-
1
-
-
33751100626
-
The plant immune system
-
1:CAS:528:DC%2BD28Xht1SgtbzO 17108957 Cited 13 Nov 2016
-
Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444(7117):323-9 Available from: http://www.nature.com/doifinder/10.1038/nature05286. Cited 13 Nov 2016.
-
(2006)
Nature
, vol.444
, Issue.7117
, pp. 323-329
-
-
Jones, J.D.G.1
Dangl, J.L.2
-
2
-
-
24944436247
-
Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens
-
1:CAS:528:DC%2BD2MXhtVOksrrN 16078883
-
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005;43:205-27.
-
(2005)
Annu Rev Phytopathol
, vol.43
, pp. 205-227
-
-
Glazebrook, J.1
-
3
-
-
84902294433
-
Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions
-
Bellincampi DCervone Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Front Plant Sci. 2014;28(5):228.
-
(2014)
Front Plant Sci
, vol.28
, Issue.5
, pp. 228
-
-
Bellincampi Dcervone Cervone, F.1
Lionetti, V.2
-
4
-
-
33748334490
-
A catalogue of the effector Secretome of plant pathogenic oomycetes
-
1:CAS:528:DC%2BD28XhtVylsLnO 16448329
-
Kamoun S. A catalogue of the effector Secretome of plant pathogenic oomycetes. Annu Rev Phytopathol. 2006;44(1):41-60 Available from: http://www.annualreviews.org/doi/abs/10.1146/annurev.phyto.44.070505.143436.
-
(2006)
Annu Rev Phytopathol
, vol.44
, Issue.1
, pp. 41-60
-
-
Kamoun, S.1
-
5
-
-
0036031519
-
Molecular basis of recognition between phytophthora pathogens and their hosts
-
1:CAS:528:DC%2BD38Xos1CltLc%3D 12147757 Cited 3 Oct 2015
-
Tyler BM. Molecular basis of recognition between phytophthora pathogens and their hosts. Annu Rev Phytopathol. 2002;40:137-67 Available from: http://www.annualreviews.org/doi/pdf/10.1146/annurev.phyto.40.120601.125310. Cited 3 Oct 2015.
-
(2002)
Annu Rev Phytopathol
, vol.40
, pp. 137-167
-
-
Tyler, B.M.1
-
6
-
-
84901008455
-
Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense
-
FEBRUARY 1:CAS:528:DC%2BC2MXht1OlsLvO
-
Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci. 2014;5(February):1-12 Available from: http://journal.frontiersin.org/article/10.3389/fpls.2014.00017/abstract.
-
(2014)
Front Plant Sci
, vol.5
, pp. 1-12
-
-
Rojas, C.M.1
Senthil-Kumar, M.2
Tzin, V.3
Mysore, K.S.4
-
7
-
-
84902717183
-
Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions
-
1:CAS:528:DC%2BC2cXhvVCitLzE
-
Ali A, Alexandersson E, Sandin M, Resjö S, Lenman M, Hedley P, et al. Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions. BMC Genomics. 2014;15(1):1-18.
-
(2014)
BMC Genomics
, vol.15
, Issue.1
, pp. 1-18
-
-
Ali, A.1
Alexandersson, E.2
Sandin, M.3
Resjö, S.4
Lenman, M.5
Hedley, P.6
-
9
-
-
84929715456
-
Net primary productivity and below-ground crop residue inputs for root crops: Potato (Solanum tuberosum L.) and sugar beet (Beta vulgaris L.)
-
1:CAS:528:DC%2BC2MXhsFejur3P
-
Bolinder MA, Kätterer T, Poeplau C, Börjesson G, Parent LE. Net primary productivity and below-ground crop residue inputs for root crops: potato (Solanum tuberosum L.) and sugar beet (Beta vulgaris L.). Can J Soil Sci. 2015;95(2):87-93 Available from: http://pubs.aic.ca/doi/10.4141/cjss-2014-091.
-
(2015)
Can J Soil Sci
, vol.95
, Issue.2
, pp. 87-93
-
-
Bolinder, M.A.1
Kätterer, T.2
Poeplau, C.3
Börjesson, G.4
Parent, L.E.5
-
10
-
-
84901236540
-
Curdlan β-1,3-glucooligosaccharides induce the defense responses against Phytophthora infestans infection of potato (Solanum tuberosum L. Cv. McCain G1) leaf cells
-
24816730 4016274 1:CAS:528:DC%2BC2cXhsVWmsr3O Cited 8 Oct 2015
-
Li J, Zhu L, Lu G, Zhan X-B, Lin C-C, Zheng Z-Y. Curdlan β-1,3-glucooligosaccharides induce the defense responses against Phytophthora infestans infection of potato (Solanum tuberosum L. cv. McCain G1) leaf cells. PLoS One. 2014;9(5):e97197 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4016274&tool=pmcentrez&rendertype=abstract. Cited 8 Oct 2015.
-
(2014)
PLoS One
, vol.9
, Issue.5
, pp. e97197
-
-
Li, J.1
Zhu, L.2
Lu, G.3
Zhan, X.-B.4
Lin, C.-C.5
Zheng, Z.-Y.6
-
11
-
-
84905993618
-
Resistance to Phytophthora infestans in Solanum tuberosum landraces in Southern Chile
-
Cited 8 Oct 2015
-
Solano J, Acuña I, Esnault F, Brabant P. Resistance to Phytophthora infestans in Solanum tuberosum landraces in Southern Chile. Trop Plant Pathol. 2014;39(4):307-15 Available from: http://www.scielo.br/scielo.php?script=sci-arttext&pid=S1982-56762014000400005&lng=en&nrm=iso&tlng=en. Cited 8 Oct 2015.
-
(2014)
Trop Plant Pathol
, vol.39
, Issue.4
, pp. 307-315
-
-
Solano, J.1
Acuña, I.2
Esnault, F.3
Brabant, P.4
-
12
-
-
84879037102
-
The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine
-
Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. Elife. 2013;2:1-25 Available from: http://elifesciences.org/lookup/doi/10.7554/eLife.00731.
-
(2013)
Elife
, vol.2
, pp. 1-25
-
-
Yoshida, K.1
Schuenemann, V.J.2
Cano, L.M.3
Pais, M.4
Mishra, B.5
Sharma, R.6
-
13
-
-
70349281388
-
Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans
-
1:CAS:528:DC%2BD1MXhtFSnt7vM 19741609 19741609
-
Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature. 2009;461(7262):393-8 Available from: http://www.nature.com/doifinder/10.1038/nature08358.
-
(2009)
Nature
, vol.461
, Issue.7262
, pp. 393-398
-
-
Haas, B.J.1
Kamoun, S.2
Zody, M.C.3
Jiang, R.H.Y.4
Handsaker, R.E.5
Cano, L.M.6
-
15
-
-
72849122473
-
Computational models in plant-pathogen interactions: The case of Phytophthora infestans
-
19909526 2787490 1:CAS:528:DC%2BD1MXhsVKltL3O
-
Pinzón A, Barreto E, Bernal A, Achenie L, González Barrios AF, Isea R, et al. Computational models in plant-pathogen interactions: the case of Phytophthora infestans. Theor Biol Med Model. 2009;6(1):24 Available from: http://www.tbiomed.com/content/6/1/24.
-
(2009)
Theor Biol Med Model
, vol.6
, Issue.1
, pp. 24
-
-
Pinzón, A.1
Barreto, E.2
Bernal, A.3
Achenie, L.4
González Barrios, A.F.5
Isea, R.6
-
16
-
-
23844448372
-
Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase
-
1:CAS:528:DC%2BD2MXpsFGju7Y%3D 16167762 16167762
-
Restrepo S, Myers KL, del Pozo O, Martin GB, Hart AL, Buell CR, et al. Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Mol Plant-Microbe Interact. 2005;18(9):913-22.
-
(2005)
Mol Plant-Microbe Interact
, vol.18
, Issue.9
, pp. 913-922
-
-
Restrepo, S.1
Myers, K.L.2
Del Pozo, O.3
Martin, G.B.4
Hart, A.L.5
Buell, C.R.6
-
17
-
-
84856650192
-
The Transcriptome of Compatible and Incompatible Interactions of Potato (Solanum tuberosum) with Phytophthora infestans Revealed by DeepSAGE Analysis
-
1:CAS:528:DC%2BC38XisFyrtr0%3D 22328937 3273468
-
Gyetvai G, Sønderkær M, Göbel U, Basekow R, Ballvora A, Imhoff M, et al. The Transcriptome of Compatible and Incompatible Interactions of Potato (Solanum tuberosum) with Phytophthora infestans Revealed by DeepSAGE Analysis. PLoS One. 2012;7(2):e31526 Available from: http://dx.plos.org/10.1371/journal.pone.0031526.
-
(2012)
PLoS One
, vol.7
, Issue.2
, pp. e31526
-
-
Gyetvai, G.1
Sønderkær, M.2
Göbel, U.3
Basekow, R.4
Ballvora, A.5
Imhoff, M.6
-
18
-
-
84878009490
-
Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions
-
1:CAS:528:DC%2BC3sXhsVOrtL3O 23702331 3674932 Cited 4 Oct 2015
-
Gao L, Tu Z, Millett BP, Bradeen JM. Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions. BMC Genomics. 2013;14(1):340 Available from: http://www.biomedcentral.com/1471-2164/14/340. Cited 4 Oct 2015.
-
(2013)
BMC Genomics
, vol.14
, Issue.1
, pp. 340
-
-
Gao, L.1
Tu, Z.2
Millett, B.P.3
Bradeen, J.M.4
-
19
-
-
17844405878
-
Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: An initial draft to the two-dimensional annotation
-
15752426 1079855 1:CAS:528:DC%2BD2MXivFyns7k%3D
-
Becker SA, Palsson BØ. Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol. 2005;5:8.
-
(2005)
BMC Microbiol
, vol.5
, pp. 8
-
-
Becker, S.A.1
Palsson, BØ.2
-
20
-
-
84911499901
-
Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology
-
MacLeod M, Nersessian NJ. Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci. 2015;49:1-11 Available from: http://linkinghub.elsevier.com/retrieve/pii/S136984861400154X.
-
(2015)
Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci
, vol.49
, pp. 1-11
-
-
Macleod, M.1
Nersessian, N.J.2
-
21
-
-
73149122136
-
Applications of genome-scale metabolic reconstructions
-
19888215 2795471
-
Oberhardt MA, Palsson BØ, Papin JA. Applications of genome-scale metabolic reconstructions. Mol Syst Biol. 2009;5(320):320.
-
(2009)
Mol Syst Biol
, vol.5
, Issue.320
, pp. 320
-
-
Oberhardt, M.A.1
Palsson, BØ.2
Papin, J.A.3
-
22
-
-
84920265598
-
Transparency in metabolic network reconstruction enables scalable biological discovery
-
1:CAS:528:DC%2BC2MXmtVOhug%3D%3D 25562137 4490137
-
Heavner BD, Price ND. Transparency in metabolic network reconstruction enables scalable biological discovery. Curr Opin Biotechnol. 2015;34:105-9 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0958166914002250.
-
(2015)
Curr Opin Biotechnol
, vol.34
, pp. 105-109
-
-
Heavner, B.D.1
Price, N.D.2
-
23
-
-
77955534569
-
Integration of metabolic databases for the reconstruction of genome-scale metabolic networks
-
Radrich K, Tsuruoka Y, Dobson P, Gevorgyan A, Swainston N, Baart G, et al. Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Syst Biol. 2010;4:1-16.
-
(2010)
BMC Syst Biol
, vol.4
, pp. 1-16
-
-
Radrich, K.1
Tsuruoka, Y.2
Dobson, P.3
Gevorgyan, A.4
Swainston, N.5
Baart, G.6
-
24
-
-
70350676551
-
A genome-scale metabolic model of Arabidopsis and some of its properties
-
1:CAS:528:DC%2BD1MXhsVCjsbbK 19755544 2773075
-
Poolman MG, Miguet L, Sweetlove LJ, Fell DA. A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol. 2009;151(3):1570-81.
-
(2009)
Plant Physiol
, vol.151
, Issue.3
, pp. 1570-1581
-
-
Poolman, M.G.1
Miguet, L.2
Sweetlove, L.J.3
Fell, D.A.4
-
25
-
-
75949088191
-
AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis
-
20044452 2815881 1:CAS:528:DC%2BC3cXmsFegtr8%3D
-
de Oliveira Dal'Molin CG, Quek L-E, Palfreyman RW, Brumbley SM, Nielsen LK. AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol. 2010;152(2):579-89.
-
(2010)
Plant Physiol
, vol.152
, Issue.2
, pp. 579-589
-
-
De Oliveira Dal'Molin, C.G.1
Quek, L.-E.2
Palfreyman, R.W.3
Brumbley, S.M.4
Nielsen, L.K.5
-
26
-
-
84856015478
-
Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity
-
1:CAS:528:DC%2BC38XhsVehtL4%3D 22184215 22184215
-
Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, Shlomi T. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci. 2012;109(1):339-44.
-
(2012)
Proc Natl Acad Sci
, vol.109
, Issue.1
, pp. 339-344
-
-
Mintz-Oron, S.1
Meir, S.2
Malitsky, S.3
Ruppin, E.4
Aharoni, A.5
Shlomi, T.6
-
27
-
-
58449106341
-
Flux balance analysis of barley seeds: A computational approach to study systemic properties of central metabolism
-
1:CAS:528:DC%2BD1MXjt1Wqtb8%3D 18987214 2613719
-
Grafahrend-Belau E, Schreiber F, Koschützki D, Junker BH. Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol. 2009;149(1):585-98.
-
(2009)
Plant Physiol
, vol.149
, Issue.1
, pp. 585-598
-
-
Grafahrend-Belau, E.1
Schreiber, F.2
Koschützki, D.3
Junker, B.H.4
-
28
-
-
78649796264
-
C4GEM, a genome-scale metabolic model to study C4 plant metabolism
-
20974891 1:CAS:528:DC%2BC3cXhsF2jsbfJ 20974891
-
Dal'Molin CGDO, Quek L-E, Palfreyman RW, Brumbley SM, Nielsen LK. C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol. 2010;154(4):1871-85.
-
(2010)
Plant Physiol
, vol.154
, Issue.4
, pp. 1871-1885
-
-
Dal'Molin, C.G.D.O.1
Quek, L.-E.2
Palfreyman, R.W.3
Brumbley, S.M.4
Nielsen, L.K.5
-
29
-
-
79959946634
-
Zea mays irs1563: A comprehensive genome-scale metabolic reconstruction of maize metabolism
-
1:CAS:528:DC%2BC3MXpsVamsLc%3D 21755001 3131064
-
Saha R, Suthers PF, Maranas CD. Zea mays irs1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS One. 2011;6(7):e21784.
-
(2011)
PLoS One
, vol.6
, Issue.7
, pp. e21784
-
-
Saha, R.1
Suthers, P.F.2
Maranas, C.D.3
-
30
-
-
84908565339
-
Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model
-
25248718 4226342 1:CAS:528:DC%2BC2cXitFGgtbbF
-
Simons M, Saha R, Amiour N, Kumar A, Guillard L, Clement G, et al. Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model. Plant Physiol. 2014;166(3):1659-74 Available from: http://www.plantphysiol.org/cgi/doi/10.1104/pp.114.245787.
-
(2014)
Plant Physiol
, vol.166
, Issue.3
, pp. 1659-1674
-
-
Simons, M.1
Saha, R.2
Amiour, N.3
Kumar, A.4
Guillard, L.5
Clement, G.6
-
31
-
-
79956137349
-
An in silico compartmentalized metabolic model of Brassica napus enables the systemic study of regulatory aspects of plant central metabolism
-
1:CAS:528:DC%2BC3MXmtFyls7k%3D 21337341
-
Pilalis E, Chatziioannou A, Thomasset B, Kolisis F. An in silico compartmentalized metabolic model of Brassica napus enables the systemic study of regulatory aspects of plant central metabolism. Biotechnol Bioeng. 2011;108(7):1673-82.
-
(2011)
Biotechnol Bioeng
, vol.108
, Issue.7
, pp. 1673-1682
-
-
Pilalis, E.1
Chatziioannou, A.2
Thomasset, B.3
Kolisis, F.4
-
32
-
-
79960906784
-
Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos
-
1:CAS:528:DC%2BC3MXhtVKqtrfF 21501263
-
Hay J, Schwender J. Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos. Plant J. 2011;67(3):526-41.
-
(2011)
Plant J
, vol.67
, Issue.3
, pp. 526-541
-
-
Hay, J.1
Schwender, J.2
-
33
-
-
84878459107
-
Responses to light intensity in a genome-scale model of rice metabolism
-
1:CAS:528:DC%2BC3sXps1OqsLk%3D 23640755 3668040
-
Poolman MG, Kundu S, Shaw R, Fell DA. Responses to light intensity in a genome-scale model of rice metabolism. Plant Physiol. 2013;162(2):1060-72 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3668040&tool=pmcentrez&rendertype=abstract.
-
(2013)
Plant Physiol
, vol.162
, Issue.2
, pp. 1060-1072
-
-
Poolman, M.G.1
Kundu, S.2
Shaw, R.3
Fell, D.A.4
-
34
-
-
84955662814
-
A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism
-
1:CAS:528:DC%2BC28XhvFeguw%3D%3D 26576489 26576489 Cited 13 Nov 2016
-
Yuan H, Cheung CYM, Poolman MG, Hilbers PAJ, van Riel NAW. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. Plant J. 2016;85(2):289-304 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26576489. Cited 13 Nov 2016.
-
(2016)
Plant J
, vol.85
, Issue.2
, pp. 289-304
-
-
Yuan, H.1
Cheung, C.Y.M.2
Poolman, M.G.3
Hilbers, P.A.J.4
Van Riel, N.A.W.5
-
35
-
-
75149129569
-
A protocol for generating a high-quality genome-scale metabolic reconstruction
-
1:CAS:528:DC%2BC3cXks12hsA%3D%3D 20057383 20057383
-
Thiele I, Palsson BØ. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5(1):93-121.
-
(2010)
Nat Protoc
, vol.5
, Issue.1
, pp. 93-121
-
-
Thiele, I.1
Palsson, BØ.2
-
36
-
-
84859367668
-
Frontiers in metabolic reconstruction and modeling of plant genomes
-
1:CAS:528:DC%2BC38XkvFOrt7c%3D 22238452 22238452
-
Seaver SMD, Henry CS, Hanson AD. Frontiers in metabolic reconstruction and modeling of plant genomes. J Exp Bot. 2012;63(6):2247-58.
-
(2012)
J Exp Bot
, vol.63
, Issue.6
, pp. 2247-2258
-
-
Seaver, S.M.D.1
Henry, C.S.2
Hanson, A.D.3
-
37
-
-
79551662521
-
Quantitative prediction of cellular metabolism with constraint-based models: The COBRA toolbox v2.0
-
1:CAS:528:DC%2BC3MXhtFWku73J 21886097 3319681
-
Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0. Nat Protoc. 2011;6(9):1290-307.
-
(2011)
Nat Protoc
, vol.6
, Issue.9
, pp. 1290-1307
-
-
Schellenberger, J.1
Que, R.2
Fleming, R.M.T.3
Thiele, I.4
Orth, J.D.5
Feist, A.M.6
-
38
-
-
0028108519
-
Metabolic flux balancing: Basic concepts, scientific and practical use
-
1:CAS:528:DyaK2MXhtFansL0%3D
-
Varma A, Palsson BO. Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology. 1994;12(10):994-8.
-
(1994)
Bio/Technology
, vol.12
, Issue.10
, pp. 994-998
-
-
Varma, A.1
Palsson, B.O.2
-
39
-
-
84856433620
-
Metabolic network reconstruction: Advances in in silico interpretation of analytical information
-
22119273 1:CAS:528:DC%2BC38XhvFakuro%3D
-
Chen N, Del Val IJ, Kyriakopoulos S, Polizzi KM, Kontoravdi C. Metabolic network reconstruction: advances in in silico interpretation of analytical information. Curr Opin Biotechnol. 2012;23(1):77-82.
-
(2012)
Curr Opin Biotechnol
, vol.23
, Issue.1
, pp. 77-82
-
-
Chen, N.1
Del Val, I.J.2
Kyriakopoulos, S.3
Polizzi, K.M.4
Kontoravdi, C.5
-
40
-
-
84878263472
-
Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in Arabidopsis
-
23613196 3663262 1:CAS:528:DC%2BC3sXpsVaquro%3D
-
Töpfer N, Caldana C, Grimbs S, Willmitzer L, Fernie AR, Nikoloski Z. Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in Arabidopsis. Plant Cell. 2013;25(4):1197-211 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3663262&tool=pmcentrez&rendertype=abstract.
-
(2013)
Plant Cell
, vol.25
, Issue.4
, pp. 1197-1211
-
-
Töpfer, N.1
Caldana, C.2
Grimbs, S.3
Willmitzer, L.4
Fernie, A.R.5
Nikoloski, Z.6
-
41
-
-
58349092110
-
PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid
-
1:CAS:528:DC%2BD1MXhs1SgtL0%3D 18801014 18801014
-
Halim VA, Altmann S, Ellinger D, Eschen-Lippold L, Miersch O, Scheel D, et al. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J. 2009;57(2):230-42 Available from: http://doi.wiley.com/10.1111/j.1365-313X.2008.03688.x.
-
(2009)
Plant J
, vol.57
, Issue.2
, pp. 230-242
-
-
Halim, V.A.1
Altmann, S.2
Ellinger, D.3
Eschen-Lippold, L.4
Miersch, O.5
Scheel, D.6
-
42
-
-
84883762807
-
A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions
-
1:CAS:528:DC%2BC3sXhtl2lu7vK 23738527 23738527
-
Cheung CYM, Williams TCR, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ. A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. Plant J. 2013;75(6):1050-61.
-
(2013)
Plant J
, vol.75
, Issue.6
, pp. 1050-1061
-
-
Cheung, C.Y.M.1
Williams, T.C.R.2
Poolman, M.G.3
Fell, D.A.4
Ratcliffe, R.G.5
Sweetlove, L.J.6
-
43
-
-
0008290249
-
An ultrastructural study of the late-blight fungus Phytophthora infestans and its interaction with the foliage of two potato cultivars possessing different levels of general (field) resistance
-
Coffey MD, Wilson UE. An ultrastructural study of the late-blight fungus Phytophthora infestans and its interaction with the foliage of two potato cultivars possessing different levels of general (field) resistance. Can J Bot. 1983;61:2669-85.
-
(1983)
Can J Bot
, vol.61
, pp. 2669-2685
-
-
Coffey, M.D.1
Wilson, U.E.2
-
44
-
-
0033748429
-
New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus phytophthora
-
1:CAS:528:DC%2BD3cXot1Sju7c%3D
-
Ristaino JB, Gumpertz ML. New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus phytophthora. Phytopathology. 2000;38:541-76.
-
(2000)
Phytopathology
, vol.38
, pp. 541-576
-
-
Ristaino, J.B.1
Gumpertz, M.L.2
-
45
-
-
85040513488
-
Primed primary metabolism in systemic leaves: A functional systems analysis
-
1:CAS:528:DC%2BC1cXhsF2lurzE
-
Schwachtje J, Fischer A, Erban A, Kopka J. Primed primary metabolism in systemic leaves: a functional systems analysis. Sci Rep. 2018;8(1):1-11.
-
(2018)
Sci Rep
, vol.8
, Issue.1
, pp. 1-11
-
-
Schwachtje, J.1
Fischer, A.2
Erban, A.3
Kopka, J.4
-
46
-
-
66149126624
-
Primary metabolism and plant defense - Fuel for the fire
-
1:CAS:528:DC%2BD1MXks1Wnsrk%3D 19348567 19348567
-
Bolton MD. Primary metabolism and plant defense - fuel for the fire. Mol Plant-Microbe Interact. 2009;22(5):487-97 Available from: http://apsjournals.apsnet.org/doi/10.1094/MPMI-22-5-0487.
-
(2009)
Mol Plant-Microbe Interact
, vol.22
, Issue.5
, pp. 487-497
-
-
Bolton, M.D.1
-
47
-
-
40049096921
-
Plant physiology meets phytopathology: Plant primary metabolism and plant-pathogen interactions
-
1:CAS:528:DC%2BD1cXitlymtLg%3D 18182420 18182420
-
Berger S, Sinha AK, Roitsch T. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J Exp Bot. 2007;58(15-16):4019-26.
-
(2007)
J Exp Bot
, vol.58
, Issue.15-16
, pp. 4019-4026
-
-
Berger, S.1
Sinha, A.K.2
Roitsch, T.3
-
48
-
-
0001357053
-
Photosynthesis by Isolated Chloroplasts
-
1:CAS:528:DyaG2MXovVGi 13194001 Cited 13 Nov 2016
-
Arnon DI, Allen MB, Whatley FR. Photosynthesis by Isolated Chloroplasts. Nature. 1954;174(4426):394-6 Available from: http://www.nature.com/doifinder/10.1038/174394a0. Cited 13 Nov 2016.
-
(1954)
Nature
, vol.174
, Issue.4426
, pp. 394-396
-
-
Arnon, D.I.1
Allen, M.B.2
Whatley, F.R.3
-
49
-
-
84906272432
-
Photosynthesis by solated chloroplasts IX. Photosynthetic phosphorylation and CO2 assimilation in different species
-
1:CAS:528:DyaF3cXoslSgug%3D%3D 16655327 405941 Cited 13 Nov 2016
-
Whatley FR, Allen MB, Trebst AV, Arnon DI. Photosynthesis by solated chloroplasts IX. Photosynthetic phosphorylation and CO2 assimilation in different species. Plant Physiol. 1960;35(2):188-93 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16655327. Cited 13 Nov 2016.
-
(1960)
Plant Physiol
, vol.35
, Issue.2
, pp. 188-193
-
-
Whatley, F.R.1
Allen, M.B.2
Trebst, A.V.3
Arnon, D.I.4
-
50
-
-
0142151125
-
Electron transfer between membrane complexes and soluble proteins in photosynthesis
-
14567714 1:CAS:528:DC%2BD3sXls1Oqs7g%3D 14567714
-
Hervás M, Navarro JA, De La Rosa MA. Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc Chem Res. 2003;36(10):798-805.
-
(2003)
Acc Chem Res
, vol.36
, Issue.10
, pp. 798-805
-
-
Hervás, M.1
Navarro, J.A.2
De La Rosa, M.A.3
-
51
-
-
0037047319
-
Photosynthesis of ATP-electrons, proton pumps, rotors, and poise
-
1:CAS:528:DC%2BD38Xmtl2rsr4%3D 12176312 12176312
-
Allen JF. Photosynthesis of ATP-electrons, proton pumps, rotors, and poise. Cell. 2002;110(3):273-6.
-
(2002)
Cell
, vol.110
, Issue.3
, pp. 273-276
-
-
Allen, J.F.1
-
52
-
-
0037268248
-
Cyclic, pseudocyclic and noncyclic photophosphorylation: New links in the chain
-
1:CAS:528:DC%2BD3sXnvFem 12523995 12523995
-
Allen JF. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci. 2003;8(1):15-9.
-
(2003)
Trends Plant Sci
, vol.8
, Issue.1
, pp. 15-19
-
-
Allen, J.F.1
-
53
-
-
2842605851
-
The chloroplast as a functional unit in photosynthesis
-
W. Ruhland E. Ashby J. Bonner M. Geiger-Huber W.O. James A. Lang (eds) et al. Springer Berlin Heidelberg Berlin, Heidelberg Cited 13 Nov 2016
-
Arnon DI. The chloroplast as a functional unit in photosynthesis. In: Ruhland W, Ashby E, Bonner J, Geiger-Huber M, James WO, Lang A, et al., editors. Handbuch der Pflanzenphysiologie. Berlin, Heidelberg: Springer Berlin Heidelberg; 1960. p. 773-829. Available from: http://link.springer.com/10.1007/978-3-642-94798-8-28. Cited 13 Nov 2016.
-
(1960)
Handbuch der Pflanzenphysiologie
, pp. 773-829
-
-
Arnon, D.I.1
-
54
-
-
84960097900
-
The Light Reactions of Photosynthesis
-
W.H. Freeman New York
-
Berg J, Tymoczko J, Stryer L. The Light Reactions of Photosynthesis. In: Biochemistry 5th edition. New York: W.H. Freeman; 2002. p. 1050.
-
(2002)
Biochemistry 5th Edition
, pp. 1050
-
-
Berg, J.1
Tymoczko, J.2
Stryer, L.3
-
56
-
-
0028079461
-
Photosynthetic electron transport is differentially affected during early stages of cultivar/race-specific interactions between potato and Phytophthora infestans
-
1:CAS:528:DyaK2cXktVGgtrg%3D Cited 18 Nov 2016
-
Koch C, Noga G, Strittmatter G. Photosynthetic electron transport is differentially affected during early stages of cultivar/race-specific interactions between potato and Phytophthora infestans. Planta. 1994;193(4):551-7 Available from: http://link.springer.com/10.1007/BF02411561. Cited 18 Nov 2016.
-
(1994)
Planta
, vol.193
, Issue.4
, pp. 551-557
-
-
Koch, C.1
Noga, G.2
Strittmatter, G.3
-
57
-
-
85020973249
-
Designing metabolic engineering strategies with genome-scale metabolic flux modeling
-
1:CAS:528:DC%2BC28XksF2gtbg%3D
-
Yen J, Tanniche I, Fisher AK, Gillaspy GE, Bevan DR, Senger RS. Designing metabolic engineering strategies with genome-scale metabolic flux modeling. Adv Genomics Genet. 2015;5:93-105.
-
(2015)
Adv Genomics Genet
, vol.5
, pp. 93-105
-
-
Yen, J.1
Tanniche, I.2
Fisher, A.K.3
Gillaspy, G.E.4
Bevan, D.R.5
Senger, R.S.6
-
58
-
-
0034730971
-
Photorespiration: Metabolic pathways and their role in stress protection
-
1:CAS:528:DC%2BD3cXovFKltrc%3D Cited 13 Nov 2016
-
Wingler A, Lea PJ, Quick WP, Leegood RC. Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond Ser B Biol Sci. 2000;355(1402):1517-29 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11128005. Cited 13 Nov 2016.
-
(2000)
Philos Trans R Soc Lond ser B Biol Sci
, vol.355
, Issue.1402
, pp. 1517-1529
-
-
Wingler, A.1
Lea, P.J.2
Quick, W.P.3
Leegood, R.C.4
-
59
-
-
27944449259
-
Photorespiration Revisited
-
1:CAS:528:DC%2BD2MXpsFGjs7o%3D Cited 13 Nov 2016
-
Eckardt NA. Photorespiration Revisited. Plant Cell Online. 2005;17(8):2139-41 Available from: http://www.plantcell.org/cgi/doi/10.1105/tpc.105.035873. Cited 13 Nov 2016.
-
(2005)
Plant Cell Online
, vol.17
, Issue.8
, pp. 2139-2141
-
-
Eckardt, N.A.1
-
60
-
-
0032782770
-
Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments
-
1:CAS:528:DyaK1MXks1Wntb4%3D Cited 13 Nov 2016
-
Noctor G, Arisi A-CM, Jouanin L, Foyer CH. Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments. J Exp Bot. 1999;50(336):1157-67 Available from: http://jxb.oxfordjournals.org/lookup/doi/10.1093/jxb/50.336.1157. Cited 13 Nov 2016.
-
(1999)
J Exp Bot
, vol.50
, Issue.336
, pp. 1157-1167
-
-
Noctor, G.1
Arisi, A.-C.M.2
Jouanin, L.3
Foyer, C.H.4
-
61
-
-
84863029139
-
Photorespiration
-
Cited 13 Nov 2016
-
Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kürkcüoglu S, et al. Photorespiration. Arab B. 2010;8:e0130 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22303256. Cited 13 Nov 2016.
-
(2010)
Arab B
, vol.8
, pp. e0130
-
-
Peterhansel, C.1
Horst, I.2
Niessen, M.3
Blume, C.4
Kebeish, R.5
Kürkcüoglu, S.6
-
62
-
-
33947605955
-
The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses
-
1:CAS:528:DC%2BD2sXntlCrs78%3D 17325747 17325747
-
Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol. 2007;54(1):39-50.
-
(2007)
Acta Biochim Pol
, vol.54
, Issue.1
, pp. 39-50
-
-
Slesak, I.1
Libik, M.2
Karpinska, B.3
Karpinski, S.4
Miszalski, Z.5
-
63
-
-
0035859020
-
Plant pathogens and integrated defence responses to infection
-
1:CAS:528:DC%2BD3MXksF2gu74%3D Cited 13 Nov 2016
-
Dangl JL, Jones JDG. Plant pathogens and integrated defence responses to infection. Nature. 2001;411(6839):826-33 Available from: http://www.nature.com/doifinder/10.1038/35081161. Cited 13 Nov 2016.
-
(2001)
Nature
, vol.411
, Issue.6839
, pp. 826-833
-
-
Dangl, J.L.1
Jones, J.D.G.2
-
64
-
-
0000685955
-
Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells: Role in Defense and Signal Transduction
-
1:CAS:528:DyaL1MXkt1Squrs%3D 16666719 1061684 Cited 13 Nov 2016
-
Apostol I, Heinstein PF, Low PS. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells: Role in Defense and Signal Transduction. Plant Physiol. 1989;90(1):109-16 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16666719. Cited 13 Nov 2016.
-
(1989)
Plant Physiol
, vol.90
, Issue.1
, pp. 109-116
-
-
Apostol, I.1
Heinstein, P.F.2
Low, P.S.3
-
65
-
-
0006580796
-
NADPH-dependent O2- generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans
-
1:CAS:528:DyaL28XhtVKntbg%3D
-
Doke N. NADPH-dependent O2- generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol. 1985;27(3):311-22.
-
(1985)
Physiol Plant Pathol
, vol.27
, Issue.3
, pp. 311-322
-
-
Doke, N.1
-
66
-
-
0033932601
-
Oxygen processing in photosynthesis: Regulation and Signalling
-
1:CAS:528:DC%2BD3cXmsFWqurs%3D
-
Foyer CH, Noctor G. Oxygen processing in photosynthesis: regulation and Signalling. New Phytol. 2000;146:359-88.
-
(2000)
New Phytol
, vol.146
, pp. 359-388
-
-
Foyer, C.H.1
Noctor, G.2
-
67
-
-
3242715114
-
Reactive oxygen species: Metabolism, oxidative stress, and signal transduction
-
1:CAS:528:DC%2BD2cXlvFeisL0%3D 15377225 15377225
-
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55(1):373-99 Available from: http://www.annualreviews.org/doi/10.1146/annurev.arplant.55.031903.141701.
-
(2004)
Annu Rev Plant Biol
, vol.55
, Issue.1
, pp. 373-399
-
-
Apel, K.1
Hirt, H.2
-
68
-
-
0344649839
-
Nitric oxide and salicylic acid signaling in plant defense
-
1:CAS:528:DC%2BD3cXls12ltLs%3D 10922045 34022 Cited 13 Nov 2016
-
Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, et al. Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A. 2000;97(16):8849-55 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10922045. Cited 13 Nov 2016.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.16
, pp. 8849-8855
-
-
Klessig, D.F.1
Durner, J.2
Noad, R.3
Navarre, D.A.4
Wendehenne, D.5
Kumar, D.6
-
69
-
-
0033598786
-
Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection
-
1:CAS:528:DyaK1MXns1yjs7k%3D 10570216 24208 Cited 13 Nov 2016
-
Mittler R, Herr EH, Orvar BL, van Camp W, Willekens H, Inzé D, et al. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc Natl Acad Sci U S A. 1999;96(24):14165-70 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10570216. Cited 13 Nov 2016.
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, Issue.24
, pp. 14165-14170
-
-
Mittler, R.1
Herr, E.H.2
Orvar, B.L.3
Van Camp, W.4
Willekens, H.5
Inzé, D.6
-
70
-
-
0035818606
-
Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response
-
1:CAS:528:DC%2BD3MXosFygurY%3D 11606758 60892 Cited 13 Nov 2016
-
Delledonne M, Zeier J, Marocco A, Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A. 2001;98(23):13454-9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11606758. Cited 13 Nov 2016.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, Issue.23
, pp. 13454-13459
-
-
Delledonne, M.1
Zeier, J.2
Marocco, A.3
Lamb, C.4
-
71
-
-
0029197672
-
Active Oxygen in Plant Pathogenesis
-
1:CAS:528:DyaK2MXosFWisLg%3D 18999963 Cited 13 Nov 2016
-
Baker CJ, Orlandi EW. Active Oxygen in Plant Pathogenesis. Annu Rev Phytopathol. 1995;33(1):299-321 Available from: http://www.annualreviews.org/doi/10.1146/annurev.py.33.090195.001503. Cited 13 Nov 2016.
-
(1995)
Annu Rev Phytopathol
, vol.33
, Issue.1
, pp. 299-321
-
-
Baker, C.J.1
Orlandi, E.W.2
-
73
-
-
0003422388
-
-
4 W. H. Freeman New York
-
Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Molecular cell biology. 4th ed. New York: W. H. Freeman; 2000. p. 968.
-
(2000)
Molecular Cell Biology
, pp. 968
-
-
Lodish, H.1
Berk, A.2
Zipursky, S.L.3
Matsudaira, P.4
Baltimore, D.5
Darnell, J.6
-
74
-
-
67649872569
-
Starch as a major integrator in the regulation of plant growth
-
1:CAS:528:DC%2BD1MXot1Giu7c%3D 19506259 2693182 Cited 13 Nov 2016
-
Sulpice R, Pyl E-T, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, et al. Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci U S A. 2009;106(25):10348-53 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19506259. Cited 13 Nov 2016.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, Issue.25
, pp. 10348-10353
-
-
Sulpice, R.1
Pyl, E.-T.2
Ishihara, H.3
Trenkamp, S.4
Steinfath, M.5
Witucka-Wall, H.6
-
75
-
-
79953728454
-
Regulation of starch biosynthesis in response to a fluctuating environment
-
1:CAS:528:DC%2BC3MXkvVOrsb4%3D 21378102 3091114
-
Geigenberger P. Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol. 2011;155(4):1566-77.
-
(2011)
Plant Physiol
, vol.155
, Issue.4
, pp. 1566-1577
-
-
Geigenberger, P.1
-
76
-
-
27144514923
-
Enhanced turnover of transitory starch by expression of up-regulated ADP-glucose pyrophosphorylases in Arabidopsis thaliana
-
1:CAS:528:DC%2BD2MXhtFektb3O
-
Obana Y, Omoto D, Kato C, Matsumoto K, Nagai Y, Kavakli IH, et al. Enhanced turnover of transitory starch by expression of up-regulated ADP-glucose pyrophosphorylases in Arabidopsis thaliana. Plant Sci. 2006;170(1):1-11.
-
(2006)
Plant Sci
, vol.170
, Issue.1
, pp. 1-11
-
-
Obana, Y.1
Omoto, D.2
Kato, C.3
Matsumoto, K.4
Nagai, Y.5
Kavakli, I.H.6
-
77
-
-
0142214642
-
ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species
-
1:CAS:528:DC%2BD3sXosVaqtbY%3D 12972664 219057 Cited 2 Dec 2016
-
Hendriks JHM, Kolbe A, Gibon Y, Stitt M, Geigenberger P. ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol. 2003;133(2):838-49 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12972664. Cited 2 Dec 2016.
-
(2003)
Plant Physiol
, vol.133
, Issue.2
, pp. 838-849
-
-
Hendriks, J.H.M.1
Kolbe, A.2
Gibon, Y.3
Stitt, M.4
Geigenberger, P.5
-
78
-
-
0000846432
-
Control of photosynthetic sucrose synthesis. in MD Hatch, NK Boardman, eds, the Biochemistry of Plants. In: Hatch M, Boardman N, editors. the Biochemistry of Plants, the Biochemistry of Plants
-
1:CAS:528:DyaL1cXitFyqsL4%3D
-
Stitt M, Huber S, Kerr P. Control of photosynthetic sucrose synthesis. In MD Hatch, NK Boardman, eds, The Biochemistry of Plants. In: Hatch M, Boardman N, editors. The Biochemistry of Plants, The Biochemistry of Plants. New York: Academic Press; 1987;10:327-409.
-
(1987)
New York: Academic Press
, vol.10
, pp. 327-409
-
-
Stitt, M.1
Huber, S.2
Kerr, P.3
-
79
-
-
0033796917
-
Diurnal changes in sucrose, nucleotides, starch synthesis and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase
-
1:CAS:528:DC%2BD3cXnslWgt7s%3D 10998190 10998190 Cited 3 Dec 2016
-
Geigenberger P, Stitt M. Diurnal changes in sucrose, nucleotides, starch synthesis and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase. Plant J. 2000;23(6):795-806 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10998190. Cited 3 Dec 2016.
-
(2000)
Plant J
, vol.23
, Issue.6
, pp. 795-806
-
-
Geigenberger, P.1
Stitt, M.2
-
80
-
-
48549094947
-
Analysis of Protein Complexes in Wheat Amyloplasts Reveals Functional Interactions among Starch Biosynthetic Enzymes
-
1:CAS:528:DC%2BD1cXkvVWis7o%3D 18263778 2287356 Cited 3 Dec 2016
-
Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, et al. Analysis of Protein Complexes in Wheat Amyloplasts Reveals Functional Interactions among Starch Biosynthetic Enzymes. Plant Physiol. 2008;146(4):1878-91 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18263778. Cited 3 Dec 2016.
-
(2008)
Plant Physiol
, vol.146
, Issue.4
, pp. 1878-1891
-
-
Tetlow, I.J.1
Beisel, K.G.2
Cameron, S.3
Makhmoudova, A.4
Liu, F.5
Bresolin, N.S.6
-
81
-
-
14744280370
-
A Robot-Based Platform to Measure Multiple Enzyme Activities in Arabidopsis Using a Set of Cycling Assays: Comparison of Changes of Enzyme Activities and Transcript Levels during Diurnal Cycles and in Prolonged Darkness
-
1:CAS:528:DC%2BD2MXhtVKlsQ%3D%3D Cited 3 Dec 2016
-
Gibon Y, Blaesing OE, Hannemann J, Carillo P, Höhne M, Hendriks JHM, et al. A Robot-Based Platform to Measure Multiple Enzyme Activities in Arabidopsis Using a Set of Cycling Assays: Comparison of Changes of Enzyme Activities and Transcript Levels during Diurnal Cycles and in Prolonged Darkness. Plant Cell Online. 2004;16(12):3304-25 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15548738. Cited 3 Dec 2016.
-
(2004)
Plant Cell Online
, vol.16
, Issue.12
, pp. 3304-3325
-
-
Gibon, Y.1
Blaesing, O.E.2
Hannemann, J.3
Carillo, P.4
Höhne, M.5
Hendriks, J.H.M.6
-
82
-
-
14744275289
-
Diurnal Changes in the Transcriptome Encoding Enzymes of Starch Metabolism Provide Evidence for Both Transcriptional and Posttranscriptional Regulation of Starch Metabolism in Arabidopsis Leaves
-
1:CAS:528:DC%2BD2cXnvFOru7g%3D 15347792 523333 Cited 3 Dec 2016
-
Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, et al. Diurnal Changes in the Transcriptome Encoding Enzymes of Starch Metabolism Provide Evidence for Both Transcriptional and Posttranscriptional Regulation of Starch Metabolism in Arabidopsis Leaves. Plant Physiol. 2004;136(1):2687-99 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15347792. Cited 3 Dec 2016.
-
(2004)
Plant Physiol
, vol.136
, Issue.1
, pp. 2687-2699
-
-
Smith, S.M.1
Fulton, D.C.2
Chia, T.3
Thorneycroft, D.4
Chapple, A.5
Dunstan, H.6
-
83
-
-
0033613424
-
Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP
-
1:CAS:528:DyaK1MXntFyltbo%3D Cited 13 Nov 2016
-
Lawlor DW, Tezara W, Mitchell VJ, Driscoll SD. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature. 1999;401(6756):914-7 Available from: http://www.nature.com/doifinder/10.1038/44842. Cited 13 Nov 2016.
-
(1999)
Nature
, vol.401
, Issue.6756
, pp. 914-917
-
-
Lawlor, D.W.1
Tezara, W.2
Mitchell, V.J.3
Driscoll, S.D.4
-
84
-
-
85058337453
-
-
E. Owen (eds) 2 Taylor & Francis group New York
-
Lack A, Evans DE. In: Owen E, editor. Plant biology. 2nd ed. New York: Taylor & Francis group; 2005. p. 351.
-
(2005)
Plant Biology
, pp. 351
-
-
Lack, A.1
Evans, D.E.2
-
85
-
-
0000240315
-
Modelling of Photosynthetic Response to Environmental Conditions
-
Springer Berlin Heidelberg Berlin, Heidelberg Cited 13 Nov 2016
-
Farquhar GD, von Caemmerer S. Modelling of Photosynthetic Response to Environmental Conditions. In: Physiological Plant Ecology II. Berlin, Heidelberg: Springer Berlin Heidelberg; 1982. p. 549-87. Available from: http://link.springer.com/10.1007/978-3-642-68150-9-17. Cited 13 Nov 2016.
-
(1982)
Physiological Plant Ecology II
, pp. 549-587
-
-
Farquhar, G.D.1
Von Caemmerer, S.2
-
86
-
-
0000122289
-
A model describing the regulation of Ribulose-1,5-bisphosphate carboxylase, Electron transport, and triose phosphate use in response to light intensity and CO2 in C3 plants
-
1:CAS:528:DyaK3MXlvFSrsw%3D%3D 16667909 1077445
-
Sage RF. A model describing the regulation of Ribulose-1,5-bisphosphate carboxylase, Electron transport, and triose phosphate use in response to light intensity and CO2 in C3 plants. Plant Physiol. 1990;94(4):1728-34 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1077445&tool=pmcentrez&rendertype=abstract.
-
(1990)
Plant Physiol
, vol.94
, Issue.4
, pp. 1728-1734
-
-
Sage, R.F.1
-
87
-
-
84875973063
-
The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum
-
1:CAS:528:DC%2BC3sXlvVamurw%3D 23555215 3605104
-
Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol. 2013;9(3):e1002980.
-
(2013)
PLoS Comput Biol
, vol.9
, Issue.3
, pp. e1002980
-
-
Agren, R.1
Liu, L.2
Shoaie, S.3
Vongsangnak, W.4
Nookaew, I.5
Nielsen, J.6
-
88
-
-
79960422847
-
Genome sequence and analysis of the tuber crop potato
-
Potato Genome Sequencing Consortium 1:CAS:528:DC%2BC3MXos1Oms7s%3D
-
Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475(7355):189-95 Available from: http://www.nature.com/doifinder/10.1038/nature10158.
-
(2011)
Nature
, vol.475
, Issue.7355
, pp. 189-195
-
-
-
89
-
-
51049107514
-
Group contribution method for thermodynamic analysis of complex metabolic networks
-
1:CAS:528:DC%2BD1cXovFWhurg%3D 18645197 2479599
-
Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V. Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J. 2008;95(3):1487-99 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006349508702157.
-
(2008)
Biophys J
, vol.95
, Issue.3
, pp. 1487-1499
-
-
Jankowski, M.D.1
Henry, C.S.2
Broadbelt, L.J.3
Hatzimanikatis, V.4
-
90
-
-
85058280182
-
Minval: MINimal VALidation for Stoichiometric Reactions [Internet]
-
[cited 2016 Sep 1]
-
Osorio D, Gonzalez J, Pinzon-Velasco A. minval: MINimal VALidation for Stoichiometric Reactions [Internet]. The Comprehensive R Archive Network. 2016 [cited 2016 Sep 1]. Available from: https://cran.r-project.org/web/packages/minval/index.html
-
(2016)
The Comprehensive R Archive Network
-
-
Osorio, D.1
Gonzalez, J.2
Pinzon-Velasco, A.3
-
91
-
-
33644874819
-
From genomics to chemical genomics: New developments in KEGG
-
DATABASE ISSUE 1:CAS:528:DC%2BD28XisFyitw%3D%3D Cited 15 Nov 2016
-
Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;34(Database issue):D354-7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16381885. Cited 15 Nov 2016.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. D354-D357
-
-
Kanehisa, M.1
Goto, S.2
Hattori, M.3
Aoki-Kinoshita, K.F.4
Itoh, M.5
Kawashima, S.6
-
92
-
-
84858983547
-
KEGG for integration and interpretation of large-scale molecular data sets
-
1:CAS:528:DC%2BC3MXhs12htbrO 22080510 22080510
-
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40(D1):D109-14 Available from: http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkr988.
-
(2012)
Nucleic Acids Res
, vol.40
, Issue.D1
, pp. D109-D114
-
-
Kanehisa, M.1
Goto, S.2
Sato, Y.3
Furumichi, M.4
Tanabe, M.5
-
93
-
-
85058312791
-
-
Cited 8 May 2016
-
Plant Metabolic Network (PMN) [Internet]. Available from: http://pmn.plantcyc.org/POTATO/organism-summary on www.plantcyc.org. Cited 8 May 2016.
-
Plant Metabolic Network (PMN) [Internet]
-
-
-
96
-
-
85058307156
-
-
Bogota, Colombia
-
Botero K. Sot-g2f [Internet]. Bogota, Colombia; 2016. Available from: https://github.com/kellybotero/PotatoRecon/blob/master/Code/Sot-g2f.R
-
(2016)
Sot-g2f [Internet]
-
-
Botero, K.1
-
97
-
-
84861429699
-
EQuilibrator - The biochemical thermodynamics calculator
-
DATABASE ISSUE 1:CAS:528:DC%2BC3MXhs12hurjM 22064852 22064852 Cited 13 Nov 2016
-
Flamholz A, Noor E, Bar-Even A, Milo R. eQuilibrator - the biochemical thermodynamics calculator. Nucleic Acids Res. 2012;40(Database issue):D770-5 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22064852. Cited 13 Nov 2016.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. D770-D775
-
-
Flamholz, A.1
Noor, E.2
Bar-Even, A.3
Milo, R.4
-
98
-
-
84976877782
-
The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases
-
1:CAS:528:DC%2BC2sXhtV2nsrnJ
-
Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2014;44(D1):D471-80.
-
(2014)
Nucleic Acids Res
, vol.44
, Issue.D1
, pp. D471-D480
-
-
Caspi, R.1
Billington, R.2
Ferrer, L.3
Foerster, H.4
Fulcher, C.A.5
Keseler, I.M.6
-
99
-
-
85058305912
-
-
Bogota, Colombia
-
Botero K, Osorio D. Reversibility [Internet]. Bogota, Colombia; 2016. Available from: https://github.com/kellybotero/PotatoRecon/blob/master/Code/Reversibility.R
-
(2016)
Reversibility [Internet]
-
-
Botero, K.1
Osorio, D.2
-
101
-
-
84887364569
-
Sybil - Efficient Constrained Based Modelling in R
-
1:CAS:528:DC%2BC2cXmvVamsb0%3D
-
Gelius-Dietrich G. sybil - Efficient Constrained Based Modelling in R. BMC Syst Biol. 2013;7(1):42 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3843580&tool=pmcentrez&rendertype=abstract.
-
(2013)
BMC Syst Biol
, vol.7
, Issue.1
, pp. 42
-
-
Gelius-Dietrich, G.1
-
102
-
-
0027067571
-
Chemical composition of 24 wild species differing in relative growth rate
-
1:CAS:528:DyaK38XitlajsbY%3D Cited 13 Nov 2016
-
Poorter H, Bergkotte M. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 1992;15(2):221-9 Available from: http://doi.wiley.com/10.1111/j.1365-3040.1992.tb01476.x. Cited 13 Nov 2016.
-
(1992)
Plant Cell Environ
, vol.15
, Issue.2
, pp. 221-229
-
-
Poorter, H.1
Bergkotte, M.2
-
103
-
-
0028830857
-
Differential chemical allocation and plant adaptation: A Py-MS Study of 24 species differing in relative growth rate
-
1:CAS:528:DyaK2MXotFOltbc%3D Cited 13 Nov 13
-
Niemann GJ, JBM P, Eijkel GB, Poorter H, Boon JJ. Differential chemical allocation and plant adaptation: A Py-MS Study of 24 species differing in relative growth rate. Plant Soil. 1995;175(2):275-89 Available from: http://link.springer.com/10.1007/BF00011364. Cited 13 Nov 13.
-
(1995)
Plant Soil
, vol.175
, Issue.2
, pp. 275-289
-
-
Niemann, G.J.1
Jbm, P.2
Eijkel, G.B.3
Poorter, H.4
Boon, J.J.5
-
104
-
-
0025183708
-
Basic local alignment search tool
-
1:CAS:528:DyaK3MXitVGmsA%3D%3D 2231712 2231712 Cited 10 Jul 2014
-
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-10 Available from: http://www.ncbi.nlm.nih.gov/pubmed/2231712. Cited 10 Jul 2014.
-
(1990)
J Mol Biol
, vol.215
, Issue.3
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
105
-
-
85058269432
-
-
Potato Genome Sequencing Consortium [cited 2016 Sep 20]
-
Potato Genome Sequencing Consortium. SolTub-3.0 [Internet]. Available from: ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/226/075/GCF-000226075.1-SolTub-3.0 [cited 2016 Sep 20].
-
SolTub-3.0 [Internet]
-
-
-
106
-
-
85058275604
-
-
Botero K. Summarization [Internet]. 2016. Available from: https://github.com/kellybotero/PotatoRecon/blob/master/Code/summarization.R
-
(2016)
Summarization [Internet]
-
-
Botero, K.1
-
109
-
-
85058282324
-
Exp2flux: Convert Gene EXPression Data to FBA FLUXes [Internet]
-
[cited 2016 Sep 1]
-
Osorio D, Botero K, Gonzalez J, Pinzon A. exp2flux: Convert Gene EXPression Data to FBA FLUXes [Internet]. The Comprehensive R Archive Network. 2016. Available from: https://cran.r-project.org/web/packages/exp2flux/index.html. [cited 2016 Sep 1].
-
(2016)
The Comprehensive R Archive Network
-
-
Osorio, D.1
Botero, K.2
Gonzalez, J.3
Pinzon, A.4
-
110
-
-
84876716313
-
Comparing methods for metabolic network analysis and an application to metabolic engineering
-
Elsevier B.V.
-
Tomar N, De RK. Comparing methods for metabolic network analysis and an application to metabolic engineering. Gene. 2013;521:1-14 Elsevier B.V. Available from: https://doi.org/10.1016/j.gene.2013.03.017.
-
(2013)
Gene
, vol.521
, pp. 1-14
-
-
Tomar, N.1
De Rk2
|