메뉴 건너뛰기




Volumn 12, Issue , 2018, Pages

Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica

Author keywords

Dicarboxylic acid; Genome scale metabolic models; Metabolic engineering; Strain design; Yarrowia lipolytica

Indexed keywords

DICARBOXYLIC ACID;

EID: 85044219751     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/s12918-018-0542-5     Document Type: Article
Times cited : (63)

References (59)
  • 1
    • 84979263634 scopus 로고    scopus 로고
    • Dicarboxylic acids, Aliphatic
    • Cornils B, Lappe P. Dicarboxylic acids, Aliphatic. Ullmann's Encycl Ind Chem. 2012;11:287-304. https://doi.org/10.1002/14356007.a08.
    • (2012) Ullmann's Encycl Ind Chem , vol.11 , pp. 287-304
    • Cornils, B.1    Lappe, P.2
  • 2
    • 84881028723 scopus 로고    scopus 로고
    • Toward biotechnological production of adipic acid and precursors from biorenewables
    • Polen T, Spelberg M, Bott M. Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol. 2013:75-84. https://doi.org/10.1016/j.jbiotec.2012.07.008.
    • (2013) J Biotechnol. , pp. 75-84
    • Polen, T.1    Spelberg, M.2    Bott, M.3
  • 3
    • 0034256044 scopus 로고    scopus 로고
    • Candida Cloacae oxidation of long-chain fatty acids to dioic acids
    • Green KD, Turner MK, Woodley JM. Candida Cloacae oxidation of long-chain fatty acids to dioic acids. Enzym Microb Technol. 2000;27:205-11. https://doi.org/10.1016/S0141-0229(00)00217-9.
    • (2000) Enzym Microb Technol , vol.27 , pp. 205-211
    • Green, K.D.1    Turner, M.K.2    Woodley, J.M.3
  • 4
    • 0002857575 scopus 로고    scopus 로고
    • Isolation and enzyme determination of Candida Tropicalis mutants for DCA production
    • Jiao P, Ma S, Hua Y, Huang Y, Cao Z. Isolation and enzyme determination of Candida Tropicalis mutants for DCA production. J Gen Appl Microbiol. 2000;46:245-9. https://doi.org/10.2323/jgam.46.245.
    • (2000) J Gen Appl Microbiol , vol.46 , pp. 245-249
    • Jiao, P.1    Ma, S.2    Hua, Y.3    Huang, Y.4    Cao, Z.5
  • 5
    • 23844500315 scopus 로고    scopus 로고
    • Alpha,omega-dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica
    • Smit MS, Mokgoro MM, Setati E, Nicaud J-M. Alpha,omega-dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica. Biotechnol Lett. 2005;27:859-64. https://doi.org/10.1007/s10529-005-6719-1.
    • (2005) Biotechnol Lett , vol.27 , pp. 859-864
    • Smit, M.S.1    Mokgoro, M.M.2    Setati, E.3    Nicaud, J.-M.4
  • 6
    • 0030945001 scopus 로고    scopus 로고
    • Continuous production of dicarboxylic acid by immobilized Pseudomonas Aeruginosa cells
    • Chan EC, Cheng CS, Hsu YH. Continuous production of dicarboxylic acid by immobilized Pseudomonas Aeruginosa cells. J Ferment Bioeng. 1997;83:157-60. https://doi.org/10.1016/S0922-338X(97)83575-1.
    • (1997) J Ferment Bioeng , vol.83 , pp. 157-160
    • Chan, E.C.1    Cheng, C.S.2    Hsu, Y.H.3
  • 7
    • 0031172598 scopus 로고    scopus 로고
    • Biotransformation of dicarboxylic acid by immobilized Cryptococcus cells
    • Chan EC, Kuo J. Biotransformation of dicarboxylic acid by immobilized Cryptococcus cells. Enzym Microb Technol. 1997;20:585-9. https://doi.org/10.1016/S0141-0229(96)00198-6.
    • (1997) Enzym Microb Technol , vol.20 , pp. 585-589
    • Chan, E.C.1    Kuo, J.2
  • 8
    • 84942156302 scopus 로고    scopus 로고
    • Production of long-chain alpha,omega-dicarboxylic acids by engineered Escherichia Coli from renewable fatty acids and plant oils
    • Sathesh-Prabu C, Lee SK. Production of long-chain alpha,omega-dicarboxylic acids by engineered Escherichia Coli from renewable fatty acids and plant oils. J Agric Food Chem. 2015;63:8199-208. https://doi.org/10.1021/acs.jafc.5b03833.
    • (2015) J Agric Food Chem , vol.63 , pp. 8199-8208
    • Sathesh-Prabu, C.1    Lee, S.K.2
  • 9
    • 84951737671 scopus 로고    scopus 로고
    • Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids
    • Ledesma-Amaro R, Nicaud JM. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res. 2016;61:40-50. https://doi.org/10.1016/j.plipres.2015.12.001.
    • (2016) Prog Lipid Res , vol.61 , pp. 40-50
    • Ledesma-Amaro, R.1    Nicaud, J.M.2
  • 10
    • 0142104398 scopus 로고    scopus 로고
    • Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida Tropicalis
    • Eschenfeldt WH, Zhang Y, Samaha H, Stols L, Eirich LD, Wilson CR, et al. Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida Tropicalis. Appl Environ Microbiol. 2003;69:5992-9. https://doi.org/10.1128/AEM.69.10.5992-5999.2003.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 5992-5999
    • Eschenfeldt, W.H.1    Zhang, Y.2    Samaha, H.3    Stols, L.4    Eirich, L.D.5    Wilson, C.R.6
  • 11
    • 84908510965 scopus 로고    scopus 로고
    • A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica
    • Gatter M, Förster A, Bär K, Winter M, Otto C, Petzsch P, et al. A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica. FEMS Yeast Res. 2014;14:858-72. https://doi.org/10.1111/1567-1364.12176.
    • (2014) FEMS Yeast Res , vol.14 , pp. 858-872
    • Gatter, M.1    Förster, A.2    Bär, K.3    Winter, M.4    Otto, C.5    Petzsch, P.6
  • 12
    • 4143052728 scopus 로고    scopus 로고
    • Cloning and characterization of three fatty alcohol oxidase genes from Candida Tropicalis strain ATCC 20336
    • Eirich LD, Craft DL, Steinberg L, Asif A, Eschenfeldt WU, Stols L, et al. Cloning and characterization of three fatty alcohol oxidase genes from Candida Tropicalis strain ATCC 20336. Appl Environ Microbiol. 2004;70:4872-9. https://doi.org/10.1128/AEM.70.8.4872-4879.2004.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 4872-4879
    • Eirich, L.D.1    Craft, D.L.2    Steinberg, L.3    Asif, A.4    Eschenfeldt, W.U.5    Stols, L.6
  • 13
    • 84962162175 scopus 로고    scopus 로고
    • Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica
    • Iwama R, Kobayashi S, Ishimaru C, Ohta A, Horiuchi H, Fukuda R. Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica. Fungal Genet Biol. 2016;91:43-54. https://doi.org/10.1016/j.fgb.2016.03.007.
    • (2016) Fungal Genet Biol , vol.91 , pp. 43-54
    • Iwama, R.1    Kobayashi, S.2    Ishimaru, C.3    Ohta, A.4    Horiuchi, H.5    Fukuda, R.6
  • 14
    • 0027219611 scopus 로고
    • The enzymology of dicarboxylic-acid formation by Corynebacterium Sp strain 7E1C grown on N-alkanes
    • Broadway NM, Dickinson FM, Ratledge C. The enzymology of dicarboxylic-acid formation by Corynebacterium Sp strain 7E1C grown on N-alkanes. J Gen Microbiol. 1993;139:1337-44. https://doi.org/10.1099/00221287-139-6-1337.
    • (1993) J Gen Microbiol , vol.139 , pp. 1337-1344
    • Broadway, N.M.1    Dickinson, F.M.2    Ratledge, C.3
  • 15
    • 84938138533 scopus 로고    scopus 로고
    • Production of dicarboxylic acids by improved mutant strains of yarrowia lipolytica
    • US pat app 11/
    • Nicaud J, Thevenieau F, Le Dall M, Marchal R. Production of dicarboxylic acids by improved mutant strains of yarrowia lipolytica. US pat app 11/; 2005. p. 1. Available: http://www.google.com/patents/US20100041115
    • (2005) , pp. 1
    • Nicaud, J.1    Thevenieau, F.2    Le Dall, M.3    Marchal, R.4
  • 16
    • 84922432383 scopus 로고    scopus 로고
    • Genome-scale modeling for metabolic engineering
    • Simeonidis E, Price ND.
    • Simeonidis E, Price ND. Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol. 2015:327-38. https://doi.org/10.1007/s10295-0e14-1576-3.
    • (2015) J Ind Microbiol Biotechnol. , pp. 327-338
  • 17
    • 18844392599 scopus 로고    scopus 로고
    • Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia Coli
    • Alper H, Jin YS, Moxley JF, Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia Coli. Metab Eng. 2005;7:155-64. https://doi.org/10.1016/j.ymben.2004.12.003.
    • (2005) Metab Eng , vol.7 , pp. 155-164
    • Alper, H.1    Jin, Y.S.2    Moxley, J.F.3    Stephanopoulos, G.4
  • 18
    • 22844452835 scopus 로고    scopus 로고
    • Construction of lycopene-overproducing E. Coli strains by combining systematic and combinatorial gene knockout targets
    • Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. Coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol. 2005;23:612-6. https://doi.org/10.1038/nbt1083.
    • (2005) Nat Biotechnol , vol.23 , pp. 612-616
    • Alper, H.1    Miyaoku, K.2    Stephanopoulos, G.3
  • 19
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces Cerevisiae for improved bioethanol production
    • Bro C, Regenberg B, Förster J, Nielsen J. In silico aided metabolic engineering of Saccharomyces Cerevisiae for improved bioethanol production. Metab Eng. 2006;8:102-11. https://doi.org/10.1016/j.ymben.2005.09.007.
    • (2006) Metab Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 20
    • 84918823723 scopus 로고    scopus 로고
    • Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces Cerevisiae
    • Sun Z, Meng H, Li J, Wang J, Li Q, Wang Y, et al. Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces Cerevisiae. PLoS One. 2014;9 https://doi.org/10.1371/journal.pone.0112615.
    • (2014) PLoS One. , pp. 9
    • Sun, Z.1    Meng, H.2    Li, J.3    Wang, J.4    Li, Q.5    Wang, Y.6
  • 21
    • 84860505042 scopus 로고    scopus 로고
    • A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica
    • Loira N, Dulermo T, Nicaud J-M, Sherman DJ. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst Biol. BioMed Central Ltd. 2012;6:35. https://doi.org/10.1186/1752-0509-6-35.
    • (2012) BMC Syst Biol , vol.6 , pp. 35
    • Loira, N.1    Dulermo, T.2    Nicaud, J.-M.3    Sherman, D.J.4
  • 22
    • 84870867053 scopus 로고    scopus 로고
    • Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica
    • Pan P, Hua Q. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS One. 2012;7:e51535. https://doi.org/10.1371/journal.pone.0051535.
    • (2012) PLoS One , vol.7
    • Pan, P.1    Hua, Q.2
  • 23
    • 84945151760 scopus 로고    scopus 로고
    • Optimization of lipid production with a genome-scale model of Yarrowia lipolytica
    • Kavšček M, Bhutada G, Madl T, Natter K, Krainer F, Dietzsch C, et al. Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Syst Biol. 2015;9:72. https://doi.org/10.1186/s12918-015-0217-4.
    • (2015) BMC Syst Biol , vol.9 , pp. 72
    • Kavšček, M.1    Bhutada, G.2    Madl, T.3    Natter, K.4    Krainer, F.5    Dietzsch, C.6
  • 24
    • 84991244043 scopus 로고    scopus 로고
    • Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. Npj
    • Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. Npj. Syst Biol Appl. 2016;2:16005. https://doi.org/10.1038/npjsba.2016.5.
    • (2016) Syst Biol Appl , vol.2 , pp. 16005
    • Kerkhoven, E.J.1    Pomraning, K.R.2    Baker, S.E.3    Nielsen, J.4
  • 25
    • 3843128481 scopus 로고    scopus 로고
    • Reconstruction and validation of Saccharomyces Cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
    • Duarte NC, Herrgård MJ, Palsson BØ. Reconstruction and validation of Saccharomyces Cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004;14:1298-309. https://doi.org/10.1101/gr.2250904.
    • (2004) Genome Res , vol.14 , pp. 1298-1309
    • Duarte, N.C.1    Herrgård, M.J.2    Palsson, B.3
  • 26
    • 84877315991 scopus 로고    scopus 로고
    • Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica
    • Blazeck J, Liu L, Knight R, Alper HS. Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J Biotechnol. 2013;165:184-94. https://doi.org/10.1016/j.jbiotec.2013.04.003.
    • (2013) J Biotechnol , vol.165 , pp. 184-194
    • Blazeck, J.1    Liu, L.2    Knight, R.3    Alper, H.S.4
  • 27
    • 84855249317 scopus 로고    scopus 로고
    • Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi
    • Vorapreeda T, Thammarongtham C, Cheevadhanarak S, Laoteng K. Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi. Microbiology. 2012;158:217-28. https://doi.org/10.1099/mic.0.051946-0.
    • (2012) Microbiology , vol.158 , pp. 217-228
    • Vorapreeda, T.1    Thammarongtham, C.2    Cheevadhanarak, S.3    Laoteng, K.4
  • 28
    • 0037394829 scopus 로고    scopus 로고
    • Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces Cerevisiae
    • Van Maris AJA, Luttik MAH, Winkler AA, Van Dijken JP, Pronk JT. Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces Cerevisiae. Appl Environ Microbiol. 2003;69:2094-9. https://doi.org/10.1128/AEM.69.4.2094-2099.2003.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 2094-2099
    • Van Maris, A.J.A.1    Luttik, M.A.H.2    Winkler, A.A.3    Van Dijken, J.P.4    Pronk, J.T.5
  • 29
    • 0036138566 scopus 로고    scopus 로고
    • Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single stage continuous culture
    • Papanikolaou S, Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single stage continuous culture. Bioresour Technol. 2002;82:43-9. https://doi.org/10.1186/s13068-015-0286-z.
    • (2002) Bioresour Technol , vol.82 , pp. 43-49
    • Papanikolaou, S.1    Aggelis, G.2
  • 30
    • 84887181650 scopus 로고    scopus 로고
    • Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations
    • Workman M, Holt P, Thykaer J. Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations. AMB Express. 2013;3:58. https://doi.org/10.1186/2191-0855-3-58.
    • (2013) AMB Express , vol.3 , pp. 58
    • Workman, M.1    Holt, P.2    Thykaer, J.3
  • 31
    • 84930200537 scopus 로고    scopus 로고
    • Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis
    • Dulermo T, Lazar Z, Dulermo R, Rakicka M, Haddouche R, Nicaud JM. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. Biochim Biophys Acta - Mol Cell Biol Lipids. Elsevier B.V. 2015;1851:1107-17. https://doi.org/10.1016/j.bbalip.2015.04.007.
    • (2015) Biochim Biophys Acta - Mol Cell Biol Lipids , vol.1851 , pp. 1107-1117
    • Dulermo, T.1    Lazar, Z.2    Dulermo, R.3    Rakicka, M.4    Haddouche, R.5    Nicaud, J.M.6
  • 32
    • 84898910175 scopus 로고    scopus 로고
    • Production of mono-, di-, and triglycerides from waste fatty acids through esterification with glycerol
    • Mostafa N a, Maher A, Abdelmoez W. Production of mono-, di-, and triglycerides from waste fatty acids through esterification with glycerol. Adv Biosci Biotechnol. 2013;4:900-7. http://dx.doi.org/10.4236/abb.2013.49118
    • (2013) Adv Biosci Biotechnol , vol.4 , pp. 900-907
    • Mostafa, N.1    Maher, A.2    Abdelmoez, W.3
  • 33
    • 69249146187 scopus 로고    scopus 로고
    • Large-scale identification of genetic design strategies using local search
    • Lun DS, Rockwell G, Guido NJ, Baym M, Kelner JA, Berger B, et al. Large-scale identification of genetic design strategies using local search. Mol Syst Biol. 2009;5:296. https://doi.org/10.1038/msb.2009.57.
    • (2009) Mol Syst Biol , vol.5 , pp. 296
    • Lun, D.S.1    Rockwell, G.2    Guido, N.J.3    Baym, M.4    Kelner, J.A.5    Berger, B.6
  • 34
    • 77954040575 scopus 로고    scopus 로고
    • Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia Pastoris for strain improvement
    • Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, et al. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia Pastoris for strain improvement. Microb Cell Factories. 2010;9:50. https://doi.org/10.1186/1475-2859-9-50.
    • (2010) Microb Cell Factories , vol.9 , pp. 50
    • Chung, B.K.1    Selvarasu, S.2    Andrea, C.3    Ryu, J.4    Lee, H.5    Ahn, J.6
  • 35
    • 84955660244 scopus 로고    scopus 로고
    • Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces Coelicolor
    • Kim M, Yi JS, Lakshmanan M, Lee DY, Kim BG. Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces Coelicolor. Biotechnol Bioeng. 2016;113:651-60. https://doi.org/10.1002/bit.25830.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 651-660
    • Kim, M.1    Yi, J.S.2    Lakshmanan, M.3    Lee, D.Y.4    Kim, B.G.5
  • 36
    • 84891614139 scopus 로고    scopus 로고
    • Cofactor modification analysis: a computational framework to identify cofactor specificity engineering targets for strain improvement
    • Lakshmanan M, Chung BK-S, Liu C, Kim S-W, Lee D-Y. Cofactor modification analysis: a computational framework to identify cofactor specificity engineering targets for strain improvement. J Bioinforma Comput Biol. 2013;11:1343006. https://doi.org/10.1142/S0219720013430063.
    • (2013) J Bioinforma Comput Biol , vol.11 , pp. 1343006
    • Lakshmanan, M.1    Chung, B.-S.2    Liu, C.3    Kim, S.-W.4    Lee, D.-Y.5
  • 38
    • 0033517148 scopus 로고    scopus 로고
    • Robustness of a gene regulatory circuit
    • Little JW, Shepley DP, Wert DW. Robustness of a gene regulatory circuit. EMBO J. 1999;18:4299-307. https://doi.org/10.1093/emboj/18.15.4299.
    • (1999) EMBO J , vol.18 , pp. 4299-4307
    • Little, J.W.1    Shepley, D.P.2    Wert, D.W.3
  • 39
    • 84953344082 scopus 로고    scopus 로고
    • Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica
    • Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R. Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica. FEMS Yeast Res. 2015;15:1-12. https://doi.org/10.1093/femsyr/fov014.
    • (2015) FEMS Yeast Res , vol.15 , pp. 1-12
    • Iwama, R.1    Kobayashi, S.2    Ohta, A.3    Horiuchi, H.4    Fukuda, R.5
  • 40
    • 81555207963 scopus 로고    scopus 로고
    • Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica
    • Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea J-L, et al. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One. 2011;6:e27966. https://doi.org/10.1371/journal.pone.0027966.
    • (2011) PLoS One , vol.6
    • Morin, N.1    Cescut, J.2    Beopoulos, A.3    Lelandais, G.4    Le Berre, V.5    Uribelarrea, J.-L.6
  • 41
    • 84903728771 scopus 로고    scopus 로고
    • The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems
    • Ratledge C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett. 2014;36:1557-68. https://doi.org/10.1007/s10529-014-1532-3.
    • (2014) Biotechnol Lett , vol.36 , pp. 1557-1568
    • Ratledge, C.1
  • 42
    • 0036010144 scopus 로고    scopus 로고
    • The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops
    • Miflin BJ, Habash DZ. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot. 2002;53:979-87. https://doi.org/10.1093/jexbot/53.370.979.
    • (2002) J Exp Bot , vol.53 , pp. 979-987
    • Miflin, B.J.1    Habash, D.Z.2
  • 43
    • 84924657793 scopus 로고    scopus 로고
    • Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica
    • Qiao K, Imam Abidi SH, Liu H, Zhang H, Chakraborty S, Watson N, et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng. 2015;29:56-65. https://doi.org/10.1016/j.ymben.2015.02.005.
    • (2015) Metab Eng , vol.29 , pp. 56-65
    • Qiao, K.1    Imam Abidi, S.H.2    Liu, H.3    Zhang, H.4    Chakraborty, S.5    Watson, N.6
  • 44
    • 84876343013 scopus 로고    scopus 로고
    • Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase
    • Gao C, Zhang L, Xie Y, Hu C, Zhang Y, Li L, et al. Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase. Bioresour Technol. 2013;137:111-5. https://doi.org/10.1016/j.biortech.2013.02.115.
    • (2013) Bioresour Technol , vol.137 , pp. 111-115
    • Gao, C.1    Zhang, L.2    Xie, Y.3    Hu, C.4    Zhang, Y.5    Li, L.6
  • 45
    • 84862318026 scopus 로고    scopus 로고
    • Enhanced acetoin production by Serratia Marcescens H32 with expression of a water-forming NADH oxidase
    • Sun JA, Zhang LY, Rao B, Shen YL, Wei DZ. Enhanced acetoin production by Serratia Marcescens H32 with expression of a water-forming NADH oxidase. Bioresour Technol. 2012;119:94-8. https://doi.org/10.1016/j.biortech.2012.05.108.
    • (2012) Bioresour Technol , vol.119 , pp. 94-98
    • Sun, J.A.1    Zhang, L.Y.2    Rao, B.3    Shen, Y.L.4    Wei, D.Z.5
  • 46
    • 78149443330 scopus 로고    scopus 로고
    • Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production
    • Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol. 2010;76:7154-60. https://doi.org/10.1128/AEM.01464-10.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 7154-7160
    • Takeno, S.1    Murata, R.2    Kobayashi, R.3    Mitsuhashi, S.4    Ikeda, M.5
  • 47
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces Cerevisiae
    • Verho R, Londesborough J, Penttilä M, Richard P. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces Cerevisiae. Appl Environ Microbiol. 2003;69:5892-7. https://doi.org/10.1128/AEM.69.10.5892-5897.2003.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 5892-5897
    • Verho, R.1    Londesborough, J.2    Penttilä, M.3    Richard, P.4
  • 48
    • 84872131864 scopus 로고    scopus 로고
    • Activating transhydrogenase and NAD kinase in combination for improving isobutanol production
    • Shi A, Zhu X, Lu J, Zhang X, Ma Y. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng. 2013;16:1-10. https://doi.org/10.1016/j.ymben.2012.11.008.
    • (2013) Metab Eng , vol.16 , pp. 1-10
    • Shi, A.1    Zhu, X.2    Lu, J.3    Zhang, X.4    Ma, Y.5
  • 49
    • 84929314719 scopus 로고    scopus 로고
    • The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica
    • Wasylenko TM, Ahn WS, Stephanopoulos G. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng. 2015;30:27-39. https://doi.org/10.1016/j.ymben.2015.02.007.
    • (2015) Metab Eng , vol.30 , pp. 27-39
    • Wasylenko, T.M.1    Ahn, W.S.2    Stephanopoulos, G.3
  • 50
    • 84888233890 scopus 로고    scopus 로고
    • Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica
    • Seip J, Jackson R, He H, Zhu Q, Hong SP. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl Environ Microbiol. 2013;79:7360-70. https://doi.org/10.1128/AEM.02079-13.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 7360-7370
    • Seip, J.1    Jackson, R.2    He, H.3    Zhu, Q.4    Hong, S.P.5
  • 51
    • 36348956692 scopus 로고    scopus 로고
    • DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Δsnf2 disruptant of Saccharomyces Cerevisiae
    • Kamisaka Y, Tomita N, Kimura K, Kainou K, Uemura H. DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Δsnf2 disruptant of Saccharomyces Cerevisiae. Biochem J. 2007;408:61. https://doi.org/10.1042/bj20070449.
    • (2007) Biochem J , vol.408 , pp. 61
    • Kamisaka, Y.1    Tomita, N.2    Kimura, K.3    Kainou, K.4    Uemura, H.5
  • 52
    • 84892840633 scopus 로고    scopus 로고
    • Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production
    • Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun. Nature Publishing Group. 2014;5:3131. https://doi.org/10.1038/ncomms4131.
    • (2014) Nat Commun , vol.5 , pp. 3131
    • Blazeck, J.1    Hill, A.2    Liu, L.3    Knight, R.4    Miller, J.5    Pan, A.6
  • 53
    • 34547676311 scopus 로고    scopus 로고
    • Optimization based automated curation of metabolic reconstructions
    • Satish Kumar V, Dasika MS, Maranas CD. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics. 2007;8:212. https://doi.org/10.1186/1471-2105-8-212.
    • (2007) BMC Bioinformatics , vol.8 , pp. 212
    • Satish Kumar, V.1    Dasika, M.S.2    Maranas, C.D.3
  • 54
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010;28:245-8. https://doi.org/10.1038/nbt.1614.
    • (2010) Nat Biotechnol , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.3
  • 55
    • 73149122136 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic reconstructions
    • Oberhardt MA, Palsson BØ, Papin JA. Applications of genome-scale metabolic reconstructions. Mol Syst Biol. 2009;5:320. https://doi.org/10.1038/msb.2009.77.
    • (2009) Mol Syst Biol , vol.5 , pp. 320
    • Oberhardt, M.A.1    Palsson, B.2    Papin, J.A.3
  • 56
    • 33748464202 scopus 로고    scopus 로고
    • Flux balance analysis in the era of metabolomics
    • Lee JM, Gianchandani EP, Papin JA. Flux balance analysis in the era of metabolomics. Brief Bioinform. 2006:140-50. https://doi.org/10.1093/bib/bbl007.
    • (2006) Brief Bioinform. , pp. 140-150
    • Lee, J.M.1    Gianchandani, E.P.2    Papin, J.A.3
  • 57
    • 79551662521 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0
    • Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0. Nat Protoc. 2011;6:1290-307. https://doi.org/10.1038/nprot.2011.308.
    • (2011) Nat Protoc , vol.6 , pp. 1290-1307
    • Schellenberger, J.1    Que, R.2    Fleming, R.M.T.3    Thiele, I.4    Orth, J.D.5    Feist, A.M.6
  • 58
    • 84942372809 scopus 로고    scopus 로고
    • In silico model-driven cofactor engineering strategies for improving the overall NADP(H) turnover in microbial cell factories: J Ind Microbiol Biotechnol
    • Lakshmanan M, Yu K, Koduru L, Lee D-Y. In silico model-driven cofactor engineering strategies for improving the overall NADP(H) turnover in microbial cell factories: J Ind Microbiol Biotechnol. Springer Berlin Heidelberg; 2015. https://doi.org/10.1007/s10295-015-1663-0.
    • (2015) Springer Berlin Heidelberg
    • Lakshmanan, M.1    Yu, K.2    Koduru, L.3    Lee, D.-Y.4
  • 59
    • 35348893696 scopus 로고    scopus 로고
    • Metabolite essentiality elucidates robustness of Escherichia Coli metabolism
    • Kim P-J, Lee D-Y, Kim TY, Lee KH, Jeong H, Lee SY, et al. Metabolite essentiality elucidates robustness of Escherichia Coli metabolism. Proc Natl Acad Sci U S A. 2007;104:13638-42. https://doi.org/10.1073/pnas.0703262104.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 13638-13642
    • Kim, P.-J.1    Lee, D.-Y.2    Kim, T.Y.3    Lee, K.H.4    Jeong, H.5    Lee, S.Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.