메뉴 건너뛰기




Volumn 11, Issue 1, 2018, Pages

Advances in metabolic modeling of oleaginous microalgae Mike Himmel

Author keywords

Central carbon metabolism; Constraint based metabolic modeling; Lipid production; Oleaginous phototrophs

Indexed keywords

ALGAE; BIOFUELS; MICROORGANISMS; PHYSIOLOGY;

EID: 85053135706     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-018-1244-3     Document Type: Review
Times cited : (57)

References (96)
  • 1
    • 0242486788 scopus 로고    scopus 로고
    • An introduction to photosynthesis in aquatic systems
    • S. Elworthy (eds) Princeton University Press Princeton
    • Falkowski PG, Raven JA. An introduction to photosynthesis in aquatic systems. In: Elworthy S, editor. Aquatic photosynthesis. Princeton: Princeton University Press; 2013. p. 1-43.
    • (2013) Aquatic Photosynthesis , pp. 1-43
    • Falkowski, P.G.1    Raven, J.A.2
  • 2
    • 24944546402 scopus 로고    scopus 로고
    • Biotechnology - A sustainable alternative for chemical industry
    • Gavrilescu M, Chisti Y. Biotechnology - a sustainable alternative for chemical industry. Biotechnol Adv. 2005;23:471-99.
    • (2005) Biotechnol Adv , vol.23 , pp. 471-499
    • Gavrilescu, M.1    Chisti, Y.2
  • 3
    • 80053573337 scopus 로고    scopus 로고
    • The biotransformation, biodegradation, and bioremediation of organic compounds by microalgae
    • Ghasemi Y, Rasoul-Amini S, Fotooh-Abadi E. The biotransformation, biodegradation, and bioremediation of organic compounds by microalgae. J Phycol. 2011;47:969-80.
    • (2011) J Phycol , vol.47 , pp. 969-980
    • Ghasemi, Y.1    Rasoul-Amini, S.2    Fotooh-Abadi, E.3
  • 4
    • 85026884170 scopus 로고    scopus 로고
    • EPA Environmental panel agency (EPA) Accessed 2 Apr 2018
    • EPA. Atmospheric concentrations of greenhouse gases. Environmental panel agency (EPA). https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases. Accessed 2 Apr 2018.
    • Atmospheric Concentrations of Greenhouse Gases
  • 8
    • 72049083209 scopus 로고    scopus 로고
    • Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products
    • Brennan L, Owende P. Biofuels from microalgae - a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14:557-77.
    • (2010) Renew Sustain Energy Rev , vol.14 , pp. 557-577
    • Brennan, L.1    Owende, P.2
  • 9
    • 85053135501 scopus 로고    scopus 로고
    • EPA Accessed 15 Nov 2017
    • EPA. The sources and solutions: fossil fuels. 2015. https://www.epa.gov/nutrientpollution/sources-and-solutions-fossil-fuels. Accessed 15 Nov 2017.
    • (2015) The Sources and Solutions: Fossil Fuels
  • 12
    • 39149105620 scopus 로고    scopus 로고
    • Biodiesel from microalgae
    • Chisti Y. Biodiesel from microalgae. Trends Biotechnol. 2008;26:126-31.
    • (2008) Trends Biotechnol , vol.26 , pp. 126-131
    • Chisti, Y.1
  • 13
    • 84949176434 scopus 로고    scopus 로고
    • Sub- and supercritical water technology for biofuels
    • J.W. Lee (eds) Springer New York
    • Sandeep K. Sub- and supercritical water technology for biofuels. In: Lee JW, editor. Advanced biofuels and bioproducts. New York: Springer; 2013. p. 147-83.
    • (2013) Advanced Biofuels and Bioproducts , pp. 147-183
    • Sandeep, K.1
  • 15
    • 85032543969 scopus 로고    scopus 로고
    • Look back at the U.S. Department of energy's aquatic species program
    • Accessed 30 Nov 2017
    • Sheehan J, Dunahay T, Benemann J, Roessler P. Look back at the U.S. Department of energy's aquatic species program: biodiesel from algae. https://www.nrel.gov/docs/legosti/fy98/24190.pdf. Accessed 30 Nov 2017.
    • Biodiesel from Algae
    • Sheehan, J.1    Dunahay, T.2    Benemann, J.3    Roessler, P.4
  • 17
    • 84991557811 scopus 로고    scopus 로고
    • Basic characteristics of the algae
    • R.E. Lee (eds) Cambridge University Press New York
    • Lee RE. Basic characteristics of the algae. In: Lee RE, editor. Phycology. New York: Cambridge University Press; 2008. p. 3-30.
    • (2008) Phycology , pp. 3-30
    • Lee, R.E.1
  • 19
    • 52049100420 scopus 로고    scopus 로고
    • Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii
    • May P, Wienkoop S, Kempa S, Usadel B, Christian N, Rupprecht J, et al. Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics. 2008;179:157-66.
    • (2008) Genetics , vol.179 , pp. 157-166
    • May, P.1    Wienkoop, S.2    Kempa, S.3    Usadel, B.4    Christian, N.5    Rupprecht, J.6
  • 20
    • 72949099680 scopus 로고    scopus 로고
    • An integrative approach towards completing genome-scale metabolic networks
    • Christian N, May P, Kempa S, Handorf T, Ebenhöh O. An integrative approach towards completing genome-scale metabolic networks. Mol BioSyst. 2009;5:1889.
    • (2009) Mol BioSyst , vol.5 , pp. 1889
    • Christian, N.1    May, P.2    Kempa, S.3    Handorf, T.4    Ebenhöh, O.5
  • 21
    • 84949439454 scopus 로고    scopus 로고
    • A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses
    • Imam S, Schäuble S, Valenzuela J, De Lomana ALG, Carter W, Price ND, et al. A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses. Plant J. 2015;84:1239-56.
    • (2015) Plant J. , vol.84 , pp. 1239-1256
    • Imam, S.1    Schäuble, S.2    Valenzuela, J.3    De Lomana, A.L.G.4    Carter, W.5    Price, N.D.6
  • 22
    • 85019739396 scopus 로고    scopus 로고
    • Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii
    • Boyle NR, Sengupta N, Morgan JA. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii. PLoS ONE. 2017;12:e0177292.
    • (2017) PLoS ONE. , vol.12 , pp. e0177292
    • Boyle, N.R.1    Sengupta, N.2    Morgan, J.A.3
  • 23
    • 58849135386 scopus 로고    scopus 로고
    • Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii
    • Boyle NR, Morgan JA. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol. 2009;3:4.
    • (2009) BMC Syst Biol , vol.3 , pp. 4
    • Boyle, N.R.1    Morgan, J.A.2
  • 25
    • 84255195408 scopus 로고    scopus 로고
    • AlgaGEM - A genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome
    • De Dal'Molin CG, Quek L-E, Palfreyman RW, Nielsen LK. AlgaGEM - a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics. 2011;12(Suppl 4):5.
    • (2011) BMC Genomics. , vol.12 , pp. 5
    • De Dal'Molin, C.G.1    Quek, L.-E.2    Palfreyman, R.W.3    Nielsen, L.K.4
  • 26
    • 80051537012 scopus 로고    scopus 로고
    • Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism
    • Chang RL, Ghamsari L, Manichaikul A, Hom EFY, Balaji S, Fu W, et al. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol. 2011;7:518.
    • (2011) Mol Syst Biol. , vol.7 , pp. 518
    • Chang, R.L.1    Ghamsari, L.2    Manichaikul, A.3    Hom, E.F.Y.4    Balaji, S.5    Fu, W.6
  • 27
    • 79958257207 scopus 로고    scopus 로고
    • A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: Application to the green algae Chlamydomonas reinhardtii
    • Cogne G, Rügen M, Bockmayr A, Titica M, Dussap CG, Cornet JF, et al. A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: application to the green algae Chlamydomonas reinhardtii. Biotechnol Prog. 2011;27:631-40.
    • (2011) Biotechnol Prog , vol.27 , pp. 631-640
    • Cogne, G.1    Rügen, M.2    Bockmayr, A.3    Titica, M.4    Dussap, C.G.5    Cornet, J.F.6
  • 28
    • 84857685464 scopus 로고    scopus 로고
    • Metabolic modeling of Chlamydomonas reinhardtii: Energy requirements for photoautotrophic growth and maintenance
    • Kliphuis AMJ, Klok AJ, Martens DE, Lamers PP, Janssen M, Wijffels RH. Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. J Appl Phycol. 2012;24:253-66.
    • (2012) J Appl Phycol , vol.24 , pp. 253-266
    • Kliphuis, A.M.J.1    Klok, A.J.2    Martens, D.E.3    Lamers, P.P.4    Janssen, M.5    Wijffels, R.H.6
  • 29
    • 84862160168 scopus 로고    scopus 로고
    • Network reduction in metabolic pathway analysis: Elucidation of the key pathways involved in the photoautotrophic growth of the green alga Chlamydomonas reinhardtii
    • Rügen M, Bockmayr A, Legrand J, Cogne G. Network reduction in metabolic pathway analysis: elucidation of the key pathways involved in the photoautotrophic growth of the green alga Chlamydomonas reinhardtii. Metab Eng. 2012;14:458-67.
    • (2012) Metab Eng , vol.14 , pp. 458-467
    • Rügen, M.1    Bockmayr, A.2    Legrand, J.3    Cogne, G.4
  • 31
    • 84921945388 scopus 로고    scopus 로고
    • Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of anoleaginous microalga Chlorella protothecoides
    • Wu C, Xiong W, Dai J, Wu Q. Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of anoleaginous microalga Chlorella protothecoides. Plant Physiol. 2015;167:586-99.
    • (2015) Plant Physiol , vol.167 , pp. 586-599
    • Wu, C.1    Xiong, W.2    Dai, J.3    Wu, Q.4
  • 32
    • 84984903685 scopus 로고    scopus 로고
    • Genome-scale metabolic model for the green alga Chlorella vulgaris UTEX 395 accurately predicts phenotypes under autotrophic, heterotrophic, and mixotrophic growth Conditions
    • Zuñiga C, Li C-T, Huelsman T, Levering J, Zielinski DC, McConnell BO, et al. Genome-scale metabolic model for the green alga Chlorella vulgaris UTEX 395 accurately predicts phenotypes under autotrophic, heterotrophic, and mixotrophic growth Conditions. Plant Physiol. 2016;172:589-602.
    • (2016) Plant Physiol , vol.172 , pp. 589-602
    • Zuñiga, C.1    Li, C.-T.2    Huelsman, T.3    Levering, J.4    Zielinski, D.C.5    McConnell, B.O.6
  • 34
    • 77957733466 scopus 로고    scopus 로고
    • 13C-tracer and gas chromatography-mass spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga Chlorella protothecoides
    • 13C-tracer and gas chromatography-mass spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga Chlorella protothecoides. Plant Physiol. 2010;154:1001-11.
    • (2010) Plant Physiol , vol.154 , pp. 1001-1011
    • Xiong, W.1    Liu, L.2    Wu, C.3    Yang, C.4    Wu, Q.5
  • 35
    • 0033823409 scopus 로고    scopus 로고
    • Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions
    • Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J. 2000;6:87-102.
    • (2000) Biochem Eng J , vol.6 , pp. 87-102
    • Yang, C.1    Hua, Q.2    Shimizu, K.3
  • 37
    • 85021690277 scopus 로고    scopus 로고
    • Reconstruction of the microalga Nannochloropsis salina genome-scale metabolic model with applications to lipid production
    • Loira N, Mendoza S, Paz Cortés M, Rojas N, Travisany D, Di Genova A, et al. Reconstruction of the microalga Nannochloropsis salina genome-scale metabolic model with applications to lipid production. BMC Syst Biol. 2017;11:66.
    • (2017) BMC Syst Biol , vol.11 , pp. 66
    • Loira, N.1    Mendoza, S.2    Paz Cortés, M.3    Rojas, N.4    Travisany, D.5    Di, G.A.6
  • 38
    • 85027405183 scopus 로고    scopus 로고
    • Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana
    • Shah AR, Ahmad A, Srivastava S, Jaffar Ali BM. Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana. Algal Res. 2017;26:354-64.
    • (2017) Algal Res , vol.26 , pp. 354-364
    • Shah, A.R.1    Ahmad, A.2    Srivastava, S.3    Jaffar Ali, B.M.4
  • 39
    • 28844474830 scopus 로고    scopus 로고
    • Flux balance analysis of photoautotrophic metabolism
    • Shastri A, Morgan J. Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog. 2005;21:1617-26.
    • (2005) Biotechnol Prog , vol.21 , pp. 1617-1626
    • Shastri, A.1    Morgan, J.2
  • 41
    • 77956710803 scopus 로고    scopus 로고
    • The metabolic network of Synechocystis sp. PCC 6803: Systemic properties of autotrophic growth
    • Knoop H, Zilliges Y, Lockau W, Steuer R. The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol. 2010;154:410-22.
    • (2010) Plant Physiol , vol.154 , pp. 410-422
    • Knoop, H.1    Zilliges, Y.2    Lockau, W.3    Steuer, R.4
  • 43
    • 79952126110 scopus 로고    scopus 로고
    • Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803
    • Montagud A, Zelezniak A, Navarro E, de Córdoba PF, Urchueguía JF, Patil KR. Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnol J. 2011;6:330-42.
    • (2011) Biotechnol J , vol.6 , pp. 330-342
    • Montagud, A.1    Zelezniak, A.2    Navarro, E.3    De Córdoba, P.F.4    Urchueguía, J.F.5    Patil, K.R.6
  • 45
    • 84879517799 scopus 로고    scopus 로고
    • Flux balance analysis of cyanobacterial metabolism: The metabolic network of Synechocystis sp. PCC 6803
    • Knoop H, Gründel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, et al. Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol. 2013;9:e1003081.
    • (2013) PLoS Comput Biol , vol.9 , pp. e1003081
    • Knoop, H.1    Gründel, M.2    Zilliges, Y.3    Lehmann, R.4    Hoffmann, S.5    Lockau, W.6
  • 46
    • 84857137366 scopus 로고    scopus 로고
    • Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis
    • Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I. Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci. 2012;109:2678-83.
    • (2012) Proc Natl Acad Sci , vol.109 , pp. 2678-2683
    • Nogales, J.1    Gudmundsson, S.2    Knight, E.M.3    Palsson, B.O.4    Thiele, I.5
  • 47
    • 85020729312 scopus 로고    scopus 로고
    • RNA-Seq and metabolic flux analysis of Tetraselmis sp. M8 during nitrogen starvation reveals a two-stage lipid accumulation mechanism
    • Lim DKY, Schuhmann H, Thomas-Hall SR, Chan KCK, Wass TJ, Aguilera F, et al. RNA-Seq and metabolic flux analysis of Tetraselmis sp. M8 during nitrogen starvation reveals a two-stage lipid accumulation mechanism. Bioresour Technol. 2017;244:1281-93.
    • (2017) Bioresour Technol , vol.244 , pp. 1281-1293
    • Lim, D.K.Y.1    Schuhmann, H.2    Thomas-Hall, S.R.3    Chan, K.C.K.4    Wass, T.J.5    Aguilera, F.6
  • 48
    • 84890968181 scopus 로고    scopus 로고
    • Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production
    • Bogen C, Al-Dilaimi A, Albersmeier A, Wichmann J, Grundmann M, Rupp O, et al. Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production. BMC Genomics. 2013;14:926.
    • (2013) BMC Genomics. , vol.14 , pp. 926
    • Bogen, C.1    Al-Dilaimi, A.2    Albersmeier, A.3    Wichmann, J.4    Grundmann, M.5    Rupp, O.6
  • 50
    • 84896380327 scopus 로고    scopus 로고
    • A new framework for metabolic modeling under non-balanced growth. Application to carbon metabolism of unicellular microalgae
    • Baroukh C, Muñoz-Tamayo R, Steyer JP, Bernard O. A new framework for metabolic modeling under non-balanced growth. Application to carbon metabolism of unicellular microalgae. PLoS ONE. 2013;12:107-12.
    • (2013) PLoS ONE , vol.12 , pp. 107-112
    • Baroukh, C.1    Muñoz-Tamayo, R.2    Steyer, J.P.3    Bernard, O.4
  • 51
    • 38949120916 scopus 로고    scopus 로고
    • A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis
    • Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, et al. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE. 2008;3:e1426.
    • (2008) PLoS ONE , vol.3 , pp. e1426
    • Kroth, P.G.1    Chiovitti, A.2    Gruber, A.3    Martin-Jezequel, V.4    Mock, T.5    Parker, M.S.6
  • 52
    • 84969389696 scopus 로고    scopus 로고
    • Modelling metabolism of the diatom Phaeodactylum tricornutum
    • Singh D, Carlson R, Fell D, Poolman M. Modelling metabolism of the diatom Phaeodactylum tricornutum. Biochem Soc Trans. 2015;43:1182-6.
    • (2015) Biochem Soc Trans , vol.43 , pp. 1182-1186
    • Singh, D.1    Carlson, R.2    Fell, D.3    Poolman, M.4
  • 53
    • 84961294074 scopus 로고    scopus 로고
    • Flux balance analysis of primary metabolism in the diatom Phaeodactylum tricornutum
    • Kim J, Fabris M, Baart G, Kim MK, Goossens A, Vyverman W, et al. Flux balance analysis of primary metabolism in the diatom Phaeodactylum tricornutum. Plant J. 2016;85:161-76.
    • (2016) Plant J. , vol.85 , pp. 161-176
    • Kim, J.1    Fabris, M.2    Baart, G.3    Kim, M.K.4    Goossens, A.5    Vyverman, W.6
  • 54
    • 84968571681 scopus 로고    scopus 로고
    • Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom
    • Levering J, Broddrick J, Dupont CL, Peers G, Beeri K, Mayers J, et al. Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom. PLoS ONE. 2016;11:1-22.
    • (2016) PLoS ONE , vol.11 , pp. 1-22
    • Levering, J.1    Broddrick, J.2    Dupont, C.L.3    Peers, G.4    Beeri, K.5    Mayers, J.6
  • 55
    • 85027187513 scopus 로고    scopus 로고
    • Improvements in algal lipid production: A systems biology and gene editing approach
    • Banerjee A, Banerjee C, Negi S, Chang J-S, Shukla P. Improvements in algal lipid production: a systems biology and gene editing approach. Crit Rev Biotechnol. 2017;38:369-85.
    • (2017) Crit Rev Biotechnol , vol.38 , pp. 369-385
    • Banerjee, A.1    Banerjee, C.2    Negi, S.3    Chang, J.-S.4    Shukla, P.5
  • 56
    • 85053158634 scopus 로고    scopus 로고
    • Dynamic metabolic profiling and metabolite network and pathways modeling
    • K. Nakamura (eds) Woodhead Publishing Oxford
    • Čuperlović-Culf M. Dynamic metabolic profiling and metabolite network and pathways modeling. In: Nakamura K, editor. NMR metabolomics in cancer research. Oxford: Woodhead Publishing; 2013. p. 365-83.
    • (2013) NMR Metabolomics in Cancer Research , pp. 365-383
    • Čuperlović-Culf, M.1
  • 57
    • 84928807017 scopus 로고    scopus 로고
    • Unraveling interactions in microbial communities - From co-cultures to microbiomes
    • Tan J, Zuñiga C, Zengler K. Unraveling interactions in microbial communities - from co-cultures to microbiomes. J Microbiol. 2015;53:295-305.
    • (2015) J Microbiol. , vol.53 , pp. 295-305
    • Tan, J.1    Zuñiga, C.2    Zengler, K.3
  • 59
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • Thiele I, Palsson BØ. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5:93-121.
    • (2010) Nat Protoc , vol.5 , pp. 93-121
    • Thiele, I.1    Palsson, BØ.2
  • 60
    • 45149111660 scopus 로고    scopus 로고
    • The growing scope of application of genome-scale metabolic reconstructions: The case of E. Coli
    • Feist AM, Palsson BØ. The growing scope of application of genome-scale metabolic reconstructions: the case of E. coli. Nat Biotechnol. 2008;26:659-67.
    • (2008) Nat Biotechnol , vol.26 , pp. 659-667
    • Feist, A.M.1    Palsson, BØ.2
  • 61
    • 25644458211 scopus 로고    scopus 로고
    • The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes
    • Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691-702.
    • (2005) Nucleic Acids Res , vol.33 , pp. 5691-5702
    • Overbeek, R.1    Begley, T.2    Butler, R.M.3    Choudhuri, J.V.4    Chuang, H.Y.5    Cohoon, M.6
  • 64
    • 85018283885 scopus 로고    scopus 로고
    • Erroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal
    • Fritzemeier CJ, Hartleb D, Szappanos B, Papp B, Lercher MJ. Erroneous energy-generating cycles in published genome scale metabolic networks: identification and removal. PLoS Comput Biol. 2017;13:1-14.
    • (2017) PLoS Comput Biol , vol.13 , pp. 1-14
    • Fritzemeier, C.J.1    Hartleb, D.2    Szappanos, B.3    Papp, B.4    Lercher, M.J.5
  • 66
    • 0004068410 scopus 로고    scopus 로고
    • Biochemical reaction networks
    • J. Nielsen J. Villadsen (eds) 3 Springer Berlin
    • Villadsen J, Nielsen J, Lidén G. Biochemical reaction networks. In: Nielsen J, Villadsen J, editors. Bioreaction engineering principles. 3rd ed. Berlin: Springer; 2011. p. 151-214.
    • (2011) Bioreaction Engineering Principles , pp. 151-214
    • Villadsen, J.1    Nielsen, J.2    Lidén, G.3
  • 67
  • 68
    • 85032175673 scopus 로고    scopus 로고
    • Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation
    • Chen K, Gao Y, Mih N, O'Brien EJ, Yang L, Palsson BO. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc Natl Acad Sci. 2017;114:11548-53.
    • (2017) Proc Natl Acad Sci , vol.114 , pp. 11548-11553
    • Chen, K.1    Gao, Y.2    Mih, N.3    O'Brien, E.J.4    Yang, L.5    Palsson, B.O.6
  • 70
    • 71149097660 scopus 로고    scopus 로고
    • Biotechnology of microalgae, based on molecular biology and biochemistry of eukaryotic algae and cyanobacteria
    • Takahashi O, Park Y-I, Nakamura Y. Biotechnology of microalgae, based on molecular biology and biochemistry of eukaryotic algae and cyanobacteria. FEBS Lett. 2009;583:3882-90.
    • (2009) FEBS Lett , vol.583 , pp. 3882-3890
    • Takahashi, O.1    Park, Y.-I.2    Nakamura, Y.3
  • 71
    • 84862786884 scopus 로고    scopus 로고
    • Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures
    • Wan MX, Wang RM, Xia JL, Rosenberg JN, Nie ZY, Kobayashi N, et al. Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol Bioeng. 2012;109:1958-64.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 1958-1964
    • Wan, M.X.1    Wang, R.M.2    Xia, J.L.3    Rosenberg, J.N.4    Nie, Z.Y.5    Kobayashi, N.6
  • 72
    • 85037709750 scopus 로고    scopus 로고
    • Characterization of Scenedesmus obtusiusculus AT-UAM for high-energy molecules accumulation: Deeper insight into biotechnological potential of strains of the same species
    • Toledo-Cervantes A, Garduño Solórzano G, Campos JE, Martínez-García M, Morales M. Characterization of Scenedesmus obtusiusculus AT-UAM for high-energy molecules accumulation: deeper insight into biotechnological potential of strains of the same species. Biotechnol Rep. 2018;17:16-23.
    • (2018) Biotechnol Rep , vol.17 , pp. 16-23
    • Toledo-Cervantes, A.1    Garduño Solórzano, G.2    Campos, J.E.3    Martínez-García, M.4    Morales, M.5
  • 73
    • 84901202010 scopus 로고    scopus 로고
    • Dynamic photosynthetic response of the microalga Scenedesmus obtusiusculus to light intensity perturbations
    • Cabello J, Morales M, Revah S. Dynamic photosynthetic response of the microalga Scenedesmus obtusiusculus to light intensity perturbations. Chem Eng J. 2014;252:104-11.
    • (2014) Chem Eng J , vol.252 , pp. 104-111
    • Cabello, J.1    Morales, M.2    Revah, S.3
  • 74
    • 84944276294 scopus 로고    scopus 로고
    • Biomass composition: The "elephant in the room" of metabolic modelling
    • Dikicioglu D, Klrdar B, Oliver SG. Biomass composition: the "elephant in the room" of metabolic modelling. Metabolomics. 2015;11:1690-701.
    • (2015) Metabolomics , vol.11 , pp. 1690-1701
    • Dikicioglu, D.1    Klrdar, B.2    Oliver, S.G.3
  • 75
    • 84914124771 scopus 로고    scopus 로고
    • Comparison and analysis of objective functions in flux balance analysis
    • García Sánchez CE, Torres Sáez RG. Comparison and analysis of objective functions in flux balance analysis. Biotechnol Prog. 2014;30:985-91.
    • (2014) Biotechnol Prog , vol.30 , pp. 985-991
    • García Sánchez, C.E.1    Torres Sáez, R.G.2
  • 76
    • 85020001384 scopus 로고    scopus 로고
    • Clostridium butyricum maximizes growth while minimizing enzyme usage and ATP production: Metabolic flux distribution of a strain cultured in glycerol
    • Serrano-Bermúdez LM, González Barrios AF, Maranas CD, Montoya D. Clostridium butyricum maximizes growth while minimizing enzyme usage and ATP production: metabolic flux distribution of a strain cultured in glycerol. BMC Syst Biol. 2017;11:1-13.
    • (2017) BMC Syst Biol , vol.11 , pp. 1-13
    • Serrano-Bermúdez, L.M.1    González Barrios, A.F.2    Maranas, C.D.3    Montoya, D.4
  • 78
    • 85006401140 scopus 로고    scopus 로고
    • Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis
    • Broddrick JT, Rubin BE, Welkie DG, Du N, Mih N, Diamond S, et al. Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis. Proc Natl Acad Sci. 2016;113:E8344-53.
    • (2016) Proc Natl Acad Sci , vol.113 , pp. E8344-E8353
    • Broddrick, J.T.1    Rubin, B.E.2    Welkie, D.G.3    Du, N.4    Mih, N.5    Diamond, S.6
  • 79
    • 84889101887 scopus 로고    scopus 로고
    • Flux balance analysis of Chlorella sp. FC2 IITG under photoautotrophic and heterotrophic growth conditions
    • Muthuraj M, Palabhanvi B, Misra S, Kumar V, Sivalingavasu K, Das D. Flux balance analysis of Chlorella sp. FC2 IITG under photoautotrophic and heterotrophic growth conditions. Photosynth Res. 2013;118:167-79.
    • (2013) Photosynth Res , vol.118 , pp. 167-179
    • Muthuraj, M.1    Palabhanvi, B.2    Misra, S.3    Kumar, V.4    Sivalingavasu, K.5    Das, D.6
  • 80
    • 0036708443 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of diauxic growth in Escherichia coli
    • Mahadevan R, Edwards JS, Doyle FJ. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J. 2002;83:1331-40.
    • (2002) Biophys J , vol.83 , pp. 1331-1340
    • Mahadevan, R.1    Edwards, J.S.2    Doyle, F.J.3
  • 81
    • 0023397367 scopus 로고
    • On the optimization of differential-algebraic process systems
    • Cuthrell JE, Biegler LT. On the optimization of differential-algebraic process systems. AIChE J. 1987;33:1257-70.
    • (1987) AIChE J , vol.33 , pp. 1257-1270
    • Cuthrell, J.E.1    Biegler, L.T.2
  • 82
    • 85017208176 scopus 로고    scopus 로고
    • Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics
    • Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjónsson ÓE, Palsson BO. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci Rep. 2017;7:1-12.
    • (2017) Sci Rep. , vol.7 , pp. 1-12
    • Bordbar, A.1    Yurkovich, J.T.2    Paglia, G.3    Rolfsson, O.4    Sigurjónsson, Ó.5    Palsson, B.O.6
  • 83
    • 0034741983 scopus 로고    scopus 로고
    • 13C metabolic flux analysis
    • Wiechert W. 13C metabolic flux analysis. Metab Eng. 2001;3:195-206.
    • (2001) Metab Eng , vol.3 , pp. 195-206
    • Wiechert, W.1
  • 84
    • 58149154663 scopus 로고    scopus 로고
    • Elementary mode analysis: A useful metabolic pathway analysis tool for characterizing cellular metabolism
    • Trinh CT, Wlaschin A, Srienc F. Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol. 2009;81:813-26.
    • (2009) Appl Microbiol Biotechnol , vol.81 , pp. 813-826
    • Trinh, C.T.1    Wlaschin, A.2    Srienc, F.3
  • 85
    • 84925622181 scopus 로고    scopus 로고
    • Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production
    • Baroukh C, Muñoz-Tamayo R, Bernard O, Steyer JP. Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production. Curr Opin Biotechnol. 2015;33:198-205.
    • (2015) Curr Opin Biotechnol , vol.33 , pp. 198-205
    • Baroukh, C.1    Muñoz-Tamayo, R.2    Bernard, O.3    Steyer, J.P.4
  • 86
    • 84931264863 scopus 로고    scopus 로고
    • Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application - A review
    • De Bhowmick G, Koduru L, Sen R. Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application - a review. Renew Sustain Energy Rev. 2015;50:1239-53.
    • (2015) Renew Sustain Energy Rev , vol.50 , pp. 1239-1253
    • De Bhowmick, G.1    Koduru, L.2    Sen, R.3
  • 87
    • 11244341009 scopus 로고    scopus 로고
    • Elucidation and structural analysis of conserved pools for genome-scale metabolic reconstructions
    • Nikolaev EV, Burgard AP, Maranas CD. Elucidation and structural analysis of conserved pools for genome-scale metabolic reconstructions. Biophys J. 2005;88:37-49.
    • (2005) Biophys J , vol.88 , pp. 37-49
    • Nikolaev, E.V.1    Burgard, A.P.2    Maranas, C.D.3
  • 88
    • 34948889385 scopus 로고    scopus 로고
    • Glycolysis, gluconeogenesis, and the pentose phosphate pathway
    • W.H. Freeman (eds) 4 Cox Publisher New York
    • Nelson DL, Cox MM. Glycolysis, gluconeogenesis, and the pentose phosphate pathway. In: Freeman WH, editor. Lehninger principles of biochemistry. 4th ed. New York: Cox Publisher; 2008. p. 521-60.
    • (2008) Lehninger Principles of Biochemistry , pp. 521-560
    • Nelson, D.L.1    Cox, M.M.2
  • 89
    • 51249161893 scopus 로고
    • Shift in carbon flow and stimulation of amino-acid turnover induced by nitrate and ammonium assimilation in Anacystis nidulans
    • Coronil T, Lara C, Guerrero MG. Shift in carbon flow and stimulation of amino-acid turnover induced by nitrate and ammonium assimilation in Anacystis nidulans. Planta. 1993;189:461-7.
    • (1993) Planta , vol.189 , pp. 461-467
    • Coronil, T.1    Lara, C.2    Guerrero, M.G.3
  • 90
    • 85053124067 scopus 로고    scopus 로고
    • Symbiotic systems with cyanobacteria-cyanobioses
    • A.K. Rai (eds) Narosa Pub House Chennai
    • Rai AK. Symbiotic systems with cyanobacteria-cyanobioses. In: Rai AK, editor. Cyanobacterial nitrogen metabolism and environmental biotechnology. Chennai: Narosa Pub House; 1997. p. 299.
    • (1997) Cyanobacterial Nitrogen Metabolism and Environmental Biotechnology , pp. 299
    • Rai, A.K.1
  • 91
    • 84961193569 scopus 로고    scopus 로고
    • Genome scale metabolic reconstruction of Chlorella variabilis for exploring its metabolic potential for biofuels
    • Juneja A, Chaplen FWR, Murthy GS. Genome scale metabolic reconstruction of Chlorella variabilis for exploring its metabolic potential for biofuels. Bioresour Technol. 2015;213:103-10.
    • (2015) Bioresour Technol , vol.213 , pp. 103-110
    • Juneja, A.1    Chaplen, F.W.R.2    Murthy, G.S.3
  • 92
    • 84859828896 scopus 로고    scopus 로고
    • Identification of functional differences in metabolic networks using comparative genomics and constraint-based models
    • Hamilton JJ, Reed JL. Identification of functional differences in metabolic networks using comparative genomics and constraint-based models. PLoS ONE. 2012;7:e34670.
    • (2012) PLoS ONE. , vol.7 , pp. e34670
    • Hamilton, J.J.1    Reed, J.L.2
  • 93
    • 84877141897 scopus 로고    scopus 로고
    • Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production
    • Vu TT, Hill EA, Kucek LA, Konopka AE, Beliaev AS, Reed JL. Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production. Biotechnol J. 2013;8:619-30.
    • (2013) Biotechnol J , vol.8 , pp. 619-630
    • Vu, T.T.1    Hill, E.A.2    Kucek, L.A.3    Konopka, A.E.4    Beliaev, A.S.5    Reed, J.L.6
  • 94
    • 85012300543 scopus 로고    scopus 로고
    • Flux balance analysis of photoautotrophic metabolism: Uncovering new biological details of subsystems involved in cyanobacterial photosynthesis
    • Qian X, Kim MK, Kumaraswamy GK, Agarwal A, Lun DS, Dismukes GC. Flux balance analysis of photoautotrophic metabolism: uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. Biochim Biophys Acta Bioenerg. 2016;1858:276-87.
    • (2016) Biochim Biophys Acta Bioenerg. , vol.1858 , pp. 276-287
    • Qian, X.1    Kim, M.K.2    Kumaraswamy, G.K.3    Agarwal, A.4    Lun, D.S.5    Dismukes, G.C.6
  • 95
    • 84962062646 scopus 로고    scopus 로고
    • Metabolic model of Synechococcus sp. PCC 7002: Prediction of flux distribution and network modification for enhanced biofuel production
    • Hendry JI, Prasannan CB, Joshi A, Dasgupta S, Wangikar PP. Metabolic model of Synechococcus sp. PCC 7002: prediction of flux distribution and network modification for enhanced biofuel production. Bioresour Technol. 2016;213:190-7.
    • (2016) Bioresour Technol , vol.213 , pp. 190-197
    • Hendry, J.I.1    Prasannan, C.B.2    Joshi, A.3    Dasgupta, S.4    Wangikar, P.P.5
  • 96
    • 0036663559 scopus 로고    scopus 로고
    • Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose
    • Yang C. Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab Eng. 2002;4:202-16.
    • (2002) Metab Eng , vol.4 , pp. 202-216
    • Yang, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.