-
1
-
-
84979263634
-
Dicarboxylic acids, Aliphatic
-
Cornils B, Lappe P. Dicarboxylic acids, Aliphatic. Ullmann's Encycl Ind Chem. 2012;11:287-304. https://doi.org/10.1002/14356007.a08.
-
(2012)
Ullmann's Encycl Ind Chem
, vol.11
, pp. 287-304
-
-
Cornils, B.1
Lappe, P.2
-
2
-
-
84881028723
-
Toward biotechnological production of adipic acid and precursors from biorenewables
-
Polen T, Spelberg M, Bott M. Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol. 2013:75-84. https://doi.org/10.1016/j.jbiotec.2012.07.008.
-
(2013)
J Biotechnol.
, pp. 75-84
-
-
Polen, T.1
Spelberg, M.2
Bott, M.3
-
3
-
-
0034256044
-
Candida Cloacae oxidation of long-chain fatty acids to dioic acids
-
Green KD, Turner MK, Woodley JM. Candida Cloacae oxidation of long-chain fatty acids to dioic acids. Enzym Microb Technol. 2000;27:205-11. https://doi.org/10.1016/S0141-0229(00)00217-9.
-
(2000)
Enzym Microb Technol
, vol.27
, pp. 205-211
-
-
Green, K.D.1
Turner, M.K.2
Woodley, J.M.3
-
4
-
-
0002857575
-
Isolation and enzyme determination of Candida Tropicalis mutants for DCA production
-
Jiao P, Ma S, Hua Y, Huang Y, Cao Z. Isolation and enzyme determination of Candida Tropicalis mutants for DCA production. J Gen Appl Microbiol. 2000;46:245-9. https://doi.org/10.2323/jgam.46.245.
-
(2000)
J Gen Appl Microbiol
, vol.46
, pp. 245-249
-
-
Jiao, P.1
Ma, S.2
Hua, Y.3
Huang, Y.4
Cao, Z.5
-
5
-
-
23844500315
-
Alpha,omega-dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica
-
Smit MS, Mokgoro MM, Setati E, Nicaud J-M. Alpha,omega-dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica. Biotechnol Lett. 2005;27:859-64. https://doi.org/10.1007/s10529-005-6719-1.
-
(2005)
Biotechnol Lett
, vol.27
, pp. 859-864
-
-
Smit, M.S.1
Mokgoro, M.M.2
Setati, E.3
Nicaud, J.-M.4
-
6
-
-
0030945001
-
Continuous production of dicarboxylic acid by immobilized Pseudomonas Aeruginosa cells
-
Chan EC, Cheng CS, Hsu YH. Continuous production of dicarboxylic acid by immobilized Pseudomonas Aeruginosa cells. J Ferment Bioeng. 1997;83:157-60. https://doi.org/10.1016/S0922-338X(97)83575-1.
-
(1997)
J Ferment Bioeng
, vol.83
, pp. 157-160
-
-
Chan, E.C.1
Cheng, C.S.2
Hsu, Y.H.3
-
7
-
-
0031172598
-
Biotransformation of dicarboxylic acid by immobilized Cryptococcus cells
-
Chan EC, Kuo J. Biotransformation of dicarboxylic acid by immobilized Cryptococcus cells. Enzym Microb Technol. 1997;20:585-9. https://doi.org/10.1016/S0141-0229(96)00198-6.
-
(1997)
Enzym Microb Technol
, vol.20
, pp. 585-589
-
-
Chan, E.C.1
Kuo, J.2
-
8
-
-
84942156302
-
Production of long-chain alpha,omega-dicarboxylic acids by engineered Escherichia Coli from renewable fatty acids and plant oils
-
Sathesh-Prabu C, Lee SK. Production of long-chain alpha,omega-dicarboxylic acids by engineered Escherichia Coli from renewable fatty acids and plant oils. J Agric Food Chem. 2015;63:8199-208. https://doi.org/10.1021/acs.jafc.5b03833.
-
(2015)
J Agric Food Chem
, vol.63
, pp. 8199-8208
-
-
Sathesh-Prabu, C.1
Lee, S.K.2
-
9
-
-
84951737671
-
Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids
-
Ledesma-Amaro R, Nicaud JM. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res. 2016;61:40-50. https://doi.org/10.1016/j.plipres.2015.12.001.
-
(2016)
Prog Lipid Res
, vol.61
, pp. 40-50
-
-
Ledesma-Amaro, R.1
Nicaud, J.M.2
-
10
-
-
0142104398
-
Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida Tropicalis
-
Eschenfeldt WH, Zhang Y, Samaha H, Stols L, Eirich LD, Wilson CR, et al. Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida Tropicalis. Appl Environ Microbiol. 2003;69:5992-9. https://doi.org/10.1128/AEM.69.10.5992-5999.2003.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 5992-5999
-
-
Eschenfeldt, W.H.1
Zhang, Y.2
Samaha, H.3
Stols, L.4
Eirich, L.D.5
Wilson, C.R.6
-
11
-
-
84908510965
-
A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica
-
Gatter M, Förster A, Bär K, Winter M, Otto C, Petzsch P, et al. A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica. FEMS Yeast Res. 2014;14:858-72. https://doi.org/10.1111/1567-1364.12176.
-
(2014)
FEMS Yeast Res
, vol.14
, pp. 858-872
-
-
Gatter, M.1
Förster, A.2
Bär, K.3
Winter, M.4
Otto, C.5
Petzsch, P.6
-
12
-
-
4143052728
-
Cloning and characterization of three fatty alcohol oxidase genes from Candida Tropicalis strain ATCC 20336
-
Eirich LD, Craft DL, Steinberg L, Asif A, Eschenfeldt WU, Stols L, et al. Cloning and characterization of three fatty alcohol oxidase genes from Candida Tropicalis strain ATCC 20336. Appl Environ Microbiol. 2004;70:4872-9. https://doi.org/10.1128/AEM.70.8.4872-4879.2004.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 4872-4879
-
-
Eirich, L.D.1
Craft, D.L.2
Steinberg, L.3
Asif, A.4
Eschenfeldt, W.U.5
Stols, L.6
-
13
-
-
84962162175
-
Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica
-
Iwama R, Kobayashi S, Ishimaru C, Ohta A, Horiuchi H, Fukuda R. Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica. Fungal Genet Biol. 2016;91:43-54. https://doi.org/10.1016/j.fgb.2016.03.007.
-
(2016)
Fungal Genet Biol
, vol.91
, pp. 43-54
-
-
Iwama, R.1
Kobayashi, S.2
Ishimaru, C.3
Ohta, A.4
Horiuchi, H.5
Fukuda, R.6
-
14
-
-
0027219611
-
The enzymology of dicarboxylic-acid formation by Corynebacterium Sp strain 7E1C grown on N-alkanes
-
Broadway NM, Dickinson FM, Ratledge C. The enzymology of dicarboxylic-acid formation by Corynebacterium Sp strain 7E1C grown on N-alkanes. J Gen Microbiol. 1993;139:1337-44. https://doi.org/10.1099/00221287-139-6-1337.
-
(1993)
J Gen Microbiol
, vol.139
, pp. 1337-1344
-
-
Broadway, N.M.1
Dickinson, F.M.2
Ratledge, C.3
-
15
-
-
84938138533
-
Production of dicarboxylic acids by improved mutant strains of yarrowia lipolytica
-
US pat app 11/
-
Nicaud J, Thevenieau F, Le Dall M, Marchal R. Production of dicarboxylic acids by improved mutant strains of yarrowia lipolytica. US pat app 11/; 2005. p. 1. Available: http://www.google.com/patents/US20100041115
-
(2005)
, pp. 1
-
-
Nicaud, J.1
Thevenieau, F.2
Le Dall, M.3
Marchal, R.4
-
16
-
-
84922432383
-
Genome-scale modeling for metabolic engineering
-
Simeonidis E, Price ND.
-
Simeonidis E, Price ND. Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol. 2015:327-38. https://doi.org/10.1007/s10295-0e14-1576-3.
-
(2015)
J Ind Microbiol Biotechnol.
, pp. 327-338
-
-
-
17
-
-
18844392599
-
Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia Coli
-
Alper H, Jin YS, Moxley JF, Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia Coli. Metab Eng. 2005;7:155-64. https://doi.org/10.1016/j.ymben.2004.12.003.
-
(2005)
Metab Eng
, vol.7
, pp. 155-164
-
-
Alper, H.1
Jin, Y.S.2
Moxley, J.F.3
Stephanopoulos, G.4
-
18
-
-
22844452835
-
Construction of lycopene-overproducing E. Coli strains by combining systematic and combinatorial gene knockout targets
-
Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. Coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol. 2005;23:612-6. https://doi.org/10.1038/nbt1083.
-
(2005)
Nat Biotechnol
, vol.23
, pp. 612-616
-
-
Alper, H.1
Miyaoku, K.2
Stephanopoulos, G.3
-
19
-
-
33644832381
-
In silico aided metabolic engineering of Saccharomyces Cerevisiae for improved bioethanol production
-
Bro C, Regenberg B, Förster J, Nielsen J. In silico aided metabolic engineering of Saccharomyces Cerevisiae for improved bioethanol production. Metab Eng. 2006;8:102-11. https://doi.org/10.1016/j.ymben.2005.09.007.
-
(2006)
Metab Eng
, vol.8
, pp. 102-111
-
-
Bro, C.1
Regenberg, B.2
Förster, J.3
Nielsen, J.4
-
20
-
-
84918823723
-
Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces Cerevisiae
-
Sun Z, Meng H, Li J, Wang J, Li Q, Wang Y, et al. Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces Cerevisiae. PLoS One. 2014;9 https://doi.org/10.1371/journal.pone.0112615.
-
(2014)
PLoS One.
, pp. 9
-
-
Sun, Z.1
Meng, H.2
Li, J.3
Wang, J.4
Li, Q.5
Wang, Y.6
-
21
-
-
84860505042
-
A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica
-
Loira N, Dulermo T, Nicaud J-M, Sherman DJ. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst Biol. BioMed Central Ltd. 2012;6:35. https://doi.org/10.1186/1752-0509-6-35.
-
(2012)
BMC Syst Biol
, vol.6
, pp. 35
-
-
Loira, N.1
Dulermo, T.2
Nicaud, J.-M.3
Sherman, D.J.4
-
22
-
-
84870867053
-
Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica
-
Pan P, Hua Q. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS One. 2012;7:e51535. https://doi.org/10.1371/journal.pone.0051535.
-
(2012)
PLoS One
, vol.7
-
-
Pan, P.1
Hua, Q.2
-
23
-
-
84945151760
-
Optimization of lipid production with a genome-scale model of Yarrowia lipolytica
-
Kavšček M, Bhutada G, Madl T, Natter K, Krainer F, Dietzsch C, et al. Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Syst Biol. 2015;9:72. https://doi.org/10.1186/s12918-015-0217-4.
-
(2015)
BMC Syst Biol
, vol.9
, pp. 72
-
-
Kavšček, M.1
Bhutada, G.2
Madl, T.3
Natter, K.4
Krainer, F.5
Dietzsch, C.6
-
24
-
-
84991244043
-
Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. Npj
-
Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. Npj. Syst Biol Appl. 2016;2:16005. https://doi.org/10.1038/npjsba.2016.5.
-
(2016)
Syst Biol Appl
, vol.2
, pp. 16005
-
-
Kerkhoven, E.J.1
Pomraning, K.R.2
Baker, S.E.3
Nielsen, J.4
-
25
-
-
3843128481
-
Reconstruction and validation of Saccharomyces Cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
-
Duarte NC, Herrgård MJ, Palsson BØ. Reconstruction and validation of Saccharomyces Cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004;14:1298-309. https://doi.org/10.1101/gr.2250904.
-
(2004)
Genome Res
, vol.14
, pp. 1298-1309
-
-
Duarte, N.C.1
Herrgård, M.J.2
Palsson, B.3
-
26
-
-
84877315991
-
Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica
-
Blazeck J, Liu L, Knight R, Alper HS. Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J Biotechnol. 2013;165:184-94. https://doi.org/10.1016/j.jbiotec.2013.04.003.
-
(2013)
J Biotechnol
, vol.165
, pp. 184-194
-
-
Blazeck, J.1
Liu, L.2
Knight, R.3
Alper, H.S.4
-
27
-
-
84855249317
-
Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi
-
Vorapreeda T, Thammarongtham C, Cheevadhanarak S, Laoteng K. Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi. Microbiology. 2012;158:217-28. https://doi.org/10.1099/mic.0.051946-0.
-
(2012)
Microbiology
, vol.158
, pp. 217-228
-
-
Vorapreeda, T.1
Thammarongtham, C.2
Cheevadhanarak, S.3
Laoteng, K.4
-
28
-
-
0037394829
-
Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces Cerevisiae
-
Van Maris AJA, Luttik MAH, Winkler AA, Van Dijken JP, Pronk JT. Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces Cerevisiae. Appl Environ Microbiol. 2003;69:2094-9. https://doi.org/10.1128/AEM.69.4.2094-2099.2003.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 2094-2099
-
-
Van Maris, A.J.A.1
Luttik, M.A.H.2
Winkler, A.A.3
Van Dijken, J.P.4
Pronk, J.T.5
-
29
-
-
0036138566
-
Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single stage continuous culture
-
Papanikolaou S, Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single stage continuous culture. Bioresour Technol. 2002;82:43-9. https://doi.org/10.1186/s13068-015-0286-z.
-
(2002)
Bioresour Technol
, vol.82
, pp. 43-49
-
-
Papanikolaou, S.1
Aggelis, G.2
-
30
-
-
84887181650
-
Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations
-
Workman M, Holt P, Thykaer J. Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations. AMB Express. 2013;3:58. https://doi.org/10.1186/2191-0855-3-58.
-
(2013)
AMB Express
, vol.3
, pp. 58
-
-
Workman, M.1
Holt, P.2
Thykaer, J.3
-
31
-
-
84930200537
-
Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis
-
Dulermo T, Lazar Z, Dulermo R, Rakicka M, Haddouche R, Nicaud JM. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. Biochim Biophys Acta - Mol Cell Biol Lipids. Elsevier B.V. 2015;1851:1107-17. https://doi.org/10.1016/j.bbalip.2015.04.007.
-
(2015)
Biochim Biophys Acta - Mol Cell Biol Lipids
, vol.1851
, pp. 1107-1117
-
-
Dulermo, T.1
Lazar, Z.2
Dulermo, R.3
Rakicka, M.4
Haddouche, R.5
Nicaud, J.M.6
-
32
-
-
84898910175
-
Production of mono-, di-, and triglycerides from waste fatty acids through esterification with glycerol
-
Mostafa N a, Maher A, Abdelmoez W. Production of mono-, di-, and triglycerides from waste fatty acids through esterification with glycerol. Adv Biosci Biotechnol. 2013;4:900-7. http://dx.doi.org/10.4236/abb.2013.49118
-
(2013)
Adv Biosci Biotechnol
, vol.4
, pp. 900-907
-
-
Mostafa, N.1
Maher, A.2
Abdelmoez, W.3
-
33
-
-
69249146187
-
Large-scale identification of genetic design strategies using local search
-
Lun DS, Rockwell G, Guido NJ, Baym M, Kelner JA, Berger B, et al. Large-scale identification of genetic design strategies using local search. Mol Syst Biol. 2009;5:296. https://doi.org/10.1038/msb.2009.57.
-
(2009)
Mol Syst Biol
, vol.5
, pp. 296
-
-
Lun, D.S.1
Rockwell, G.2
Guido, N.J.3
Baym, M.4
Kelner, J.A.5
Berger, B.6
-
34
-
-
77954040575
-
Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia Pastoris for strain improvement
-
Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, et al. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia Pastoris for strain improvement. Microb Cell Factories. 2010;9:50. https://doi.org/10.1186/1475-2859-9-50.
-
(2010)
Microb Cell Factories
, vol.9
, pp. 50
-
-
Chung, B.K.1
Selvarasu, S.2
Andrea, C.3
Ryu, J.4
Lee, H.5
Ahn, J.6
-
35
-
-
84955660244
-
Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces Coelicolor
-
Kim M, Yi JS, Lakshmanan M, Lee DY, Kim BG. Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces Coelicolor. Biotechnol Bioeng. 2016;113:651-60. https://doi.org/10.1002/bit.25830.
-
(2016)
Biotechnol Bioeng
, vol.113
, pp. 651-660
-
-
Kim, M.1
Yi, J.S.2
Lakshmanan, M.3
Lee, D.Y.4
Kim, B.G.5
-
36
-
-
84891614139
-
Cofactor modification analysis: a computational framework to identify cofactor specificity engineering targets for strain improvement
-
Lakshmanan M, Chung BK-S, Liu C, Kim S-W, Lee D-Y. Cofactor modification analysis: a computational framework to identify cofactor specificity engineering targets for strain improvement. J Bioinforma Comput Biol. 2013;11:1343006. https://doi.org/10.1142/S0219720013430063.
-
(2013)
J Bioinforma Comput Biol
, vol.11
, pp. 1343006
-
-
Lakshmanan, M.1
Chung, B.-S.2
Liu, C.3
Kim, S.-W.4
Lee, D.-Y.5
-
37
-
-
2442526837
-
Just-in-time transcription program in metabolic pathways
-
Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, et al. Just-in-time transcription program in metabolic pathways. Nat Genet. 2004;36:486-91. https://doi.org/10.1038/ng1348.
-
(2004)
Nat Genet
, vol.36
, pp. 486-491
-
-
Zaslaver, A.1
Mayo, A.E.2
Rosenberg, R.3
Bashkin, P.4
Sberro, H.5
Tsalyuk, M.6
-
38
-
-
0033517148
-
Robustness of a gene regulatory circuit
-
Little JW, Shepley DP, Wert DW. Robustness of a gene regulatory circuit. EMBO J. 1999;18:4299-307. https://doi.org/10.1093/emboj/18.15.4299.
-
(1999)
EMBO J
, vol.18
, pp. 4299-4307
-
-
Little, J.W.1
Shepley, D.P.2
Wert, D.W.3
-
39
-
-
84953344082
-
Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica
-
Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R. Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica. FEMS Yeast Res. 2015;15:1-12. https://doi.org/10.1093/femsyr/fov014.
-
(2015)
FEMS Yeast Res
, vol.15
, pp. 1-12
-
-
Iwama, R.1
Kobayashi, S.2
Ohta, A.3
Horiuchi, H.4
Fukuda, R.5
-
40
-
-
81555207963
-
Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica
-
Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea J-L, et al. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One. 2011;6:e27966. https://doi.org/10.1371/journal.pone.0027966.
-
(2011)
PLoS One
, vol.6
-
-
Morin, N.1
Cescut, J.2
Beopoulos, A.3
Lelandais, G.4
Le Berre, V.5
Uribelarrea, J.-L.6
-
41
-
-
84903728771
-
The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems
-
Ratledge C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett. 2014;36:1557-68. https://doi.org/10.1007/s10529-014-1532-3.
-
(2014)
Biotechnol Lett
, vol.36
, pp. 1557-1568
-
-
Ratledge, C.1
-
42
-
-
0036010144
-
The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops
-
Miflin BJ, Habash DZ. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot. 2002;53:979-87. https://doi.org/10.1093/jexbot/53.370.979.
-
(2002)
J Exp Bot
, vol.53
, pp. 979-987
-
-
Miflin, B.J.1
Habash, D.Z.2
-
43
-
-
84924657793
-
Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica
-
Qiao K, Imam Abidi SH, Liu H, Zhang H, Chakraborty S, Watson N, et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng. 2015;29:56-65. https://doi.org/10.1016/j.ymben.2015.02.005.
-
(2015)
Metab Eng
, vol.29
, pp. 56-65
-
-
Qiao, K.1
Imam Abidi, S.H.2
Liu, H.3
Zhang, H.4
Chakraborty, S.5
Watson, N.6
-
44
-
-
84876343013
-
Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase
-
Gao C, Zhang L, Xie Y, Hu C, Zhang Y, Li L, et al. Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase. Bioresour Technol. 2013;137:111-5. https://doi.org/10.1016/j.biortech.2013.02.115.
-
(2013)
Bioresour Technol
, vol.137
, pp. 111-115
-
-
Gao, C.1
Zhang, L.2
Xie, Y.3
Hu, C.4
Zhang, Y.5
Li, L.6
-
45
-
-
84862318026
-
Enhanced acetoin production by Serratia Marcescens H32 with expression of a water-forming NADH oxidase
-
Sun JA, Zhang LY, Rao B, Shen YL, Wei DZ. Enhanced acetoin production by Serratia Marcescens H32 with expression of a water-forming NADH oxidase. Bioresour Technol. 2012;119:94-8. https://doi.org/10.1016/j.biortech.2012.05.108.
-
(2012)
Bioresour Technol
, vol.119
, pp. 94-98
-
-
Sun, J.A.1
Zhang, L.Y.2
Rao, B.3
Shen, Y.L.4
Wei, D.Z.5
-
46
-
-
78149443330
-
Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production
-
Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol. 2010;76:7154-60. https://doi.org/10.1128/AEM.01464-10.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 7154-7160
-
-
Takeno, S.1
Murata, R.2
Kobayashi, R.3
Mitsuhashi, S.4
Ikeda, M.5
-
47
-
-
0142136153
-
Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces Cerevisiae
-
Verho R, Londesborough J, Penttilä M, Richard P. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces Cerevisiae. Appl Environ Microbiol. 2003;69:5892-7. https://doi.org/10.1128/AEM.69.10.5892-5897.2003.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 5892-5897
-
-
Verho, R.1
Londesborough, J.2
Penttilä, M.3
Richard, P.4
-
48
-
-
84872131864
-
Activating transhydrogenase and NAD kinase in combination for improving isobutanol production
-
Shi A, Zhu X, Lu J, Zhang X, Ma Y. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng. 2013;16:1-10. https://doi.org/10.1016/j.ymben.2012.11.008.
-
(2013)
Metab Eng
, vol.16
, pp. 1-10
-
-
Shi, A.1
Zhu, X.2
Lu, J.3
Zhang, X.4
Ma, Y.5
-
49
-
-
84929314719
-
The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica
-
Wasylenko TM, Ahn WS, Stephanopoulos G. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng. 2015;30:27-39. https://doi.org/10.1016/j.ymben.2015.02.007.
-
(2015)
Metab Eng
, vol.30
, pp. 27-39
-
-
Wasylenko, T.M.1
Ahn, W.S.2
Stephanopoulos, G.3
-
50
-
-
84888233890
-
Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica
-
Seip J, Jackson R, He H, Zhu Q, Hong SP. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl Environ Microbiol. 2013;79:7360-70. https://doi.org/10.1128/AEM.02079-13.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 7360-7370
-
-
Seip, J.1
Jackson, R.2
He, H.3
Zhu, Q.4
Hong, S.P.5
-
51
-
-
36348956692
-
DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Δsnf2 disruptant of Saccharomyces Cerevisiae
-
Kamisaka Y, Tomita N, Kimura K, Kainou K, Uemura H. DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Δsnf2 disruptant of Saccharomyces Cerevisiae. Biochem J. 2007;408:61. https://doi.org/10.1042/bj20070449.
-
(2007)
Biochem J
, vol.408
, pp. 61
-
-
Kamisaka, Y.1
Tomita, N.2
Kimura, K.3
Kainou, K.4
Uemura, H.5
-
52
-
-
84892840633
-
Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production
-
Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun. Nature Publishing Group. 2014;5:3131. https://doi.org/10.1038/ncomms4131.
-
(2014)
Nat Commun
, vol.5
, pp. 3131
-
-
Blazeck, J.1
Hill, A.2
Liu, L.3
Knight, R.4
Miller, J.5
Pan, A.6
-
53
-
-
34547676311
-
Optimization based automated curation of metabolic reconstructions
-
Satish Kumar V, Dasika MS, Maranas CD. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics. 2007;8:212. https://doi.org/10.1186/1471-2105-8-212.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 212
-
-
Satish Kumar, V.1
Dasika, M.S.2
Maranas, C.D.3
-
54
-
-
77749320898
-
What is flux balance analysis?
-
Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010;28:245-8. https://doi.org/10.1038/nbt.1614.
-
(2010)
Nat Biotechnol
, vol.28
, pp. 245-248
-
-
Orth, J.D.1
Thiele, I.2
Palsson, B.3
-
55
-
-
73149122136
-
Applications of genome-scale metabolic reconstructions
-
Oberhardt MA, Palsson BØ, Papin JA. Applications of genome-scale metabolic reconstructions. Mol Syst Biol. 2009;5:320. https://doi.org/10.1038/msb.2009.77.
-
(2009)
Mol Syst Biol
, vol.5
, pp. 320
-
-
Oberhardt, M.A.1
Palsson, B.2
Papin, J.A.3
-
56
-
-
33748464202
-
Flux balance analysis in the era of metabolomics
-
Lee JM, Gianchandani EP, Papin JA. Flux balance analysis in the era of metabolomics. Brief Bioinform. 2006:140-50. https://doi.org/10.1093/bib/bbl007.
-
(2006)
Brief Bioinform.
, pp. 140-150
-
-
Lee, J.M.1
Gianchandani, E.P.2
Papin, J.A.3
-
57
-
-
79551662521
-
Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0
-
Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0. Nat Protoc. 2011;6:1290-307. https://doi.org/10.1038/nprot.2011.308.
-
(2011)
Nat Protoc
, vol.6
, pp. 1290-1307
-
-
Schellenberger, J.1
Que, R.2
Fleming, R.M.T.3
Thiele, I.4
Orth, J.D.5
Feist, A.M.6
-
58
-
-
84942372809
-
In silico model-driven cofactor engineering strategies for improving the overall NADP(H) turnover in microbial cell factories: J Ind Microbiol Biotechnol
-
Lakshmanan M, Yu K, Koduru L, Lee D-Y. In silico model-driven cofactor engineering strategies for improving the overall NADP(H) turnover in microbial cell factories: J Ind Microbiol Biotechnol. Springer Berlin Heidelberg; 2015. https://doi.org/10.1007/s10295-015-1663-0.
-
(2015)
Springer Berlin Heidelberg
-
-
Lakshmanan, M.1
Yu, K.2
Koduru, L.3
Lee, D.-Y.4
-
59
-
-
35348893696
-
Metabolite essentiality elucidates robustness of Escherichia Coli metabolism
-
Kim P-J, Lee D-Y, Kim TY, Lee KH, Jeong H, Lee SY, et al. Metabolite essentiality elucidates robustness of Escherichia Coli metabolism. Proc Natl Acad Sci U S A. 2007;104:13638-42. https://doi.org/10.1073/pnas.0703262104.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 13638-13642
-
-
Kim, P.-J.1
Lee, D.-Y.2
Kim, T.Y.3
Lee, K.H.4
Jeong, H.5
Lee, S.Y.6
|