-
1
-
-
77950649410
-
The global methane cycle: recent advances in understanding the microbial processes involved
-
Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep. 2009;1:285-92.
-
(2009)
Environ Microbiol Rep
, vol.1
, pp. 285-292
-
-
Conrad, R.1
-
2
-
-
84885369315
-
Natural gas from shale formation-the evolution, evidences and challenges of shale gas revolution in United States
-
Wang Q, Chen X, Jha AN, Rogers H. Natural gas from shale formation-the evolution, evidences and challenges of shale gas revolution in United States. Renew Sustain Energy Rev. 2014;30:1-28.
-
(2014)
Renew Sustain Energy Rev
, vol.30
, pp. 1-28
-
-
Wang, Q.1
Chen, X.2
Jha, A.N.3
Rogers, H.4
-
3
-
-
84878662310
-
Unconventional gas-a review of regional and global resource estimates
-
McGlade C, Speirs J, Sorrell S. Unconventional gas-a review of regional and global resource estimates. Energy. 2013;55:571-84.
-
(2013)
Energy
, vol.55
, pp. 571-584
-
-
McGlade, C.1
Speirs, J.2
Sorrell, S.3
-
4
-
-
79954619566
-
The rush to drill for natural gas: a public health cautionary tale
-
Finkel ML, Law A. The rush to drill for natural gas: a public health cautionary tale. Am J Public Health. 2011;101:784-5.
-
(2011)
Am J Public Health
, vol.101
, pp. 784-785
-
-
Finkel, M.L.1
Law, A.2
-
5
-
-
84880328015
-
Opportunity, challenges and policy choices for China on the development of shale gas
-
Hu D, Xu S. Opportunity, challenges and policy choices for China on the development of shale gas. Energy Policy. 2013;60:21-6.
-
(2013)
Energy Policy
, vol.60
, pp. 21-26
-
-
Hu, D.1
Xu, S.2
-
7
-
-
48749100254
-
Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane
-
Wegener G, Niemann H, Elvert M, Hinrichs KU, Boetius A. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ Microbiol. 2008;10:2287-98.
-
(2008)
Environ Microbiol
, vol.10
, pp. 2287-2298
-
-
Wegener, G.1
Niemann, H.2
Elvert, M.3
Hinrichs, K.U.4
Boetius, A.5
-
8
-
-
0018427427
-
Methane formation and methane oxidation by methanogenic bacteria
-
Zehnder AJ, Brock TD. Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol. 1979;137:420-32.
-
(1979)
J Bacteriol
, vol.137
, pp. 420-432
-
-
Zehnder, A.J.1
Brock, T.D.2
-
9
-
-
0033614388
-
Methane-consuming archaebacteria in marine sediments
-
Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF. Methane-consuming archaebacteria in marine sediments. Nature. 1999;398:802-5.
-
(1999)
Nature
, vol.398
, pp. 802-805
-
-
Hinrichs, K.U.1
Hayes, J.M.2
Sylva, S.P.3
Brewer, P.G.4
DeLong, E.F.5
-
10
-
-
0028583232
-
Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium
-
Hoehler TM, Alperin MJ, Albert DB, Martens CS. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles. 1994;8:451-63.
-
(1994)
Global Biogeochem Cycles
, vol.8
, pp. 451-463
-
-
Hoehler, T.M.1
Alperin, M.J.2
Albert, D.B.3
Martens, C.S.4
-
11
-
-
70349559191
-
Anaerobic oxidation of methane: progress with an unknown process
-
Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311-34.
-
(2009)
Annu Rev Microbiol
, vol.63
, pp. 311-334
-
-
Knittel, K.1
Boetius, A.2
-
12
-
-
47549119041
-
Methanogenic archaea: ecologically relevant differences in energy conservation
-
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008;6:579-91.
-
(2008)
Nat Rev Microbiol
, vol.6
, pp. 579-591
-
-
Thauer, R.K.1
Kaster, A.K.2
Seedorf, H.3
Buckel, W.4
Hedderich, R.5
-
13
-
-
84883548008
-
Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions
-
Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol. 2013;15:2395-417.
-
(2013)
Environ Microbiol
, vol.15
, pp. 2395-2417
-
-
Nazaries, L.1
Murrell, J.C.2
Millard, P.3
Baggs, L.4
Singh, B.K.5
-
14
-
-
0029845048
-
Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)
-
Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev. 1996;60:609-40.
-
(1996)
Microbiol Rev
, vol.60
, pp. 609-640
-
-
Conrad, R.1
-
16
-
-
4444257275
-
Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase
-
Lieberman RL, Rosenzweig AC. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol Biol. 2004;39:147-64.
-
(2004)
Crit Rev Biochem Mol Biol
, vol.39
, pp. 147-164
-
-
Lieberman, R.L.1
Rosenzweig, A.C.2
-
17
-
-
84899066005
-
Rethinking biological activation of methane and conversion to liquid fuels
-
Haynes CA, Gonzalez R. Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol. 2014;10:331-9.
-
(2014)
Nat Chem Biol
, vol.10
, pp. 331-339
-
-
Haynes, C.A.1
Gonzalez, R.2
-
18
-
-
84925507323
-
Methane oxidation by anaerobic archaea for conversion to liquid fuels
-
Mueller TJ, Grisewood MJ, Nazem-Bokaee H, Gopalakrishnan S, Ferry JG, Wood TK, Maranas CD. Methane oxidation by anaerobic archaea for conversion to liquid fuels. J Ind Microbiol Biotechnol. 2015;42:391-401.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 391-401
-
-
Mueller, T.J.1
Grisewood, M.J.2
Nazem-Bokaee, H.3
Gopalakrishnan, S.4
Ferry, J.G.5
Wood, T.K.6
Maranas, C.D.7
-
19
-
-
84883134016
-
Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
-
Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013;500:567-70.
-
(2013)
Nature
, vol.500
, pp. 567-570
-
-
Haroon, M.F.1
Hu, S.2
Shi, Y.3
Imelfort, M.4
Keller, J.5
Hugenholtz, P.6
Yuan, Z.7
Tyson, G.W.8
-
20
-
-
0034548842
-
New perspectives on anaerobic methane oxidation
-
Valentine DL, Reeburgh WS. New perspectives on anaerobic methane oxidation. Environ Microbiol. 2000;2:477-84.
-
(2000)
Environ Microbiol
, vol.2
, pp. 477-484
-
-
Valentine, D.L.1
Reeburgh, W.S.2
-
21
-
-
84899480182
-
Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways
-
Wang FP, Zhang Y, Chen Y, He Y, Qi J, Hinrichs KU, Zhang XX, Xiao X, Boon N. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J. 2014;8:1069-78.
-
(2014)
ISME J
, vol.8
, pp. 1069-1078
-
-
Wang, F.P.1
Zhang, Y.2
Chen, Y.3
He, Y.4
Qi, J.5
Hinrichs, K.U.6
Zhang, X.X.7
Xiao, X.8
Boon, N.9
-
22
-
-
77649174627
-
Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group
-
Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glockner FO, Reinhardt R, Amann R. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol. 2010;12:422-39.
-
(2010)
Environ Microbiol
, vol.12
, pp. 422-439
-
-
Meyerdierks, A.1
Kube, M.2
Kostadinov, I.3
Teeling, H.4
Glockner, F.O.5
Reinhardt, R.6
Amann, R.7
-
23
-
-
20144385037
-
Trace methane oxidation studied in several Euryarchaeota under diverse conditions
-
Moran JJ, House CH, Freeman KH, Ferry JG. Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea. 2005;1:303-9.
-
(2005)
Archaea
, vol.1
, pp. 303-309
-
-
Moran, J.J.1
House, C.H.2
Freeman, K.H.3
Ferry, J.G.4
-
24
-
-
34548354509
-
Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina
-
Moran JJ, House CH, Thomas B, Freeman KH. Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina. J Geophys Res Biogeosci 2007;112:G02011.
-
(2007)
J Geophys Res Biogeosci
, vol.112
, pp. G02011
-
-
Moran, J.J.1
House, C.H.2
Thomas, B.3
Freeman, K.H.4
-
26
-
-
41349105149
-
Methane as fuel for anaerobic microorganisms
-
Thauer RK, Shima S. Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci. 2008;1125:158-70.
-
(2008)
Ann N Y Acad Sci
, vol.1125
, pp. 158-170
-
-
Thauer, R.K.1
Shima, S.2
-
27
-
-
0036225678
-
The genome of M. acetivorans reveals extensive metabolic and physiological diversity
-
Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, et al. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 2002;12:532-42.
-
(2002)
Genome Res
, vol.12
, pp. 532-542
-
-
Galagan, J.E.1
Nusbaum, C.2
Roy, A.3
Endrizzi, M.G.4
Macdonald, P.5
FitzHugh, W.6
Calvo, S.7
Engels, R.8
Smirnov, S.9
Atnoor, D.10
-
28
-
-
84874110350
-
Genetic manipulation of Methanosarcina spp
-
Kohler PR, Metcalf WW. Genetic manipulation of Methanosarcina spp. Front Microbiol. 2012;3:259.
-
(2012)
Front Microbiol
, vol.3
, pp. 259
-
-
Kohler, P.R.1
Metcalf, W.W.2
-
29
-
-
0001477145
-
Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments
-
Sowers KR, Baron SF, Ferry JG. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol. 1984;47:971-8.
-
(1984)
Appl Environ Microbiol
, vol.47
, pp. 971-978
-
-
Sowers, K.R.1
Baron, S.F.2
Ferry, J.G.3
-
30
-
-
10044290566
-
Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon
-
Rother M, Metcalf WW. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA. 2004;101:16929-34.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 16929-16934
-
-
Rother, M.1
Metcalf, W.W.2
-
31
-
-
14844306724
-
Proteome of Methanosarcina acetivorans Part II: comparison of protein levels in acetate- and methanol-grown cells
-
Li Q, Li L, Rejtar T, Karger BL, Ferry JG. Proteome of Methanosarcina acetivorans Part II: comparison of protein levels in acetate- and methanol-grown cells. J Proteome Res. 2005;4:129-35.
-
(2005)
J Proteome Res
, vol.4
, pp. 129-135
-
-
Li, Q.1
Li, L.2
Rejtar, T.3
Karger, B.L.4
Ferry, J.G.5
-
32
-
-
14844326682
-
Proteome of Methanosarcina acetivorans Part I: an expanded view of the biology of the cell
-
Li Q, Li L, Rejtar T, Karger BL, Ferry JG. Proteome of Methanosarcina acetivorans Part I: an expanded view of the biology of the cell. J Proteome Res. 2005;4:112-28.
-
(2005)
J Proteome Res
, vol.4
, pp. 112-128
-
-
Li, Q.1
Li, L.2
Rejtar, T.3
Karger, B.L.4
Ferry, J.G.5
-
33
-
-
33845187184
-
2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics
-
2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc Natl Acad Sci USA. 2006;103:17921-6.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 17921-17926
-
-
Lessner, D.J.1
Li, L.2
Li, Q.3
Rejtar, T.4
Andreev, V.P.5
Reichlen, M.6
Hill, K.7
Moran, J.J.8
Karger, B.L.9
Ferry, J.G.10
-
34
-
-
33847369414
-
Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol
-
Li L, Li Q, Rohlin L, Kim U, Salmon K, Rejtar T, Gunsalus RP, Karger BL, Ferry JG. Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol. J Proteome Res. 2007;6:759-71.
-
(2007)
J Proteome Res
, vol.6
, pp. 759-771
-
-
Li, L.1
Li, Q.2
Rohlin, L.3
Kim, U.4
Salmon, K.5
Rejtar, T.6
Gunsalus, R.P.7
Karger, B.L.8
Ferry, J.G.9
-
35
-
-
79851515763
-
Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans
-
Satish Kumar V, Ferry JG, Maranas CD. Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans. BMC Syst Biol. 2011;5:28.
-
(2011)
BMC Syst Biol.
, vol.5
, pp. 28
-
-
Satish Kumar, V.1
Ferry, J.G.2
Maranas, C.D.3
-
36
-
-
84857080094
-
Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A
-
Benedict MN, Gonnerman MC, Metcalf WW, Price ND. Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A. J Bacteriol. 2012;194:855-65.
-
(2012)
J Bacteriol
, vol.194
, pp. 855-865
-
-
Benedict, M.N.1
Gonnerman, M.C.2
Metcalf, W.W.3
Price, N.D.4
-
37
-
-
84856402809
-
Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation
-
Schlegel K, Leone V, Faraldo-Gomez JD, Muller V. Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc Natl Acad Sci USA. 2012;109:947-52.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 947-952
-
-
Schlegel, K.1
Leone, V.2
Faraldo-Gomez, J.D.3
Muller, V.4
-
38
-
-
84870499112
-
Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex
-
Schlegel K, Welte C, Deppenmeier U, Muller V. Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. FEBS J. 2012;279:4444-52.
-
(2012)
FEBS J
, vol.279
, pp. 4444-4452
-
-
Schlegel, K.1
Welte, C.2
Deppenmeier, U.3
Muller, V.4
-
39
-
-
84873138724
-
Evolution of Na(+) and H(+) bioenergetics in methanogenic archaea
-
Schlegel K, Muller V. Evolution of Na(+) and H(+) bioenergetics in methanogenic archaea. Biochem Soc Trans. 2013;41:421-6.
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 421-426
-
-
Schlegel, K.1
Muller, V.2
-
40
-
-
84883511494
-
MrpA functions in energy conversion during acetate-dependent growth of Methanosarcina acetivorans
-
Jasso-Chavez R, Apolinario EE, Sowers KR, Ferry JG. MrpA functions in energy conversion during acetate-dependent growth of Methanosarcina acetivorans. J Bacteriol. 2013;195:3987-94.
-
(2013)
J Bacteriol
, vol.195
, pp. 3987-3994
-
-
Jasso-Chavez, R.1
Apolinario, E.E.2
Sowers, K.R.3
Ferry, J.G.4
-
41
-
-
84901370148
-
Characterization of the RnfB and RnfG subunits of the Rnf complex from the archaeon Methanosarcina acetivorans
-
Suharti S, Wang M, de Vries S, Ferry JG. Characterization of the RnfB and RnfG subunits of the Rnf complex from the archaeon Methanosarcina acetivorans. PLoS One. 2014;9:e97966.
-
(2014)
PLoS One
, vol.9
, pp. e97966
-
-
Suharti, S.1
Wang, M.2
Vries, S.3
Ferry, J.G.4
-
42
-
-
84901851838
-
Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens
-
Welte C, Deppenmeier U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta. 2014;1837:1130-47.
-
(2014)
Biochim Biophys Acta
, vol.1837
, pp. 1130-1147
-
-
Welte, C.1
Deppenmeier, U.2
-
43
-
-
38349120713
-
Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans
-
Moran JJ, House CH, Vrentas JM, Freeman KH. Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol. 2008;74:540-2.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 540-542
-
-
Moran, J.J.1
House, C.H.2
Vrentas, J.M.3
Freeman, K.H.4
-
44
-
-
84954182240
-
Reversing methanogenesis to capture methane for liquid biofuels precursors
-
Wood Tk, Soo V, McAnulty M, Tripathy A, Zhu F, Zhang L, Hatzakis E, Smith P, Agrawal S, Nazem-Bokaee H, et al. Reversing methanogenesis to capture methane for liquid biofuels precursors. Microb Cell Fact. 2015. doi: 10.1186/s12934-015-0397-z.
-
(2015)
Microb Cell Fact.
-
-
Wood, T.K.1
Soo, V.2
McAnulty, M.3
Tripathy, A.4
Zhu, F.5
Zhang, L.6
Hatzakis, E.7
Smith, P.8
Agrawal, S.9
Nazem-Bokaee, H.10
-
45
-
-
44349098671
-
Genetic analysis of the methanol- and methylamine-specific methyltransferase 2 genes of Methanosarcina acetivorans C2A
-
Bose A, Pritchett MA, Metcalf WW. Genetic analysis of the methanol- and methylamine-specific methyltransferase 2 genes of Methanosarcina acetivorans C2A. J Bacteriol. 2008;190:4017-26.
-
(2008)
J Bacteriol
, vol.190
, pp. 4017-4026
-
-
Bose, A.1
Pritchett, M.A.2
Metcalf, W.W.3
-
46
-
-
15944384321
-
Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species
-
Guss AM, Mukhopadhyay B, Zhang JK, Metcalf WW. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species. Mol Microbiol. 2005;55:1671-80.
-
(2005)
Mol Microbiol
, vol.55
, pp. 1671-1680
-
-
Guss, A.M.1
Mukhopadhyay, B.2
Zhang, J.K.3
Metcalf, W.W.4
-
47
-
-
84855441495
-
Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically
-
Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer RK, Ermler U. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature. 2012;481:98-101.
-
(2012)
Nature
, vol.481
, pp. 98-101
-
-
Shima, S.1
Krueger, M.2
Weinert, T.3
Demmer, U.4
Kahnt, J.5
Thauer, R.K.6
Ermler, U.7
-
48
-
-
38149077985
-
Methyl sulfides as intermediates in the anaerobic oxidation of methane
-
Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol. 2008;10:162-73.
-
(2008)
Environ Microbiol
, vol.10
, pp. 162-173
-
-
Moran, J.J.1
Beal, E.J.2
Vrentas, J.M.3
Orphan, V.J.4
Freeman, K.H.5
House, C.H.6
-
49
-
-
77953222884
-
The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane
-
Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature. 2010;465:606-8.
-
(2010)
Nature
, vol.465
, pp. 606-608
-
-
Scheller, S.1
Goenrich, M.2
Boecher, R.3
Thauer, R.K.4
Jaun, B.5
-
50
-
-
84865785024
-
Role of the fused corrinoid/methyl transfer protein CmtA during CO-dependent growth of Methanosarcina acetivorans
-
Vepachedu VR, Ferry JG. Role of the fused corrinoid/methyl transfer protein CmtA during CO-dependent growth of Methanosarcina acetivorans. J Bacteriol. 2012;194:4161-8.
-
(2012)
J Bacteriol
, vol.194
, pp. 4161-4168
-
-
Vepachedu, V.R.1
Ferry, J.G.2
-
51
-
-
0023932844
-
Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila
-
Terlesky KC, Ferry JG. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J Biol Chem. 1988;263:4075-9.
-
(1988)
J Biol Chem
, vol.263
, pp. 4075-4079
-
-
Terlesky, K.C.1
Ferry, J.G.2
-
52
-
-
84871712835
-
Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation
-
Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta. 2013;1827:94-113.
-
(2013)
Biochim Biophys Acta
, vol.1827
, pp. 94-113
-
-
Buckel, W.1
Thauer, R.K.2
-
53
-
-
79952588675
-
Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea
-
Kaster AK, Moll J, Parey K, Thauer RK. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci USA. 2011;108:2981-6.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 2981-2986
-
-
Kaster, A.K.1
Moll, J.2
Parey, K.3
Thauer, R.K.4
-
54
-
-
30744460928
-
Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans
-
Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, Ferry JG. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol. 2006;188:702-10.
-
(2006)
J Bacteriol
, vol.188
, pp. 702-710
-
-
Li, Q.1
Li, L.2
Rejtar, T.3
Lessner, D.J.4
Karger, B.L.5
Ferry, J.G.6
-
55
-
-
67650430046
-
Manganese- and iron-dependent marine methane oxidation
-
Beal EJ, House CH, Orphan VJ. Manganese- and iron-dependent marine methane oxidation. Science. 2009;325:184-7.
-
(2009)
Science
, vol.325
, pp. 184-187
-
-
Beal, E.J.1
House, C.H.2
Orphan, V.J.3
-
56
-
-
0021930747
-
Production and Consumption of H(2) during Growth of Methanosarcina spp. on Acetate
-
Lovley DR, Ferry JG. Production and Consumption of H(2) during Growth of Methanosarcina spp. on Acetate. Appl Environ Microbiol. 1985;49:247-9.
-
(1985)
Appl Environ Microbiol
, vol.49
, pp. 247-249
-
-
Lovley, D.R.1
Ferry, J.G.2
-
57
-
-
57049098094
-
Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels
-
Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol. 2008;19:556-63.
-
(2008)
Curr Opin Biotechnol
, vol.19
, pp. 556-563
-
-
Lee, S.K.1
Chou, H.2
Ham, T.S.3
Lee, T.S.4
Keasling, J.D.5
-
58
-
-
53049097710
-
Metabolic engineering of Escherichia coli for 1-butanol production
-
Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng. 2008;10:305-11.
-
(2008)
Metab Eng
, vol.10
, pp. 305-311
-
-
Atsumi, S.1
Cann, A.F.2
Connor, M.R.3
Shen, C.R.4
Smith, K.M.5
Brynildsen, M.P.6
Chou, K.J.7
Hanai, T.8
Liao, J.C.9
-
59
-
-
70349427105
-
Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli
-
Atsumi S, Li Z, Liao JC. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol. 2009;75:6306-11.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 6306-6311
-
-
Atsumi, S.1
Li, Z.2
Liao, J.C.3
-
60
-
-
84912569105
-
An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models
-
Chindelevitch L, Trigg J, Regev A, Berger B. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models. Nat Commun. 2014;5:4893.
-
(2014)
Nat Commun
, vol.5
, pp. 4893
-
-
Chindelevitch, L.1
Trigg, J.2
Regev, A.3
Berger, B.4
-
62
-
-
79551662521
-
Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
-
Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc. 2011;6:1290-307.
-
(2011)
Nat Protoc
, vol.6
, pp. 1290-1307
-
-
Schellenberger, J.1
Que, R.2
Fleming, R.M.3
Thiele, I.4
Orth, J.D.5
Feist, A.M.6
Zielinski, D.C.7
Bordbar, A.8
Lewis, N.E.9
Rahmanian, S.10
-
63
-
-
1642457253
-
The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
-
Mahadevan R, Schilling CH. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng. 2003;5:264-76.
-
(2003)
Metab Eng
, vol.5
, pp. 264-276
-
-
Mahadevan, R.1
Schilling, C.H.2
-
64
-
-
0031877180
-
Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants
-
Alberty RA. Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants. Arch Biochem Biophys. 1998;353:116-30.
-
(1998)
Arch Biochem Biophys
, vol.353
, pp. 116-130
-
-
Alberty, R.A.1
-
65
-
-
0032919364
-
KEGG: Kyoto Encyclopedia of genes and genomes
-
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29-34.
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 29-34
-
-
Ogata, H.1
Goto, S.2
Sato, K.3
Fujibuchi, W.4
Bono, H.5
Kanehisa, M.6
-
66
-
-
84860490976
-
The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases
-
Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2012;40:D742-53.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. D742-D753
-
-
Caspi, R.1
Altman, T.2
Dreher, K.3
Fulcher, C.A.4
Subhraveti, P.5
Keseler, I.M.6
Kothari, A.7
Krummenacker, M.8
Latendresse, M.9
Mueller, L.A.10
-
67
-
-
84876522835
-
BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA
-
Schomburg I, Chang A, Placzek S, Sohngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A, et al. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res. 2013;41:D764-72.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. D764-D772
-
-
Schomburg, I.1
Chang, A.2
Placzek, S.3
Sohngen, C.4
Rother, M.5
Lang, M.6
Munaretto, C.7
Ulas, S.8
Stelzer, M.9
Grote, A.10
-
68
-
-
33846040629
-
TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels
-
Ren Q, Chen K, Paulsen IT. TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res. 2007;35:D274-9.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. D274-D279
-
-
Ren, Q.1
Chen, K.2
Paulsen, I.T.3
-
69
-
-
65649090256
-
Improved approach for transferring and cultivating Methanosarcina acetivorans C2A (DSM 2834)
-
Summer H. Improved approach for transferring and cultivating Methanosarcina acetivorans C2A (DSM 2834). Lett Appl Microbiol. 2009;48:786-9.
-
(2009)
Lett Appl Microbiol
, vol.48
, pp. 786-789
-
-
Summer, H.1
-
70
-
-
76449096786
-
Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase
-
Buan NR, Metcalf WW. Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase. Mol Microbiol. 2010;75:843-53.
-
(2010)
Mol Microbiol
, vol.75
, pp. 843-853
-
-
Buan, N.R.1
Metcalf, W.W.2
-
71
-
-
65949098426
-
In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans
-
Oelgeschlager E, Rother M. In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans. Mol Microbiol. 2009;72:1260-72.
-
(2009)
Mol Microbiol
, vol.72
, pp. 1260-1272
-
-
Oelgeschlager, E.1
Rother, M.2
-
72
-
-
34249789024
-
Class I and class II lysyl-tRNA synthetase mutants and the genetic encoding of pyrrolysine in Methanosarcina spp
-
Mahapatra A, Srinivasan G, Richter KB, Meyer A, Lienard T, Zhang JK, Zhao G, Kang PT, Chan M, Gottschalk G, et al. Class I and class II lysyl-tRNA synthetase mutants and the genetic encoding of pyrrolysine in Methanosarcina spp. Mol Microbiol. 2007;64:1306-18.
-
(2007)
Mol Microbiol
, vol.64
, pp. 1306-1318
-
-
Mahapatra, A.1
Srinivasan, G.2
Richter, K.B.3
Meyer, A.4
Lienard, T.5
Zhang, J.K.6
Zhao, G.7
Kang, P.T.8
Chan, M.9
Gottschalk, G.10
-
73
-
-
23644446168
-
Methanol-dependent gene expression demonstrates that methyl-coenzyme M reductase is essential in Methanosarcina acetivorans C2A and allows isolation of mutants with defects in regulation of the methanol utilization pathway
-
Rother M, Boccazzi P, Bose A, Pritchett MA, Metcalf WW. Methanol-dependent gene expression demonstrates that methyl-coenzyme M reductase is essential in Methanosarcina acetivorans C2A and allows isolation of mutants with defects in regulation of the methanol utilization pathway. J Bacteriol. 2005;187:5552-9.
-
(2005)
J Bacteriol
, vol.187
, pp. 5552-5559
-
-
Rother, M.1
Boccazzi, P.2
Bose, A.3
Pritchett, M.A.4
Metcalf, W.W.5
|