J. 2015;82:523-31.
    • (2015) Plant J , vol.82 , pp. 523-531
    • Scranton, M.A.1    Ostrand, J.T.2    Fields, F.J.3    Mayfield, S.P.4
  • 59
    • 0035780978 scopus 로고    scopus 로고
    • Chlamydomonas as a model organism
    • 1:CAS:528:DC%2BD3MXkslWgsb8%3D 11337403
    • Harris EH. Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:363-406.
    • (2001) Annu Rev Plant Physiol Plant Mol Biol , vol.52 , pp. 363-406
    • Harris, E.H.1
  • 60
    • 68349108021 scopus 로고    scopus 로고
    • Metabolic network analysis integrated with transcript verification for sequenced genomes
    • 1:CAS:528:DC%2BD1MXosFWhs70%3D 19597503 3139173
    • Manichaikul A, Ghamsari L, Hom EF, Lin C, Murray RR, Chang RL, et al. Metabolic network analysis integrated with transcript verification for sequenced genomes. Nat Methods. 2009;6:589-92.
    • (2009) Nat Methods , vol.6 , pp. 589-592
    • Manichaikul, A.1    Ghamsari, L.2    Hom, E.F.3    Lin, C.4    Murray, R.R.5    Chang, R.L.6
  • 61
    • 80051537012 scopus 로고    scopus 로고
    • Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism
    • 21811229 3202792 1:CAS:528:DC%2BC3MXht12nsbfM
    • Chang RL, Ghamsari L, Manichaikul A, Hom EF, Balaji S, Fu W, et al. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol. 2011;7:518.
    • (2011) Mol Syst Biol , vol.7 , pp. 518
    • Chang, R.L.1    Ghamsari, L.2    Manichaikul, A.3    Hom, E.F.4    Balaji, S.5    Fu, W.6
  • 62
    • 84255195408 scopus 로고    scopus 로고
    • AlgaGEM-a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome
    • 22369158 1:CAS:528:DC%2BC38Xptlanu78%3D
    • Dal'Molin CG, Quek LE, Palfreyman RW, Nielsen LK. AlgaGEM-a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics. 2011;12(Suppl 4):S5.
    • (2011) BMC Genomics , vol.12 , pp. S5
    • Dal'Molin, C.G.1    Quek, L.E.2    Palfreyman, R.W.3    Nielsen, L.K.4
  • 63
    • 84949439454 scopus 로고    scopus 로고
    • A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses
    • 1:CAS:528:DC%2BC2MXhvFWqtLbL 26485611 4715634
    • Imam S, Schauble S, Valenzuela J, Lopez Garcia de Lomana A, Carter W, Price ND, et al. A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses. Plant J. 2015;84:1239-56.
    • (2015) Plant J , vol.84 , pp. 1239-1256
    • Imam, S.1    Schauble, S.2    Valenzuela, J.3    De Lopez Garcia, L.A.4    Carter, W.5    Price, N.D.6
  • 64
    • 84958568194 scopus 로고    scopus 로고
    • 2 pathways and genes related to carbon uptake and accumulation in Chlamydomonas reinhardtii through genomic scale modeling and experimental validation
    • 26904035 4746324
    • 2 pathways and genes related to carbon uptake and accumulation in Chlamydomonas reinhardtii through genomic scale modeling and experimental validation. Front Plant Sci. 2016;7:43.
    • (2016) Front Plant Sci , vol.7 , pp. 43
    • Winck, F.V.1    Melo, D.O.2    Riano-Pachon, D.M.3    Martins, M.C.4    Caldana, C.5    Barrios, A.F.6
  • 67
    • 84918533844 scopus 로고    scopus 로고
    • Using C. Elegans for aging research
    • 26136622
    • Tissenbaum HA. Using C. elegans for aging research. Invertebr Reprod Dev. 2015;59:59-63.
    • (2015) Invertebr Reprod Dev , vol.59 , pp. 59-63
    • Tissenbaum, H.A.1
  • 68
    • 0343729870 scopus 로고    scopus 로고
    • The Caenorhabditis elegans gonad: A test tube for cell and developmental biology
    • 1:CAS:528:DC%2BD3cXjsFCktrw%3D 10822256
    • Hubbard EJ, Greenstein D. The Caenorhabditis elegans gonad: A test tube for cell and developmental biology. Dev Dyn. 2000;218:2-22.
    • (2000) Dev Dyn , vol.218 , pp. 2-22
    • Hubbard, E.J.1    Greenstein, D.2
  • 69
    • 85029215369 scopus 로고    scopus 로고
    • A living model for obesity and aging research: Caenorhabditis elegans
    • 27575804
    • Shen P, Yue Y, Park Y. A living model for obesity and aging research: Caenorhabditis elegans. Crit Rev Food Sci Nutr. 2018;58:741-54.
    • (2018) Crit Rev Food Sci Nutr , vol.58 , pp. 741-754
    • Shen, P.1    Yue, Y.2    Park, Y.3
  • 70
    • 84969786281 scopus 로고    scopus 로고
    • A Caenorhabditis elegans genome-scale metabolic network model
    • 1:CAS:528:DC%2BC2sXhtFKks7k%3D 27211857 5387690
    • Yilmaz LS, Walhout AJ. A Caenorhabditis elegans genome-scale metabolic network model. Cell Syst. 2016;2:297-311.
    • (2016) Cell Syst. , vol.2 , pp. 297-311
    • Yilmaz, L.S.1    Walhout, A.J.2
  • 71
    • 84969793963 scopus 로고    scopus 로고
    • A genome-scale database and reconstruction of Caenorhabditis elegans metabolism
    • 1:CAS:528:DC%2BC2sXhtFKksrs%3D 27211858
    • Gebauer J, Gentsch C, Mansfeld J, Schmeisser K, Waschina S, Brandes S, et al. A genome-scale database and reconstruction of Caenorhabditis elegans metabolism. Cell Syst. 2016;2:312-22.
    • (2016) Cell Syst. , vol.2 , pp. 312-322
    • Gebauer, J.1    Gentsch, C.2    Mansfeld, J.3    Schmeisser, K.4    Waschina, S.5    Brandes, S.6
  • 72
    • 85057042939 scopus 로고    scopus 로고
    • Systems biology analysis using a genome-scale metabolic model shows that phosphine triggers global metabolic suppression in a resistant strain of C
    • Ma L, Chan AHC, Hattwell J, Ebert PR, Schirra HJ. Systems biology analysis using a genome-scale metabolic model shows that phosphine triggers global metabolic suppression in a resistant strain of C. elegans. bioRxiv. 2017; doi: https://doi.org/10.1101/144386.
    • (2017) Elegans. BioRxiv
    • Ma, L.1    Ahc, C.2    Hattwell, J.3    Ebert, P.R.4    Schirra, H.J.5
  • 73
    • 85057024430 scopus 로고    scopus 로고
    • Modeling meets metabolomics-the WormJam consensus model as basis for metabolic studies in the model organism Caenorhabditis elegans
    • 1:CAS:528:DC%2BC1MXhtVGmsr3I 30488036 6246695
    • Witting M, Hastings J, Rodriguez N, Joshi CJ, Hattwell JPN, Ebert PR, et al. Modeling meets metabolomics-the WormJam consensus model as basis for metabolic studies in the model organism Caenorhabditis elegans. Front Mol Biosci. 2018;5:96.
    • (2018) Front Mol Biosci , vol.5 , pp. 96
    • Witting, M.1    Hastings, J.2    Rodriguez, N.3    Joshi, C.J.4    Hattwell, J.P.N.5    Ebert, P.R.6
  • 74
    • 70350676551 scopus 로고    scopus 로고
    • A genome-scale metabolic model of Arabidopsis and some of its properties
    • 1:CAS:528:DC%2BD1MXhsVCjsbbK 2773075 2773075
    • Poolman MG, Miguet L, Sweetlove LJ, Fell DA. A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol. 2009;151:1570-81.
    • (2009) Plant Physiol , vol.151 , pp. 1570-1581
    • Poolman, M.G.1    Miguet, L.2    Sweetlove, L.J.3    Fell, D.A.4
  • 75
    • 84856015478 scopus 로고    scopus 로고
    • Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity
    • 1:CAS:528:DC%2BC38XhsVehtL4%3D 22184215
    • Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, Shlomi T. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci U S A. 2012;109:339-44.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 339-344
    • Mintz-Oron, S.1    Meir, S.2    Malitsky, S.3    Ruppin, E.4    Aharoni, A.5    Shlomi, T.6
  • 76
    • 84883762807 scopus 로고    scopus 로고
    • A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions
    • 1:CAS:528:DC%2BC3sXhtl2lu7vK 23738527
    • Cheung CY, Williams TC, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ. A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. Plant J. 2013;75:1050-61.
    • (2013) Plant J , vol.75 , pp. 1050-1061
    • Cheung, C.Y.1    Williams, T.C.2    Poolman, M.G.3    Fell, D.A.4    Ratcliffe, R.G.5    Sweetlove, L.J.6
  • 77
    • 84874976941 scopus 로고    scopus 로고
    • Plant genome-scale metabolic reconstruction and modelling
    • 22947602 1:CAS:528:DC%2BC38XhtlSgur7J
    • de Oliveira Dal'Molin CG, Nielsen LK. Plant genome-scale metabolic reconstruction and modelling. Curr Opin Biotechnol. 2013;24:271-7.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 271-277
    • De Oliveira Dal'Molin, C.G.1    Nielsen, L.K.2
  • 80
    • 85033457644 scopus 로고    scopus 로고
    • Framework and resource for more than 11,000 gene-Transcript-protein-reaction associations in human metabolism
    • 1:CAS:528:DC%2BC2sXhslWrtr%2FF 29078384 5692585
    • Ryu JY, Kim HU, Lee SY. Framework and resource for more than 11,000 gene-Transcript-protein-reaction associations in human metabolism. Proc Natl Acad Sci U S A. 2017;114:E9740-9.
    • (2017) Proc Natl Acad Sci U S A , vol.114 , pp. E9740-E9749
    • Ryu, J.Y.1    Kim, H.U.2    Lee, S.Y.3
  • 81
    • 85042916724 scopus 로고    scopus 로고
    • Recon3D enables a three-dimensional view of gene variation in human metabolism
    • 1:CAS:528:DC%2BC1cXivFGitr8%3D 29457794 5840010
    • Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Drager A, Mih N, et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol. 2018;36:272-81.
    • (2018) Nat Biotechnol , vol.36 , pp. 272-281
    • Brunk, E.1    Sahoo, S.2    Zielinski, D.C.3    Altunkaya, A.4    Drager, A.5    Mih, N.6
  • 82
    • 84883787394 scopus 로고    scopus 로고
    • Integration of clinical data with a genome-scale metabolic model of the human adipocyte
    • 1:CAS:528:DC%2BC3sXhtFSqsbjI 23511207 3619940
    • Mardinoglu A, Agren R, Kampf C, Asplund A, Nookaew I, Jacobson P, et al. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol Syst Biol. 2013;9:649.
    • (2013) Mol Syst Biol , vol.9 , pp. 649
    • Mardinoglu, A.1    Agren, R.2    Kampf, C.3    Asplund, A.4    Nookaew, I.5    Jacobson, P.6
  • 85
    • 84898011025 scopus 로고    scopus 로고
    • Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-Alcoholic fatty liver disease
    • 24419221 1:CAS:528:DC%2BC2cXhvFCitLY%3D
    • Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-Alcoholic fatty liver disease. Nat Commun. 2014;5:3083.
    • (2014) Nat Commun , vol.5 , pp. 3083
    • Mardinoglu, A.1    Agren, R.2    Kampf, C.3    Asplund, A.4    Uhlen, M.5    Nielsen, J.6
  • 86
    • 84929276343 scopus 로고    scopus 로고
    • Proteome-and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes
    • 25937284 1:CAS:528:DC%2BC2MXnslOisbY%3D
    • Varemo L, Scheele C, Broholm C, Mardinoglu A, Kampf C, Asplund A, et al. Proteome-and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Rep. 2015;11:921-33.
    • (2015) Cell Rep , vol.11 , pp. 921-933
    • Varemo, L.1    Scheele, C.2    Broholm, C.3    Mardinoglu, A.4    Kampf, C.5    Asplund, A.6
  • 87
    • 85048201886 scopus 로고    scopus 로고
    • Traceability, reproducibility and wiki-exploration for 'a-la-carte' reconstructions of genome-scale metabolic models
    • 29791443 5988327 1:CAS:528:DC%2BC1cXhvVGgtLrI
    • Aite M, Chevallier M, Frioux C, Trottier C, Got J, Cortes MP, et al. Traceability, reproducibility and wiki-exploration for 'a-la-carte' reconstructions of genome-scale metabolic models. PLoS Comput Biol. 2018;14:e1006146.
    • (2018) PLoS Comput Biol , vol.14 , pp. e1006146
    • Aite, M.1    Chevallier, M.2    Frioux, C.3    Trottier, C.4    Got, J.5    Cortes, M.P.6
  • 88
    • 85057740057 scopus 로고    scopus 로고
    • Automated generation of genome-scale metabolic draft reconstructions based on KEGG
    • 30514205 6280343
    • Karlsen E, Schulz C, Almaas E. Automated generation of genome-scale metabolic draft reconstructions based on KEGG. BMC Bioinformatics. 2018;19:467.
    • (2018) BMC Bioinformatics , vol.19 , pp. 467
    • Karlsen, E.1    Schulz, C.2    Almaas, E.3
  • 89
    • 84895735489 scopus 로고    scopus 로고
    • Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species
    • 24516375 3916221 1:CAS:528:DC%2BC2cXkvVCmtbk%3D
    • Pitkanen E, Jouhten P, Hou J, Syed MF, Blomberg P, Kludas J, et al. Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species. PLoS Comput Biol. 2014;10:e1003465.
    • (2014) PLoS Comput Biol , vol.10 , pp. e1003465
    • Pitkanen, E.1    Jouhten, P.2    Hou, J.3    Syed, M.F.4    Blomberg, P.5    Kludas, J.6
  • 90
    • 84856247380 scopus 로고    scopus 로고
    • FAME, the flux analysis and modeling environment
    • 22289213 3317868
    • Boele J, Olivier BG, Teusink B. FAME, the flux analysis and modeling environment. BMC Syst Biol. 2012;6:8.
    • (2012) BMC Syst Biol , vol.6 , pp. 8
    • Boele, J.1    Olivier, B.G.2    Teusink, B.3
  • 91
    • 84930225331 scopus 로고    scopus 로고
    • Reconstructing genome-scale metabolic models with merlin
    • 1:CAS:528:DC%2BC2MXhsFSrtb7I 25845595 4417185
    • Dias O, Rocha M, Ferreira EC, Rocha I. Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res. 2015;43:3899-910.
    • (2015) Nucleic Acids Res , vol.43 , pp. 3899-3910
    • Dias, O.1    Rocha, M.2    Ferreira, E.C.3    Rocha, I.4
  • 92
    • 85014919668 scopus 로고    scopus 로고
    • Model-based quantification of metabolic interactions from dynamic microbial-community data
    • 28278266 5344373 1:CAS:528:DC%2BC2sXhtVGru7vJ
    • Hanemaaijer M, Olivier BG, Roling WF, Bruggeman FJ, Teusink B. Model-based quantification of metabolic interactions from dynamic microbial-community data. PLoS One. 2017;12:e0173183.
    • (2017) PLoS One , vol.12 , pp. e0173183
    • Hanemaaijer, M.1    Olivier, B.G.2    Roling, W.F.3    Bruggeman, F.J.4    Teusink, B.5
  • 93
    • 77956696072 scopus 로고    scopus 로고
    • High-Throughput generation, optimization and analysis of genome-scale metabolic models
    • 1:CAS:528:DC%2BC3cXhtVyiu73M 20802497
    • Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-Throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol. 2010;28:977-82.
    • (2010) Nat Biotechnol , vol.28 , pp. 977-982
    • Henry, C.S.1    Dejongh, M.2    Best, A.A.3    Frybarger, P.M.4    Linsay, B.5    Stevens, R.L.6
  • 94
    • 84995776550 scopus 로고    scopus 로고
    • Pathway tools version 19.0 update: Software for pathway/genome informatics and systems biology
    • 1:CAS:528:DC%2BC1cXlsVSqsrw%3D 26454094
    • Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, Billington R, et al. Pathway tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform. 2016;17:877-90.
    • (2016) Brief Bioinform , vol.17 , pp. 877-890
    • Karp, P.D.1    Latendresse, M.2    Paley, S.M.3    Krummenacker, M.4    Ong, Q.D.5    Billington, R.6
  • 95
    • 85055635316 scopus 로고    scopus 로고
    • RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor
    • 30335785 6207324 1:CAS:528:DC%2BC1MXisFKjtbs%3D
    • Wang H, Marcisauskas S, Sanchez BJ, Domenzain I, Hermansson D, Agren R, et al. RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput Biol. 2018;14:e1006541.
    • (2018) PLoS Comput Biol , vol.14 , pp. e1006541
    • Wang, H.1    Marcisauskas, S.2    Sanchez, B.J.3    Domenzain, I.4    Hermansson, D.5    Agren, R.6
  • 96
    • 84856038703 scopus 로고    scopus 로고
    • The SuBliMinaL toolbox: Automating steps in the reconstruction of metabolic networks
    • 22095399
    • Swainston N, Smallbone K, Mendes P, Kell D, Paton N. The SuBliMinaL toolbox: Automating steps in the reconstruction of metabolic networks. J Integr Bioinform. 2011;8:186.
    • (2011) J Integr Bioinform , vol.8 , pp. 186
    • Swainston, N.1    Smallbone, K.2    Mendes, P.3    Kell, D.4    Paton, N.5
  • 97
    • 84976877544 scopus 로고    scopus 로고
    • BiGG models: A platform for integrating, standardizing and sharing genome-scale models
    • 1:CAS:528:DC%2BC2sXhtV2nsrbI 26476456
    • King ZA, Lu J, Drager A, Miller P, Federowicz S, Lerman JA, et al. BiGG models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016;44:D515-22.
    • (2016) Nucleic Acids Res , vol.44 , pp. D515-D522
    • King, Z.A.1    Lu, J.2    Drager, A.3    Miller, P.4    Federowicz, S.5    Lerman, J.A.6
  • 98
    • 85040918197 scopus 로고    scopus 로고
    • BioModels: Expanding horizons to include more modelling approaches and formats
    • 1:CAS:528:DC%2BC1cXitlGjurnJ 29106614
    • Glont M, Nguyen TVN, Graesslin M, Halke R, Ali R, Schramm J, et al. BioModels: expanding horizons to include more modelling approaches and formats. Nucleic Acids Res. 2018;46:D1248-53.
    • (2018) Nucleic Acids Res , vol.46 , pp. D1248-D1253
    • Glont, M.1    Nguyen, T.V.N.2    Graesslin, M.3    Halke, R.4    Ali, R.5    Schramm, J.6
  • 99
    • 84943164994 scopus 로고    scopus 로고
    • Human metabolic atlas: An online resource for human metabolism
    • 1:CAS:528:DC%2BC28XhtVCitLjP
    • Pornputtapong N, Nookaew I, Nielsen J. Human metabolic atlas: An online resource for human metabolism. Database (Oxford). 2015;2015:bav068.
    • (2015) Database (Oxford) , vol.2015 , pp. bav068
    • Pornputtapong, N.1    Nookaew, I.2    Nielsen, J.3
  • 100
    • 84906541788 scopus 로고    scopus 로고
    • MEMOSys 2.0: An update of the bioinformatics database for genome-scale models and genomic data
    • 1:CAS:528:DC%2BC2cXptVGmtbY%3D
    • Pabinger S, Snajder R, Hardiman T, Willi M, Dander A, Trajanoski Z. MEMOSys 2.0: An update of the bioinformatics database for genome-scale models and genomic data. Database (Oxford). 2014;2014:bau004.
    • (2014) Database (Oxford) , vol.2014 , pp. bau004
    • Pabinger, S.1    Snajder, R.2    Hardiman, T.3    Willi, M.4    Dander, A.5    Trajanoski, Z.6
  • 101
    • 84976865354 scopus 로고    scopus 로고
    • MetaNetX/MNXref-reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks
    • 1:CAS:528:DC%2BC2sXhtV2nsr3K 26527720
    • Moretti S, Martin O, Van Du Tran T, Bridge A, Morgat A, Pagni M. MetaNetX/MNXref-reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Res. 2016;44:D523-6.
    • (2016) Nucleic Acids Res , vol.44 , pp. D523-D526
    • Moretti, S.1    Martin, O.2    Van Du Tran, T.3    Bridge, A.4    Morgat, A.5    Pagni, M.6
  • 102
    • 84903735161 scopus 로고    scopus 로고
    • High-Throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource
    • 1:CAS:528:DC%2BC2cXpsVamurw%3D 24927599 4084441
    • Seaver SM, Gerdes S, Frelin O, Lerma-Ortiz C, Bradbury LM, Zallot R, et al. High-Throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource. Proc Natl Acad Sci U S A. 2014;111:9645-50.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 9645-9650
    • Seaver, S.M.1    Gerdes, S.2    Frelin, O.3    Lerma-Ortiz, C.4    Bradbury, L.M.5    Zallot, R.6
  • 103
    • 85059149423 scopus 로고    scopus 로고
    • The virtual metabolic human database: Integrating human and gut microbiome metabolism with nutrition and disease
    • 30371894 30371894
    • Noronha A, Modamio J, Jarosz Y, Guerard E, Sompairac N, Preciat G, et al. The virtual metabolic human database: integrating human and gut microbiome metabolism with nutrition and disease. Nucleic Acids Res. 2019;47:D614-24.
    • (2019) Nucleic Acids Res , vol.47 , pp. D614-D624
    • Noronha, A.1    Modamio, J.2    Jarosz, Y.3    Guerard, E.4    Sompairac, N.5    Preciat, G.6
  • 104
    • 85049776867 scopus 로고    scopus 로고
    • KBase: The United States Department of Energy Systems Biology Knowledgebase
    • 1:CAS:528:DC%2BC1cXht1OntbrI 29979655 29979655
    • Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol. 2018;36:566-9.
    • (2018) Nat Biotechnol , vol.36 , pp. 566-569
    • Arkin, A.P.1    Cottingham, R.W.2    Henry, C.S.3    Harris, N.L.4    Stevens, R.L.5    Maslov, S.6
  • 108
    • 63549108441 scopus 로고    scopus 로고
    • GrowMatch: An automated method for reconciling in silico/in vivo growth predictions
    • 19282964 2645679 1:CAS:528:DC%2BD1MXjsVOrt7o%3D
    • Kumar VS, Maranas CD. GrowMatch: An automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol. 2009;5:e1000308.
    • (2009) PLoS Comput Biol , vol.5 , pp. e1000308
    • Kumar, V.S.1    Maranas, C.D.2
  • 109
    • 57549102595 scopus 로고    scopus 로고
    • Genome-scale models of bacterial metabolism: Reconstruction and applications
    • 1:CAS:528:DC%2BD1MXmtlKjsw%3D%3D 19067749
    • Durot M, Bourguignon PY, Schachter V. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev. 2009;33:164-90.
    • (2009) FEMS Microbiol Rev , vol.33 , pp. 164-190
    • Durot, M.1    Bourguignon, P.Y.2    Schachter, V.3
  • 110
    • 85045348745 scopus 로고    scopus 로고
    • Current state and applications of microbial genome-scale metabolic models
    • Kim WJ, Kim HU, Lee SY. Current state and applications of microbial genome-scale metabolic models. Curr Opin Syst Biol. 2017;2:10-8.
    • (2017) Curr Opin Syst Biol , vol.2 , pp. 10-18
    • Kim, W.J.1    Kim, H.U.2    Lee, S.Y.3
  • 111
    • 73149122136 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic reconstructions
    • 19888215 2795471
    • Oberhardt MA, Palsson BO, Papin JA. Applications of genome-scale metabolic reconstructions. Mol Syst Biol. 2009;5:320.
    • (2009) Mol Syst Biol , vol.5 , pp. 320
    • Oberhardt, M.A.1    Palsson, B.O.2    Papin, J.A.3
  • 112
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • 24762745 3998872 1:CAS:528:DC%2BC2cXhsVGlsL%2FI
    • Machado D, Herrgard M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol. 2014;10:e1003580.
    • (2014) PLoS Comput Biol , vol.10 , pp. e1003580
    • Machado, D.1    Herrgard, M.2
  • 113
    • 85012870351 scopus 로고    scopus 로고
    • A systematic evaluation of methods for tailoring genome-scale metabolic models
    • 1:CAS:528:DC%2BC2sXkvFWktbc%3D 28215528 5526624
    • Opdam S, Richelle A, Kellman B, Li S, Zielinski DC, Lewis NE. A systematic evaluation of methods for tailoring genome-scale metabolic models. Cell Syst. 2017;4:318-29.
    • (2017) Cell Syst , vol.4 , pp. 318-329
    • Opdam, S.1    Richelle, A.2    Kellman, B.3    Li, S.4    Zielinski, D.C.5    Lewis, N.E.6
  • 114
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • 18483554 2366062 1:CAS:528:DC%2BD1cXnsVOnu7g%3D
    • Becker SA, Palsson BO. Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol. 2008;4:e1000082.
    • (2008) PLoS Comput Biol , vol.4 , pp. e1000082
    • Becker, S.A.1    Palsson, B.O.2
  • 115
    • 79951745716 scopus 로고    scopus 로고
    • IMAT: An integrative metabolic analysis tool
    • 1:CAS:528:DC%2BC3cXhsFamtr7P 21081510
    • Zur H, Ruppin E, Shlomi T. iMAT: An integrative metabolic analysis tool. Bioinformatics. 2010;26:3140-2.
    • (2010) Bioinformatics. , vol.26 , pp. 3140-3142
    • Zur, H.1    Ruppin, E.2    Shlomi, T.3
  • 116
    • 77956417789 scopus 로고    scopus 로고
    • Computational reconstruction of tissue-specific metabolic models: Application to human liver metabolism
    • 20823844 2964116
    • Jerby L, Shlomi T, Ruppin E. Computational reconstruction of tissue-specific metabolic models: Application to human liver metabolism. Mol Syst Biol. 2010;6:401.
    • (2010) Mol Syst Biol , vol.6 , pp. 401
    • Jerby, L.1    Shlomi, T.2    Ruppin, E.3
  • 117
    • 84863662483 scopus 로고    scopus 로고
    • Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
    • 1:CAS:528:DC%2BC38XnvFSns78%3D 22615553 3355067
    • Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol. 2012;8:e1002518.
    • (2012) PLoS Comput Biol , vol.8 , pp. e1002518
    • Agren, R.1    Bordel, S.2    Mardinoglu, A.3    Pornputtapong, N.4    Nookaew, I.5    Nielsen, J.6
  • 118
    • 84870933131 scopus 로고    scopus 로고
    • Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE
    • 23234303 3576361
    • Wang Y, Eddy JA, Price ND. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol. 2012;6:153.
    • (2012) BMC Syst Biol , vol.6 , pp. 153
    • Wang, Y.1    Eddy, J.A.2    Price, N.D.3
  • 119
    • 84898663879 scopus 로고    scopus 로고
    • Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling
    • 24646661 4017677 1:CAS:528:DC%2BC2cXhs1yksb7E
    • Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, Nielsen J. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol Syst Biol. 2014;10:721.
    • (2014) Mol Syst Biol , vol.10 , pp. 721
    • Agren, R.1    Mardinoglu, A.2    Asplund, A.3    Kampf, C.4    Uhlen, M.5    Nielsen, J.6
  • 120
    • 84962059544 scopus 로고    scopus 로고
    • Reconstruction of tissue-specific metabolic networks using CORDA
    • 26942765 4778931 1:CAS:528:DC%2BC28Xht1ensbnJ
    • Schultz A, Qutub AA. Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput Biol. 2016;12:e1004808.
    • (2016) PLoS Comput Biol , vol.12 , pp. e1004808
    • Schultz, A.1    Qutub, A.A.2
  • 121
    • 85012009478 scopus 로고    scopus 로고
    • Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions
    • 1:CAS:528:DC%2BC2sXisVehtLg%3D 28176778 5309818
    • Blais EM, Rawls KD, Dougherty BV, Li ZI, Kolling GL, Ye P, et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat Commun. 2017;8:14250.
    • (2017) Nat Commun , vol.8 , pp. 14250
    • Blais, E.M.1    Rawls, K.D.2    Dougherty, B.V.3    Li, Z.I.4    Kolling, G.L.5    Ye, P.6
  • 122
    • 85042799027 scopus 로고    scopus 로고
    • One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains
    • 29311546 5758686 1:CAS:528:DC%2BC1cXptlahur4%3D
    • Yang JE, Park SJ, Kim WJ, Kim HJ, Kim BJ, Lee H, et al. One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nat Commun. 2018;9:79.
    • (2018) Nat Commun , vol.9 , pp. 79
    • Yang, J.E.1    Park, S.J.2    Kim, W.J.3    Kim, H.J.4    Kim, B.J.5    Lee, H.6
  • 123
    • 85044219751 scopus 로고    scopus 로고
    • Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica
    • 29560822 5861505 1:CAS:528:DC%2BC1cXitlemtbrJ
    • Mishra P, Lee NR, Lakshmanan M, Kim M, Kim BG, Lee DY. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica. BMC Syst Biol. 2018;12:12.
    • (2018) BMC Syst Biol , vol.12 , pp. 12
    • Mishra, P.1    Lee, N.R.2    Lakshmanan, M.3    Kim, M.4    Kim, B.G.5    Lee, D.Y.6
  • 124
    • 85041426461 scopus 로고    scopus 로고
    • Functional interrogation of Plasmodium genus metabolism identifies species-and stage-specific differences in nutrient essentiality and drug targeting
    • 29300748 5771636 1:CAS:528:DC%2BC1cXhs1OhsLvK
    • Abdel-Haleem AM, Hefzi H, Mineta K, Gao X, Gojobori T, Palsson BO, et al. Functional interrogation of Plasmodium genus metabolism identifies species-and stage-specific differences in nutrient essentiality and drug targeting. PLoS Comput Biol. 2018;14:e1005895.
    • (2018) PLoS Comput Biol , vol.14 , pp. e1005895
    • Abdel-Haleem, A.M.1    Hefzi, H.2    Mineta, K.3    Gao, X.4    Gojobori, T.5    Palsson, B.O.6
  • 125
    • 85020854104 scopus 로고    scopus 로고
    • Constraint-based modeling identifies new putative targets to fight colistin-resistant A baumannii infections
    • 28623298 5473915 1:CAS:528:DC%2BC1cXhvVGitL%2FP
    • Presta L, Bosi E, Mansouri L, Dijkshoorn L, Fani R, Fondi M. Constraint-based modeling identifies new putative targets to fight colistin-resistant A baumannii infections. Sci Rep. 2017;7:3706.
    • (2017) Sci Rep , vol.7 , pp. 3706
    • Presta, L.1    Bosi, E.2    Mansouri, L.3    Dijkshoorn, L.4    Fani, R.5    Fondi, M.6
  • 126
    • 84921340441 scopus 로고    scopus 로고
    • Model-driven discovery of underground metabolic functions in Escherichia coli
    • 1:CAS:528:DC%2BC2MXjtVSktw%3D%3D 25564669 4311852
    • Guzman GI, Utrilla J, Nurk S, Brunk E, Monk JM, Ebrahim A, et al. Model-driven discovery of underground metabolic functions in Escherichia coli. Proc Natl Acad Sci U S A. 2015;112:929-34.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 929-934
    • Guzman, G.I.1    Utrilla, J.2    Nurk, S.3    Brunk, E.4    Monk, J.M.5    Ebrahim, A.6
  • 127
    • 84956745187 scopus 로고    scopus 로고
    • Systems-wide prediction of enzyme promiscuity reveals a new underground alternative route for pyridoxal 5′-phosphate production in E. Coli
    • 26821166 4731195 1:CAS:528:DC%2BC28XhtF2lurzJ
    • Oberhardt MA, Zarecki R, Reshef L, Xia F, Duran-Frigola M, Schreiber R, et al. Systems-wide prediction of enzyme promiscuity reveals a new underground alternative route for pyridoxal 5′-phosphate production in E. coli. PLoS Comput Biol. 2016;12:e1004705.
    • (2016) PLoS Comput Biol , vol.12 , pp. e1004705
    • Oberhardt, M.A.1    Zarecki, R.2    Reshef, L.3    Xia, F.4    Duran-Frigola, M.5    Schreiber, R.6
  • 128
    • 85053335363 scopus 로고    scopus 로고
    • Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits
    • 30218022 6138749 1:CAS:528:DC%2BC1cXhslalsr7I
    • Seif Y, Kavvas E, Lachance JC, Yurkovich JT, Nuccio SP, Fang X, et al. Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nat Commun. 2018;9:3771.
    • (2018) Nat Commun , vol.9 , pp. 3771
    • Seif, Y.1    Kavvas, E.2    Lachance, J.C.3    Yurkovich, J.T.4    Nuccio, S.P.5    Fang, X.6
  • 129
    • 85053318474 scopus 로고    scopus 로고
    • Reconstruction of 24 Penicillium genome-scale metabolic models shows diversity based on their secondary metabolism
    • 1:CAS:528:DC%2BC1cXhtlOrt77F 29873086
    • Prigent S, Nielsen JC, Frisvad JC, Nielsen J. Reconstruction of 24 Penicillium genome-scale metabolic models shows diversity based on their secondary metabolism. Biotechnol Bioeng. 2018;115:2604-12.
    • (2018) Biotechnol Bioeng , vol.115 , pp. 2604-2612
    • Prigent, S.1    Nielsen, J.C.2    Frisvad, J.C.3    Nielsen, J.4
  • 130
    • 51849105034 scopus 로고    scopus 로고
    • Perspectives of microbial oils for biodiesel production
    • 1:CAS:528:DC%2BD1cXhtFWls7jE 18690426
    • Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol. 2008;80:749-56.
    • (2008) Appl Microbiol Biotechnol , vol.80 , pp. 749-756
    • Li, Q.1    Du, W.2    Liu, D.3
  • 131
    • 77954040575 scopus 로고    scopus 로고
    • Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement
    • 1:CAS:528:DC%2BC3cXos12lsL4%3D
    • Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, et al. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Factories. 2010;9:50.
    • (2010) Microb Cell Factories , vol.9 , pp. 50
    • Chung, B.K.1    Selvarasu, S.2    Andrea, C.3    Ryu, J.4    Lee, H.5    Ahn, J.6
  • 132
    • 84955660244 scopus 로고    scopus 로고
    • Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces coelicolor
    • 1:CAS:528:DC%2BC2MXhsFKntbjP 26369755
    • Kim M, Yi JS, Lakshmanan M, Lee DY, Kim BG. Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces coelicolor. Biotechnol Bioeng. 2016;113:651-60.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 651-660
    • Kim, M.1    Yi, J.S.2    Lakshmanan, M.3    Lee, D.Y.4    Kim, B.G.5
  • 133
    • 69249146187 scopus 로고    scopus 로고
    • Large-scale identification of genetic design strategies using local search
    • 19690565 2736654
    • Lun DS, Rockwell G, Guido NJ, Baym M, Kelner JA, Berger B, et al. Large-scale identification of genetic design strategies using local search. Mol Syst Biol. 2009;5:296.
    • (2009) Mol Syst Biol , vol.5 , pp. 296
    • Lun, D.S.1    Rockwell, G.2    Guido, N.J.3    Baym, M.4    Kelner, J.A.5    Berger, B.6
  • 134
    • 84891614139 scopus 로고    scopus 로고
    • Cofactor modification analysis: A computational framework to identify cofactor specificity engineering targets for strain improvement
    • 1:CAS:528:DC%2BC2cXisF2nsA%3D%3D
    • Lakshmanan M, Chung BK, Liu C, Kim SW, Lee DY. Cofactor modification analysis: A computational framework to identify cofactor specificity engineering targets for strain improvement. J Bioinforma Comput Biol. 2013;11:1343006.
    • (2013) J Bioinforma Comput Biol , vol.11 , pp. 1343006
    • Lakshmanan, M.1    Chung, B.K.2    Liu, C.3    Kim, S.W.4    Lee, D.Y.5
  • 135
    • 84859856422 scopus 로고    scopus 로고
    • A systems biology approach to drug targets in Pseudomonas aeruginosa biofilm
    • 1:CAS:528:DC%2BC38Xmtlamtb0%3D 22523548 3327687
    • Sigurdsson G, Fleming RM, Heinken A, Thiele I. A systems biology approach to drug targets in Pseudomonas aeruginosa biofilm. PLoS One. 2012;7:e34337.
    • (2012) PLoS One , vol.7 , pp. e34337
    • Sigurdsson, G.1    Fleming, R.M.2    Heinken, A.3    Thiele, I.4
  • 136
    • 75749144228 scopus 로고    scopus 로고
    • Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE
    • 1:CAS:528:DC%2BC3cXosF2rtg%3D%3D 20094653
    • Kim HU, Kim TY, Lee SY. Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Mol BioSyst. 2010;6:339-48.
    • (2010) Mol BioSyst , vol.6 , pp. 339-348
    • Kim, H.U.1    Kim, T.Y.2    Lee, S.Y.3
  • 137
    • 78751556862 scopus 로고    scopus 로고
    • Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery
    • 21245845 3049409 1:CAS:528:DC%2BC3MXitl2mu7k%3D
    • Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, Choy HE, et al. Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Mol Syst Biol. 2011;7:460.
    • (2011) Mol Syst Biol , vol.7 , pp. 460
    • Kim, H.U.1    Kim, S.Y.2    Jeong, H.3    Kim, T.Y.4    Kim, J.J.5    Choy, H.E.6
  • 138
    • 84939500788 scopus 로고    scopus 로고
    • Sexual development in Plasmodium parasites: Knowing when it's time to commit
    • 1:CAS:528:DC%2BC2MXhtlCju73M 26272409
    • Josling GA, Llinas M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol. 2015;13:573-87.
    • (2015) Nat Rev Microbiol , vol.13 , pp. 573-587
    • Josling, G.A.1    Llinas, M.2
  • 140
    • 85050120958 scopus 로고    scopus 로고
    • Metabolic network-based identification and prioritization of anticancer targets based on expression data in hepatocellular carcinoma
    • 30065658 6056771
    • Bidkhori G, Benfeitas R, Elmas E, Kararoudi MN, Arif M, Uhlen M, et al. Metabolic network-based identification and prioritization of anticancer targets based on expression data in hepatocellular carcinoma. Front Physiol. 2018;9:916.
    • (2018) Front Physiol , vol.9 , pp. 916
    • Bidkhori, G.1    Benfeitas, R.2    Elmas, E.3    Kararoudi, M.N.4    Arif, M.5    Uhlen, M.6
  • 141
    • 84976481496 scopus 로고    scopus 로고
    • Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity
    • 1:CAS:528:DC%2BC28XpsFKktbs%3D 27286824 4932939
    • Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V, Palsson BO. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc Natl Acad Sci U S A. 2016;113:E3801-9.
    • (2016) Proc Natl Acad Sci U S A , vol.113 , pp. E3801-E3809
    • Bosi, E.1    Monk, J.M.2    Aziz, R.K.3    Fondi, M.4    Nizet, V.5    Palsson, B.O.6
  • 142
    • 84890290025 scopus 로고    scopus 로고
    • Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments
    • 1:CAS:528:DC%2BC3sXhvFKmsL3K 24277855 3864276
    • Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci U S A. 2013;110:20338-43.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 20338-20343
    • Monk, J.M.1    Charusanti, P.2    Aziz, R.K.3    Lerman, J.A.4    Premyodhin, N.5    Orth, J.D.6
  • 144
    • 85059798215 scopus 로고    scopus 로고
    • Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems
    • 30626871 6327061 1:CAS:528:DC%2BC1MXmvFSqurk%3D
    • Pacheco AR, Moel M, Segre D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun. 2019;10:103.
    • (2019) Nat Commun , vol.10 , pp. 103
    • Pacheco, A.R.1    Moel, M.2    Segre, D.3
  • 145
    • 85048672461 scopus 로고    scopus 로고
    • Metabolic model-based analysis of the emergence of bacterial cross-feeding via extensive gene loss
    • 29907104 6003207
    • McNally CP, Borenstein E. Metabolic model-based analysis of the emergence of bacterial cross-feeding via extensive gene loss. BMC Syst Biol. 2018;12:69.
    • (2018) BMC Syst Biol , vol.12 , pp. 69
    • McNally, C.P.1    Borenstein, E.2
  • 146
    • 85048971156 scopus 로고    scopus 로고
    • Understanding the representative gut microbiota dysbiosis in metformin-Treated type 2 diabetes patients using genome-scale metabolic modeling
    • 29988585 6026676
    • Rosario D, Benfeitas R, Bidkhori G, Zhang C, Uhlen M, Shoaie S, et al. Understanding the representative gut microbiota dysbiosis in metformin-Treated type 2 diabetes patients using genome-scale metabolic modeling. Front Physiol. 2018;9:775.
    • (2018) Front Physiol , vol.9 , pp. 775
    • Rosario, D.1    Benfeitas, R.2    Bidkhori, G.3    Zhang, C.4    Uhlen, M.5    Shoaie, S.6
  • 147
    • 85051385729 scopus 로고    scopus 로고
    • Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling
    • 1:CAS:528:DC%2BC1cXhsV2isr%2FM 30075203
    • Kumar M, Ji B, Babaei P, Das P, Lappa D, Ramakrishnan G, et al. Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: lessons from genome-scale metabolic modeling. Metab Eng. 2018;49:128-42.
    • (2018) Metab Eng , vol.49 , pp. 128-142
    • Kumar, M.1    Ji, B.2    Babaei, P.3    Das, P.4    Lappa, D.5    Ramakrishnan, G.6
  • 148
    • 85058338932 scopus 로고    scopus 로고
    • A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism
    • 1:CAS:528:DC%2BC1MXhtV2ht7vF 30537923 6288859
    • Botero K, Restrepo S, Pinzon A. A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism. BMC Genomics. 2018;19:863.
    • (2018) BMC Genomics , vol.19 , pp. 863
    • Botero, K.1    Restrepo, S.2    Pinzon, A.3
  • 149
    • 85016976327 scopus 로고    scopus 로고
    • Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133
    • 1:CAS:528:DC%2BC2sXlslarsbc%3D 28367990 5377334
    • Hur W, Ryu JY, Kim HU, Hong SW, Lee EB, Lee SY, et al. Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133. Sci Rep. 2017;7:45557.
    • (2017) Sci Rep , vol.7 , pp. 45557
    • Hur, W.1    Ryu, J.Y.2    Kim, H.U.3    Hong, S.W.4    Lee, E.B.5    Lee, S.Y.6
  • 150
    • 85046398805 scopus 로고    scopus 로고
    • Metabolic systems analysis of LPS induced endothelial dysfunction applied to sepsis patient stratification
    • 29717213 5931560 1:CAS:528:DC%2BC1cXhslKhtb3L
    • McGarrity S, Anuforo O, Halldorsson H, Bergmann A, Halldorsson S, Palsson S, et al. Metabolic systems analysis of LPS induced endothelial dysfunction applied to sepsis patient stratification. Sci Rep. 2018;8:6811.
    • (2018) Sci Rep , vol.8 , pp. 6811
    • McGarrity, S.1    Anuforo, O.2    Halldorsson, H.3    Bergmann, A.4    Halldorsson, S.5    Palsson, S.6
  • 151
    • 84879002382 scopus 로고    scopus 로고
    • Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
    • 1:CAS:528:DC%2BC3sXhtFSqsbjE 23632383 3658273
    • McCloskey D, Palsson BO, Feist AM. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol. 2013;9:661.
    • (2013) Mol Syst Biol , vol.9 , pp. 661
    • McCloskey, D.1    Palsson, B.O.2    Feist, A.M.3
  • 152
    • 85051387093 scopus 로고    scopus 로고
    • Challenges in modeling the human gut microbiome
    • 1:CAS:528:DC%2BC1cXhsVCmurbJ 30080831
    • Babaei P, Shoaie S, Ji B, Nielsen J. Challenges in modeling the human gut microbiome. Nat Biotechnol. 2018;36:682-6.
    • (2018) Nat Biotechnol , vol.36 , pp. 682-686
    • Babaei, P.1    Shoaie, S.2    Ji, B.3    Nielsen, J.4
  • 153
    • 85051762611 scopus 로고    scopus 로고
    • Reply to 'Challenges in modeling the human gut microbiome'
    • 1:CAS:528:DC%2BC1cXhsVCmurfJ 30080835 30080835
    • Magnusdottir S, Heinken A, Fleming RMT, Thiele I. Reply to 'Challenges in modeling the human gut microbiome'. Nat Biotechnol. 2018;36:686-91.
    • (2018) Nat Biotechnol , vol.36 , pp. 686-691
    • Magnusdottir, S.1    Heinken, A.2    Fleming, R.M.T.3    Thiele, I.4
  • 154
    • 85051086282 scopus 로고    scopus 로고
    • Establishing normal metabolism and differentiation in hepatocellular carcinoma cells by culturing in adult human serum
    • 30076349 6076254 1:CAS:528:DC%2BC1MXptlSi
    • Steenbergen R, Oti M, Ter Horst R, Tat W, Neufeldt C, Belovodskiy A, et al. Establishing normal metabolism and differentiation in hepatocellular carcinoma cells by culturing in adult human serum. Sci Rep. 2018;8:11685.
    • (2018) Sci Rep , vol.8 , pp. 11685
    • Steenbergen, R.1    Oti, M.2    Ter Horst, R.3    Tat, W.4    Neufeldt, C.5    Belovodskiy, A.6
  • 155
    • 85026625357 scopus 로고    scopus 로고
    • Flux balance analysis predicts Warburg-like effects of mouse hepatocyte deficient in miR-122a
    • 28686599 5536358 1:CAS:528:DC%2BC1cXivVWgsrk%3D
    • Wu HQ, Cheng ML, Lai JM, Wu HH, Chen MC, Liu WH, et al. Flux balance analysis predicts Warburg-like effects of mouse hepatocyte deficient in miR-122a. PLoS Comput Biol. 2017;13:e1005618.
    • (2017) PLoS Comput Biol , vol.13 , pp. e1005618
    • Wu, H.Q.1    Cheng, M.L.2    Lai, J.M.3    Wu, H.H.4    Chen, M.C.5    Liu, W.H.6
  • 156
    • 84947562163 scopus 로고    scopus 로고
    • Stratification of hepatocellular carcinoma patients based on acetate utilization
    • 26655911 1:CAS:528:DC%2BC2MXhvVOqsbnE 26655911
    • Bjornson E, Mukhopadhyay B, Asplund A, Pristovsek N, Cinar R, Romeo S, et al. Stratification of hepatocellular carcinoma patients based on acetate utilization. Cell Rep. 2015;13:2014-26.
    • (2015) Cell Rep , vol.13 , pp. 2014-2026
    • Bjornson, E.1    Mukhopadhyay, B.2    Asplund, A.3    Pristovsek, N.4    Cinar, R.5    Romeo, S.6
  • 158
    • 85040920293 scopus 로고    scopus 로고
    • Model-driven discovery of long-chain fatty acid metabolic reprogramming in heterogeneous prostate cancer cells
    • 29293497 5766231 1:CAS:528:DC%2BC1cXhs1Ohs7bJ
    • Marin de Mas I, Aguilar E, Zodda E, Balcells C, Marin S, Dallmann G, et al. Model-driven discovery of long-chain fatty acid metabolic reprogramming in heterogeneous prostate cancer cells. PLoS Comput Biol. 2018;14:e1005914.
    • (2018) PLoS Comput Biol , vol.14 , pp. e1005914
    • Marin De Mas, I.1    Aguilar, E.2    Zodda, E.3    Balcells, C.4    Marin, S.5    Dallmann, G.6
  • 159
    • 85042509249 scopus 로고    scopus 로고
    • Exploring candidate biomarkers for lung and prostate cancers using gene expression and flux variability analysis
    • 1:CAS:528:DC%2BC1cXjsVyisQ%3D%3D
    • Asgari Y, Khosravi P, Zabihinpour Z, Habibi M. Exploring candidate biomarkers for lung and prostate cancers using gene expression and flux variability analysis. Integr Biol (Camb). 2018;10:113-20.
    • (2018) Integr Biol (Camb) , vol.10 , pp. 113-120
    • Asgari, Y.1    Khosravi, P.2    Zabihinpour, Z.3    Habibi, M.4
  • 160
    • 85049588993 scopus 로고    scopus 로고
    • The circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal cancer
    • Fuhr L, El-Athman R, Scrima R, Cela O, Carbone A, Knoop H, et al. The circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal cancer. EBioMed. 2018;33:105-21.
    • (2018) EBioMed. , vol.33 , pp. 105-121
    • Fuhr, L.1    El-Athman, R.2    Scrima, R.3    Cela, O.4    Carbone, A.5    Knoop, H.6
  • 161
    • 85028036415 scopus 로고    scopus 로고
    • Systems-level organization of non-Alcoholic fatty liver disease progression network
    • 1:CAS:528:DC%2BC2sXhtFOju7jE 28745372 28745372
    • Shubham K, Vinay L, Vinod PK. Systems-level organization of non-Alcoholic fatty liver disease progression network. Mol BioSyst. 2017;13:1898-911.
    • (2017) Mol BioSyst , vol.13 , pp. 1898-1911
    • Shubham, K.1    Vinay, L.2    Vinod, P.K.3
  • 162
    • 85054482673 scopus 로고    scopus 로고
    • Integrated human-virus metabolic stoichiometric modelling predicts host-based antiviral targets against Chikungunya, Dengue and Zika viruses
    • 6170780 1:CAS:528:DC%2BC1MXjtlKhurw%3D 6170780
    • Aller S, Scott A, Sarkar-Tyson M, Soyer OS. Integrated human-virus metabolic stoichiometric modelling predicts host-based antiviral targets against chikungunya, dengue and Zika viruses. J R Soc Interface. 2018;15. https://doi.org/10.1098/rsif.2018.0125.
    • (2018) Journal of the Royal Society Interface , vol.15 , Issue.146 , pp. 20180125
    • Aller, S.1    Scott, A.2    Sarkar-Tyson, M.3    Soyer, O.S.4
  • 163
    • 84920896587 scopus 로고    scopus 로고
    • Next-generation genome-scale models for metabolic engineering
    • 1:CAS:528:DC%2BC2MXlvF2rug%3D%3D 25575024 25575024
    • King ZA, Lloyd CJ, Feist AM, Palsson BO. Next-generation genome-scale models for metabolic engineering. Curr Opin Biotechnol. 2015;35:23-9.
    • (2015) Curr Opin Biotechnol , vol.35 , pp. 23-29
    • King, Z.A.1    Lloyd, C.J.2    Feist, A.M.3    Palsson, B.O.4
  • 164
    • 85028309923 scopus 로고    scopus 로고
    • Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
    • 28779005 5572397 1:CAS:528:DC%2BC2sXhtlymt7rM
    • Sanchez BJ, Zhang C, Nilsson A, Lahtvee PJ, Kerkhoven EJ, Nielsen J. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol. 2017;13:935.
    • (2017) Mol Syst Biol , vol.13 , pp. 935
    • Sanchez, B.J.1    Zhang, C.2    Nilsson, A.3    Lahtvee, P.J.4    Kerkhoven, E.J.5    Nielsen, J.6
  • 166
    • 84945587006 scopus 로고    scopus 로고
    • Quantitative prediction of genome-wide resource allocation in bacteria
    • 1:CAS:528:DC%2BC2MXhslanurbE 26498510
    • Goelzer A, Muntel J, Chubukov V, Jules M, Prestel E, Nolker R, et al. Quantitative prediction of genome-wide resource allocation in bacteria. Metab Eng. 2015;32:232-43.
    • (2015) Metab Eng , vol.32 , pp. 232-243
    • Goelzer, A.1    Muntel, J.2    Chubukov, V.3    Jules, M.4    Prestel, E.5    Nolker, R.6
  • 167
    • 34547887655 scopus 로고    scopus 로고
    • Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity
    • 1:CAS:528:DC%2BD2sXptVaqsLs%3D 17652176 1937523
    • Beg QK, Vazquez A, Ernst J, de Menezes MA, Bar-Joseph Z, Barabasi AL, et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc Natl Acad Sci U S A. 2007;104:12663-8.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 12663-12668
    • Beg, Q.K.1    Vazquez, A.2    Ernst, J.3    De Menezes, M.A.4    Bar-Joseph, Z.5    Barabasi, A.L.6
  • 168
    • 84885367114 scopus 로고    scopus 로고
    • Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction
    • 1:CAS:528:DC%2BC3sXhsFOltrnP 24084808 3817402
    • O'Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol. 2013;9:693.
    • (2013) Mol Syst Biol , vol.9 , pp. 693
    • O'Brien, E.J.1    Lerman, J.A.2    Chang, R.L.3    Hyduke, D.R.4    Palsson, B.O.5
  • 169
    • 84864843180 scopus 로고    scopus 로고
    • In silico method for modelling metabolism and gene product expression at genome scale
    • 22760628 1:CAS:528:DC%2BC38Xhslekur%2FM
    • Lerman JA, Hyduke DR, Latif H, Portnoy VA, Lewis NE, Orth JD, et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun. 2012;3:929.
    • (2012) Nat Commun , vol.3 , pp. 929
    • Lerman, J.A.1    Hyduke, D.R.2    Latif, H.3    Portnoy, V.A.4    Lewis, N.E.5    Orth, J.D.6
  • 170
    • 85059797530 scopus 로고    scopus 로고
    • A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types
    • 30625152 6326480 1:CAS:528:DC%2BC1MXosFektr0%3D
    • Seif Y, Monk JM, Mih N, Tsunemoto H, Poudel S, Zuniga C, et al. A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types. PLoS Comput Biol. 2019;15:e1006644.
    • (2019) PLoS Comput Biol , vol.15 , pp. e1006644
    • Seif, Y.1    Monk, J.M.2    Mih, N.3    Tsunemoto, H.4    Poudel, S.5    Zuniga, C.6
  • 172
    • 84878756325 scopus 로고    scopus 로고
    • Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli
    • 1:CAS:528:DC%2BC3sXosFymsrY%3D 23744946 3777776
    • Chang RL, Andrews K, Kim D, Li Z, Godzik A, Palsson BO. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science. 2013;340:1220-3.
    • (2013) Science. , vol.340 , pp. 1220-1223
    • Chang, R.L.1    Andrews, K.2    Kim, D.3    Li, Z.4    Godzik, A.5    Palsson, B.O.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.