-
1
-
-
84945577296
-
Metabolic plasticity of central carbon metabolism protects mycobacteria
-
Cumming BM, Steyn AJC. Metabolic plasticity of central carbon metabolism protects mycobacteria. Proc Natl Acad Sci U S A. 2015;112:13135-6.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 13135-13136
-
-
Cumming, B.M.1
Steyn, A.J.C.2
-
2
-
-
84874859777
-
Intracellular mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress
-
Lee W, VanderVen BC, Fahey RJ, Russell DG. Intracellular mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem. 2013;288:6788-800.
-
(2013)
J Biol Chem
, vol.288
, pp. 6788-6800
-
-
Lee, W.1
VanderVen, B.C.2
Fahey, R.J.3
Russell, D.G.4
-
3
-
-
84894096216
-
Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus
-
Sakoulas G, Okumura CY, Thienphrapa W, Olson J, Nonejuie P, Dam Q, et al. Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus. J Mol Med. 2014;92:139-49.
-
(2014)
J Mol Med
, vol.92
, pp. 139-149
-
-
Sakoulas, G.1
Okumura, C.Y.2
Thienphrapa, W.3
Olson, J.4
Nonejuie, P.5
Dam, Q.6
-
4
-
-
77952356637
-
Tuberculosis: what we don't know can, and does, hurt us
-
Russell DG, Barry CE, Flynn JL. Tuberculosis: what we don't know can, and does, hurt us. Science. 2010;328:852-6.
-
(2010)
Science
, vol.328
, pp. 852-856
-
-
Russell, D.G.1
Barry, C.E.2
Flynn, J.L.3
-
5
-
-
84879707160
-
Identification of a small molecule with activity against drug-resistant and persistent tuberculosis
-
Wang F, Sambandan D, Halder R, Wang J, Batt SM, Weinrick B, et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc Natl Acad Sci U S A. 2013;110:E2510-7.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. E2510-E2517
-
-
Wang, F.1
Sambandan, D.2
Halder, R.3
Wang, J.4
Batt, S.M.5
Weinrick, B.6
-
6
-
-
0029976980
-
An in vitro model for sequential study of shiftdown of mycobacterium tuberculosis through two stages of nonreplicating persistence
-
Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996;64:2062-9.
-
(1996)
Infect Immun
, vol.64
, pp. 2062-2069
-
-
Wayne, L.G.1
Hayes, L.G.2
-
7
-
-
0034780485
-
Nonreplicating persistence of mycobacterium tuberculosis 1
-
Wayne LG, Sohaskey CD. Nonreplicating persistence of mycobacterium tuberculosis 1. Ann Rev Microbiol. 2001;55:139-63.
-
(2001)
Ann Rev Microbiol
, vol.55
, pp. 139-163
-
-
Wayne, L.G.1
Sohaskey, C.D.2
-
8
-
-
4644352952
-
Predictive in vitro models of the sterilizing activity of anti-tuberculosis drugs
-
Mitchison DA, Coates ARM. Predictive in vitro models of the sterilizing activity of anti-tuberculosis drugs. Curr Pharm Des. 2004;10:3285-95.
-
(2004)
Curr Pharm Des
, vol.10
, pp. 3285-3295
-
-
Mitchison, D.A.1
Coates, A.R.M.2
-
9
-
-
0037252098
-
The curious characteristics of pyrazinamide: a review
-
Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis. 2003;7:6-21.
-
(2003)
Int J Tuberc Lung Dis
, vol.7
, pp. 6-21
-
-
Zhang, Y.1
Mitchison, D.2
-
10
-
-
84890499902
-
Metabolomics reveal d-alanine:d-alanine ligase as the target of d-Cycloserine in mycobacterium tuberculosis
-
Prosser GA, de Carvalho LPS. Metabolomics reveal d-alanine:d-alanine ligase as the target of d-Cycloserine in mycobacterium tuberculosis. ACS Med Chem Lett. 2013;4:1233-7.
-
(2013)
ACS Med Chem Lett
, vol.4
, pp. 1233-1237
-
-
Prosser, G.A.1
de Carvalho, L.P.S.2
-
11
-
-
79251537963
-
A chemical genetic screen in mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy
-
Pethe K, Sequeira PC, Agarwalla S, Rhee K, Kuhen K, Phong WY, et al. A chemical genetic screen in mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat Commun. 2010;1:57.
-
(2010)
Nat Commun
, vol.1
, pp. 57
-
-
Pethe, K.1
Sequeira, P.C.2
Agarwalla, S.3
Rhee, K.4
Kuhen, K.5
Phong, W.Y.6
-
12
-
-
84930227327
-
Using genome-scale models to predict biological capabilities
-
O'Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. Cell. 2015;161:971-87.
-
(2015)
Cell
, vol.161
, pp. 971-987
-
-
O'Brien, E.J.1
Monk, J.M.2
Palsson, B.O.3
-
13
-
-
84949257852
-
Integrated modeling of gene regulatory and metabolic networks in mycobacterium tuberculosis
-
Ma S, Minch KJ, Rustad TR, Hobbs S, Zhou S-L, Sherman DR, et al. Integrated modeling of gene regulatory and metabolic networks in mycobacterium tuberculosis. PLoS Comput Biol. 2015;11:e1004543.
-
(2015)
PLoS Comput Biol
, vol.11
-
-
Ma, S.1
Minch, K.J.2
Rustad, T.R.3
Hobbs, S.4
Zhou, S.-L.5
Sherman, D.R.6
-
14
-
-
77958537509
-
Insight into human alveolar macrophage and M tuberculosis interactions via metabolic reconstructions
-
Bordbar A, Lewis NE, Schellenberger J, Palsson BØ, Jamshidi N. Insight into human alveolar macrophage and M tuberculosis interactions via metabolic reconstructions. Mol Syst Biol. 2010;6:422.
-
(2010)
Mol Syst Biol
, vol.6
, pp. 422
-
-
Bordbar, A.1
Lewis, N.E.2
Schellenberger, J.3
Palsson, B.4
Jamshidi, N.5
-
15
-
-
84900303762
-
Optimizing genome-scale network reconstructions
-
Monk J, Nogales J, Palsson BO. Optimizing genome-scale network reconstructions. Nat Biotechnol. 2014;32:447-52.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 447-452
-
-
Monk, J.1
Nogales, J.2
Palsson, B.O.3
-
16
-
-
34447317247
-
Investigating the metabolic capabilities of mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets
-
Jamshidi N, Palsson BØ. Investigating the metabolic capabilities of mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol. 2007;1:26.
-
(2007)
BMC Syst Biol
, vol.1
, pp. 26
-
-
Jamshidi, N.1
Palsson, B.2
-
17
-
-
34548861262
-
GSMN-TB: a web-based genome-scale network model of mycobacterium tuberculosis metabolism
-
Beste DJV, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, et al. GSMN-TB: a web-based genome-scale network model of mycobacterium tuberculosis metabolism. Genome Biol. 2007;8:R89.
-
(2007)
Genome Biol
, vol.8
, pp. R89
-
-
Beste, D.J.V.1
Hooper, T.2
Stewart, G.3
Bonde, B.4
Avignone-Rossa, C.5
Bushell, M.E.6
-
18
-
-
84920022371
-
Suarez-Diez M, spina L, Schaap PJ, martins dos Santos VAP. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Semin
-
Rienksma RA. Suarez-Diez M, spina L, Schaap PJ, martins dos Santos VAP. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Semin. Immunol. 2014;26:610-22.
-
(2014)
Immunol
, vol.26
, pp. 610-622
-
-
Rienksma, R.A.1
-
19
-
-
84941645291
-
Metabolic modeling predicts metabolite changes in mycobacterium tuberculosis
-
Garay CD, Dreyfuss JM, Galagan JE. Metabolic modeling predicts metabolite changes in mycobacterium tuberculosis. BMC Syst Biol. 2015;9:57.
-
(2015)
BMC Syst Biol
, vol.9
, pp. 57
-
-
Garay, C.D.1
Dreyfuss, J.M.2
Galagan, J.E.3
-
20
-
-
85168846837
-
Systems level mapping of metabolic complexity in mycobacterium tuberculosis to identify high-value drug targets
-
Vashisht R, Bhat AG, Kushwaha S, Bhardwaj A, OSDD Consortium, Brahmachari SK. Systems level mapping of metabolic complexity in mycobacterium tuberculosis to identify high-value drug targets. J Transl Med. 2014;12:263.
-
(2014)
J Transl Med
, vol.12
, pp. 263
-
-
Vashisht, R.1
Bhat, A.G.2
Kushwaha, S.3
Bhardwaj, A.4
Brahmachari, S.K.5
-
21
-
-
84976877782
-
The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases
-
Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016;44:D471-80.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. D471-D480
-
-
Caspi, R.1
Billington, R.2
Ferrer, L.3
Foerster, H.4
Fulcher, C.A.5
Keseler, I.M.6
-
22
-
-
84976877544
-
BiGG models: a platform for integrating, standardizing and sharing genome-scale models
-
King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, et al. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016;44:D515-22.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. D515-D522
-
-
King, Z.A.1
Lu, J.2
Dräger, A.3
Miller, P.4
Federowicz, S.5
Lerman, J.A.6
-
23
-
-
79960957242
-
The regulation of sulfur metabolism in mycobacterium tuberculosis
-
Hatzios SK, Bertozzi CR. The regulation of sulfur metabolism in mycobacterium tuberculosis. PLoS Pathog. 2011;7:e1002036.
-
(2011)
PLoS Pathog
, vol.7
-
-
Hatzios, S.K.1
Bertozzi, C.R.2
-
24
-
-
79953175298
-
Discovery and characterization of a unique mycobacterial heme acquisition system
-
Tullius MV, Harmston CA, Owens CP, Chim N, Morse RP, McMath LM, et al. Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci U S A. 2011;108:5051-6.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 5051-5056
-
-
Tullius, M.V.1
Harmston, C.A.2
Owens, C.P.3
Chim, N.4
Morse, R.P.5
McMath, L.M.6
-
25
-
-
84896847440
-
Molecular profiling of mycobacterium tuberculosis identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c
-
Layre E, Lee HJ, Young DC, Martinot AJ, Buter J, Minnaard AJ, et al. Molecular profiling of mycobacterium tuberculosis identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proc Natl Acad Sci U S A. 2014;111:2978-83.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 2978-2983
-
-
Layre, E.1
Lee, H.J.2
Young, D.C.3
Martinot, A.J.4
Buter, J.5
Minnaard, A.J.6
-
26
-
-
84942903084
-
Regulation of Ergothioneine biosynthesis and its effect on mycobacterium tuberculosis growth and infectivity
-
Richard-Greenblatt M, Bach H, Adamson J, Peña-Diaz S, Li W, Steyn AJC, et al. Regulation of Ergothioneine biosynthesis and its effect on mycobacterium tuberculosis growth and infectivity. J Biol Chem. 2015;290:23064-76.
-
(2015)
J Biol Chem
, vol.290
, pp. 23064-23076
-
-
Richard-Greenblatt, M.1
Bach, H.2
Adamson, J.3
Peña-Diaz, S.4
Li, W.5
Steyn, A.J.C.6
-
27
-
-
84953311283
-
Ergothioneine maintains redox and bioenergetic homeostasis essential for drug susceptibility and virulence of mycobacterium tuberculosis
-
Saini V, Cumming BM, Guidry L, Lamprecht DA, Adamson JH, Reddy VP, et al. Ergothioneine maintains redox and bioenergetic homeostasis essential for drug susceptibility and virulence of mycobacterium tuberculosis. Cell Rep. 2016;14:572-85.
-
(2016)
Cell Rep
, vol.14
, pp. 572-585
-
-
Saini, V.1
Cumming, B.M.2
Guidry, L.3
Lamprecht, D.A.4
Adamson, J.H.5
Reddy, V.P.6
-
28
-
-
84875981467
-
A new way to degrade heme: the mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO
-
Nambu S, Matsui T, Goulding CW, Takahashi S, Ikeda-Saito M. A new way to degrade heme: the mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO. J Biol Chem. 2013;288:10101-9.
-
(2013)
J Biol Chem
, vol.288
, pp. 10101-10109
-
-
Nambu, S.1
Matsui, T.2
Goulding, C.W.3
Takahashi, S.4
Ikeda-Saito, M.5
-
29
-
-
80053459692
-
High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism
-
Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 2011;7:e1002251.
-
(2011)
PLoS Pathog
, vol.7
-
-
Griffin, J.E.1
Gawronski, J.D.2
Dejesus, M.A.3
Ioerger, T.R.4
Akerley, B.J.5
Sassetti, C.M.6
-
30
-
-
85014358914
-
Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis
-
DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, et al. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. MBio. 2017;8. Available from: https://doi.org/10.1128/mBio.02133-16
-
(2017)
MBio
, vol.8
-
-
DeJesus, M.A.1
Gerrick, E.R.2
Xu, W.3
Park, S.W.4
Long, J.E.5
Boutte, C.C.6
-
31
-
-
84952659166
-
-
Cambridge: Cambridge University Press
-
Palsson BØ. Systems Biology: Constraint-based Reconstruction and Analysis. Cambridge: Cambridge University Press; 2015.
-
(2015)
-
-
-
32
-
-
79959913123
-
Central carbon metabolism in mycobacterium tuberculosis: an unexpected frontier
-
Rhee KY, de Carvalho LPS, Bryk R, Ehrt S, Marrero J, Park SW, et al. Central carbon metabolism in mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol. 2011;19:307-14.
-
(2011)
Trends Microbiol
, vol.19
, pp. 307-314
-
-
Rhee, K.Y.1
de Carvalho, L.P.S.2
Bryk, R.3
Ehrt, S.4
Marrero, J.5
Park, S.W.6
-
33
-
-
1642457253
-
The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
-
Mahadevan R, Schilling CH. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng. 2003;5:264-76.
-
(2003)
Metab Eng
, vol.5
, pp. 264-276
-
-
Mahadevan, R.1
Schilling, C.H.2
-
34
-
-
84895896805
-
optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks
-
Megchelenbrink W, Huynen M, Marchiori E. optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks. PLoS One. 2014;9:e86587.
-
(2014)
PLoS One
, vol.9
-
-
Megchelenbrink, W.1
Huynen, M.2
Marchiori, E.3
-
35
-
-
84886600677
-
Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate
-
Gouzy A, Larrouy-Maumus G, Wu T-D, Peixoto A, Levillain F, Lugo-Villarino G, et al. Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate. Nat Chem Biol. 2013;9:674-6.
-
(2013)
Nat Chem Biol
, vol.9
, pp. 674-676
-
-
Gouzy, A.1
Larrouy-Maumus, G.2
Wu, T.-D.3
Peixoto, A.4
Levillain, F.5
Lugo-Villarino, G.6
-
36
-
-
84895761851
-
Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection
-
Gouzy A, Larrouy-Maumus G, Bottai D, Levillain F, Dumas A, Wallach JB, et al. Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection. PLoS Pathog. 2014;10:e1003928.
-
(2014)
PLoS Pathog
, vol.10
-
-
Gouzy, A.1
Larrouy-Maumus, G.2
Bottai, D.3
Levillain, F.4
Dumas, A.5
Wallach, J.B.6
-
37
-
-
84922480180
-
Nitrogen metabolism in mycobacterium tuberculosis physiology and virulence
-
Gouzy A, Poquet Y, Neyrolles O. Nitrogen metabolism in mycobacterium tuberculosis physiology and virulence. Nat Rev Microbiol. 2014;12:729-37.
-
(2014)
Nat Rev Microbiol
, vol.12
, pp. 729-737
-
-
Gouzy, A.1
Poquet, Y.2
Neyrolles, O.3
-
38
-
-
84883173541
-
13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular mycobacterium tuberculosis
-
Beste DJV, Nöh K, Niedenführ S, Mendum TA, Hawkins ND, Ward JL, et al. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular mycobacterium tuberculosis. Chem Biol. 2013;20:1012-21.
-
(2013)
Chem Biol
, vol.20
, pp. 1012-1021
-
-
Beste, D.J.V.1
Nöh, K.2
Niedenführ, S.3
Mendum, T.A.4
Hawkins, N.D.5
Ward, J.L.6
-
39
-
-
79959815079
-
Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages
-
Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 2011;7:e1002093.
-
(2011)
PLoS Pathog
, vol.7
-
-
Daniel, J.1
Maamar, H.2
Deb, C.3
Sirakova, T.D.4
Kolattukudy, P.E.5
-
40
-
-
33644819211
-
Carbon metabolism of intracellular bacteria
-
Muñoz-Elías EJ, McKinney JD. Carbon metabolism of intracellular bacteria. Cell Microbiol. 2006;8:10-22.
-
(2006)
Cell Microbiol
, vol.8
, pp. 10-22
-
-
Muñoz-Elías, E.J.1
McKinney, J.D.2
-
41
-
-
84876253419
-
Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in mycobacterium tuberculosis
-
Eoh H, Rhee KY. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2013;110:6554-9.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 6554-6559
-
-
Eoh, H.1
Rhee, K.Y.2
-
42
-
-
84897498653
-
Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of mycobacterium tuberculosis on fatty acids
-
Eoh H, Rhee KY. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci U S A. 2014;111:4976-81.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 4976-4981
-
-
Eoh, H.1
Rhee, K.Y.2
-
43
-
-
84885003827
-
Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-[beta]-D-arabinose biosynthetic and utilization pathway genes
-
Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-[beta]-D-arabinose biosynthetic and utilization pathway genes. Nat Genet. 2013;45:1190-7.
-
(2013)
Nat Genet
, vol.45
, pp. 1190-1197
-
-
Safi, H.1
Lingaraju, S.2
Amin, A.3
Kim, S.4
Jones, M.5
Holmes, M.6
-
44
-
-
84964833030
-
Genomic and functional analyses of mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance
-
Desjardins CA, Cohen KA, Munsamy V, Abeel T, Maharaj K, Walker BJ, et al. Genomic and functional analyses of mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nat Genet. 2016;48:544-51.
-
(2016)
Nat Genet
, vol.48
, pp. 544-551
-
-
Desjardins, C.A.1
Cohen, K.A.2
Munsamy, V.3
Abeel, T.4
Maharaj, K.5
Walker, B.J.6
-
45
-
-
78049411009
-
Metabolomics of mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates
-
de Carvalho LPS, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY. Metabolomics of mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol. 2010;17:1122-31.
-
(2010)
Chem Biol
, vol.17
, pp. 1122-1131
-
-
de Carvalho, L.P.S.1
Fischer, S.M.2
Marrero, J.3
Nathan, C.4
Ehrt, S.5
Rhee, K.Y.6
-
46
-
-
85034644707
-
Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium tuberculosis during Early Macrophage Infection
-
Zimmermann M, Kogadeeva M, Gengenbacher M, McEwen G, Mollenkopf H-J, Zamboni N, et al. Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium tuberculosis during Early Macrophage Infection. mSystems. 2017;2. Available from: https://doi.org/10.1128/mSystems.00057-17.
-
(2017)
mSystems
, vol.2
-
-
Zimmermann, M.1
Kogadeeva, M.2
Gengenbacher, M.3
McEwen, G.4
Mollenkopf, H.-J.5
Zamboni, N.6
-
47
-
-
85035067337
-
Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis
-
Xu W, DeJesus MA, Rücker N, Engelhart CA, Wright MG, Healy C, et al. Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2017;61. Available from: https://doi.org/10.1128/AAC.01334-17.
-
(2017)
Antimicrob. Agents Chemother
, vol.61
-
-
Xu, W.1
DeJesus, M.A.2
Rücker, N.3
Engelhart, C.A.4
Wright, M.G.5
Healy, C.6
-
48
-
-
80054069179
-
A comprehensive genome-scale reconstruction of Escherichia coli metabolism--2011
-
Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism--2011. Mol Syst Biol. 2011;7:535.
-
(2011)
Mol Syst Biol
, vol.7
, pp. 535
-
-
Orth, J.D.1
Conrad, T.M.2
Na, J.3
Lerman, J.A.4
Nam, H.5
Feist, A.M.6
-
49
-
-
85031310018
-
iML1515, a knowledgebase that computes Escherichia coli traits
-
Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol. 2017;35:904-8.
-
(2017)
Nat Biotechnol
, vol.35
, pp. 904-908
-
-
Monk, J.M.1
Lloyd, C.J.2
Brunk, E.3
Mih, N.4
Sastry, A.5
King, Z.6
-
51
-
-
84881409003
-
para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in mycobacterium tuberculosis
-
Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, et al. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in mycobacterium tuberculosis. J Biol Chem. 2013;288:23447-56.
-
(2013)
J Biol Chem
, vol.288
, pp. 23447-23456
-
-
Zheng, J.1
Rubin, E.J.2
Bifani, P.3
Mathys, V.4
Lim, V.5
Au, M.6
-
52
-
-
49249132882
-
Mycothiol biosynthesis is essential for ethionamide susceptibility in mycobacterium tuberculosis
-
Vilchèze C, Av-Gay Y, Attarian R, Liu Z, Hazbón MH, Colangeli R, et al. Mycothiol biosynthesis is essential for ethionamide susceptibility in mycobacterium tuberculosis. Mol Microbiol. 2008;69:1316-29.
-
(2008)
Mol Microbiol
, vol.69
, pp. 1316-1329
-
-
Vilchèze, C.1
Av-Gay, Y.2
Attarian, R.3
Liu, Z.4
Hazbón, M.H.5
Colangeli, R.6
-
53
-
-
84940751701
-
Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways
-
King ZA, Dräger A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO. Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput Biol. 2015;11:e1004321.
-
(2015)
PLoS Comput Biol
, vol.11
-
-
King, Z.A.1
Dräger, A.2
Ebrahim, A.3
Sonnenschein, N.4
Lewis, N.E.5
Palsson, B.O.6
-
54
-
-
33748750095
-
PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria
-
Morita YS, Sena CBC, Waller RF, Kurokawa K, Sernee MF, Nakatani F, et al. PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J Biol Chem. 2006;281:25143-55.
-
(2006)
J Biol Chem
, vol.281
, pp. 25143-25155
-
-
Morita, Y.S.1
Sena, C.B.C.2
Waller, R.F.3
Kurokawa, K.4
Sernee, M.F.5
Nakatani, F.6
-
55
-
-
84891665062
-
Prokaryotic expression, identification and bioinformatics analysis of the mycobacterium tuberculosis Rv3807c gene encoding the putative enzyme committed to Decaprenylphosphoryl-d-arabinose synthesis
-
Cai L, Zhao X, Jiang T, Qiu J, Owusu L, Ma Y, et al. Prokaryotic expression, identification and bioinformatics analysis of the mycobacterium tuberculosis Rv3807c gene encoding the putative enzyme committed to Decaprenylphosphoryl-d-arabinose synthesis. Indian J Microbiol. 2014;54:46-51.
-
(2014)
Indian J Microbiol
, vol.54
, pp. 46-51
-
-
Cai, L.1
Zhao, X.2
Jiang, T.3
Qiu, J.4
Owusu, L.5
Ma, Y.6
-
56
-
-
70049110173
-
Interpreting expression data with metabolic flux models: predicting mycobacterium tuberculosis mycolic acid production
-
Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, et al. Interpreting expression data with metabolic flux models: predicting mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol. 2009;5:e1000489.
-
(2009)
PLoS Comput Biol
, vol.5
-
-
Colijn, C.1
Brandes, A.2
Zucker, J.3
Lun, D.S.4
Weiner, B.5
Farhat, M.R.6
-
57
-
-
78649517765
-
High quality genome-scale metabolic network reconstruction of mycobacterium tuberculosis and comparison with human metabolic network: application for drug. era.lib.ed.ac.uk
-
Kalapanulak S. High quality genome-scale metabolic network reconstruction of mycobacterium tuberculosis and comparison with human metabolic network: application for drug. era.lib.ed.ac.uk; 2009; Available from: https://www.era.lib.ed.ac.uk/handle/1842/3925.
-
(2009)
-
-
Kalapanulak, S.1
-
58
-
-
78549238928
-
Development and analysis of an in vivo-compatible metabolic network of mycobacterium tuberculosis
-
Fang X, Wallqvist A, Reifman J. Development and analysis of an in vivo-compatible metabolic network of mycobacterium tuberculosis. BMC Syst Biol. 2010;4:160.
-
(2010)
BMC Syst Biol
, vol.4
, pp. 160
-
-
Fang, X.1
Wallqvist, A.2
Reifman, J.3
-
59
-
-
84856314687
-
MetaMerge: scaling up genome-scale metabolic reconstructions with application to mycobacterium tuberculosis
-
Chindelevitch L, Stanley S, Hung D, Regev A, Berger B. MetaMerge: scaling up genome-scale metabolic reconstructions with application to mycobacterium tuberculosis. Genome Biol. 2012;13:r6.
-
(2012)
Genome Biol
, vol.13
-
-
Chindelevitch, L.1
Stanley, S.2
Hung, D.3
Regev, A.4
Berger, B.5
-
60
-
-
84895458423
-
Systems-based approaches to probing metabolic variation within the mycobacterium tuberculosis complex
-
Lofthouse EK, Wheeler PR, Beste DJV, Khatri BL, Wu H, Mendum TA, et al. Systems-based approaches to probing metabolic variation within the mycobacterium tuberculosis complex. PLoS One. 2013;8:e75913.
-
(2013)
PLoS One
, vol.8
-
-
Lofthouse, E.K.1
Wheeler, P.R.2
Beste, D.J.V.3
Khatri, B.L.4
Wu, H.5
Mendum, T.A.6
-
61
-
-
84964607629
-
Corrigendum: integration of metabolic modeling with gene co-expression reveals transcriptionally programmed reactions explaining robustness in mycobacterium tuberculosis
-
Puniya BL, Kulshreshtha D, Mittal I, Mobeen A, Ramachandran S. Corrigendum: integration of metabolic modeling with gene co-expression reveals transcriptionally programmed reactions explaining robustness in mycobacterium tuberculosis. Sci Rep. 2016;6:24916.
-
(2016)
Sci Rep
, vol.6
, pp. 24916
-
-
Puniya, B.L.1
Kulshreshtha, D.2
Mittal, I.3
Mobeen, A.4
Ramachandran, S.5
-
62
-
-
0030789249
-
Ethambutol resistance in mycobacterium tuberculosis: critical role of embB mutations
-
Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR Jr, et al. Ethambutol resistance in mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother. 1997;41:1677-81.
-
(1997)
Antimicrob Agents Chemother
, vol.41
, pp. 1677-1681
-
-
Sreevatsan, S.1
Stockbauer, K.E.2
Pan, X.3
Kreiswirth, B.N.4
Moghazeh, S.L.5
Jacobs, W.R.6
-
63
-
-
0030872573
-
Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in mycobacterium smegmatis
-
Caceres NE, Harris NB, Wellehan JF, Feng Z, Kapur V, Barletta RG. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in mycobacterium smegmatis. J Bacteriol Am Soc Microbiol. 1997;179:5046-55.
-
(1997)
J Bacteriol Am Soc Microbiol
, vol.179
, pp. 5046-5055
-
-
Caceres, N.E.1
Harris, N.B.2
Wellehan, J.F.3
Feng, Z.4
Kapur, V.5
Barletta, R.G.6
-
64
-
-
0000356412
-
The enzymatic synthesis of d-ALANYL-d-alanine. 3. On the inhibition of d-ALANYL-d-alanine SYNTHETASE by the antibiotic d-CYCLOSERINE
-
Neuhaus FC, Lynch JL. The enzymatic synthesis of d-ALANYL-d-alanine. 3. On the inhibition of d-ALANYL-d-alanine SYNTHETASE by the antibiotic d-CYCLOSERINE. Biochemistry. 1964;3:471-80.
-
(1964)
Biochemistry
, vol.3
, pp. 471-480
-
-
Neuhaus, F.C.1
Lynch, J.L.2
-
65
-
-
0030042509
-
Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and-susceptible strains of mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance
-
Musser JM, Kapur V, Williams DL, Kreiswirth BN, Van Soolingen D, Van Embden JDA. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and-susceptible strains of mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis. 1996;173:196-202.
-
(1996)
J Infect Dis
, vol.173
, pp. 196-202
-
-
Musser, J.M.1
Kapur, V.2
Williams, D.L.3
Kreiswirth, B.N.4
Van Soolingen, D.5
Van Embden, J.D.A.6
-
66
-
-
0032472224
-
Modification of the NADH of the isoniazid target (InhA) from mycobacterium tuberculosis
-
Rozwarski DA, Grant GA, Barton DH, Jacobs WR Jr, Sacchettini JC. Modification of the NADH of the isoniazid target (InhA) from mycobacterium tuberculosis. Science. 1998;279:98-102.
-
(1998)
Science
, vol.279
, pp. 98-102
-
-
Rozwarski, D.A.1
Grant, G.A.2
Barton, D.H.3
Jacobs, W.R.4
Sacchettini, J.C.5
-
67
-
-
84940375601
-
Novel katG mutations causing isoniazid resistance in clinical M. Tuberculosis isolates
-
Torres JN, Paul LV, Rodwell TC, Victor TC, Amallraja AM, Elghraoui A, et al. Novel katG mutations causing isoniazid resistance in clinical M. Tuberculosis isolates. Emerg Microbes Infect. 2015;4:e42.
-
(2015)
Emerg Microbes Infect
, vol.4
-
-
Torres, J.N.1
Paul, L.V.2
Rodwell, T.C.3
Victor, T.C.4
Amallraja, A.M.5
Elghraoui, A.6
-
68
-
-
65649096556
-
Benzothiazinones kill mycobacterium tuberculosis by blocking arabinan synthesis
-
Makarov V, Manina G, Mikusova K, Möllmann U, Ryabova O, Saint-Joanis B, et al. Benzothiazinones kill mycobacterium tuberculosis by blocking arabinan synthesis. Science. 2009;324:801-4.
-
(2009)
Science
, vol.324
, pp. 801-804
-
-
Makarov, V.1
Manina, G.2
Mikusova, K.3
Möllmann, U.4
Ryabova, O.5
Saint-Joanis, B.6
-
69
-
-
0029954860
-
Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus
-
Scorpio A, Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med. 1996;2:662-7.
-
(1996)
Nat Med
, vol.2
, pp. 662-667
-
-
Scorpio, A.1
Zhang, Y.2
-
70
-
-
84938340462
-
Study of efflux pump gene expression in rifampicin-monoresistant mycobacterium tuberculosis clinical isolates
-
Li G, Zhang J, Guo Q, Wei J, Jiang Y, Zhao X, et al. Study of efflux pump gene expression in rifampicin-monoresistant mycobacterium tuberculosis clinical isolates. J Antibiot. 2015;68:431-5.
-
(2015)
J Antibiot
, vol.68
, pp. 431-435
-
-
Li, G.1
Zhang, J.2
Guo, Q.3
Wei, J.4
Jiang, Y.5
Zhao, X.6
|