메뉴 건너뛰기




Volumn 216, Issue 3, 2017, Pages 682-698

Towards CRISPR/CAS crops – Bringing together genomics and genome editing

Author keywords

Breeding; Cas; CRISPR; Crops; Gene targeting (GT); Genome editing; Targeted mutagenesis

Indexed keywords

CLIMATE CHANGE; CROP IMPROVEMENT; CROP PLANT; CROP YIELD; GENE EXPRESSION; GENOME; GENOMICS; HIGH YIELDING VARIETY; PROTEIN; RECOMBINATION; TOLERANCE;

EID: 85026510003     PISSN: 0028646X     EISSN: 14698137     Source Type: Journal    
DOI: 10.1111/nph.14702     Document Type: Review
Times cited : (223)

References (152)
  • 10
    • 84920262090 scopus 로고    scopus 로고
    • The CRISPR/Cas9 system for plant genome editing and beyond
    • Bortesi L, Fischer R. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33:41–52.
    • (2015) Biotechnology Advances , vol.33 , pp. 41-52
    • Bortesi, L.1    Fischer, R.2
  • 11
    • 84888877924 scopus 로고    scopus 로고
    • Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
    • Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods 10: 1213–1218.
    • (2013) Nature Methods , vol.10 , pp. 1213-1218
    • Buenrostro, J.D.1    Giresi, P.G.2    Zaba, L.C.3    Chang, H.Y.4    Greenleaf, W.J.5
  • 12
    • 85062743471 scopus 로고    scopus 로고
    • Plants with novel traits. [WWW document], [accessed 8 May 2017]
    • Canadian Food Inspection Agency. 2016. Plants with novel traits. [WWW document] URL http://www.inspection.gc.ca/plants/plants-with-novel-traits/eng/1300137887237/1300137939635 [accessed 8 May 2017].
    • (2016)
  • 13
    • 77950638129 scopus 로고    scopus 로고
    • Peer-reviewed surveys indicate positive impact of commercialized GM crops
    • Carpenter JE. 2010. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nature Biotechnology 28: 319–321.
    • (2010) Nature Biotechnology , vol.28 , pp. 319-321
    • Carpenter, J.E.1
  • 17
    • 40949130394 scopus 로고    scopus 로고
    • Marker-assisted selection: An approach for precision plant breeding in the twenty-first century
    • Collard BC, Mackill DJ. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B 363: 557–572.
    • (2008) Philosophical Transactions of the Royal Society B , vol.363 , pp. 557-572
    • Collard, B.C.1    Mackill, D.J.2
  • 20
    • 0035984717 scopus 로고    scopus 로고
    • Molecular strategies for gene containment in transgenic crops
    • Daniell H. 2002. Molecular strategies for gene containment in transgenic crops. Nature Biotechnology 20: 581–586.
    • (2002) Nature Biotechnology , vol.20 , pp. 581-586
    • Daniell, H.1
  • 23
    • 84906943620 scopus 로고    scopus 로고
    • Genomic selection: Genome-wide prediction in plant improvement
    • Desta ZA, Ortiz R. 2014. Genomic selection: genome-wide prediction in plant improvement. Trends in Plant Science 19: 592–601.
    • (2014) Trends in Plant Science , vol.19 , pp. 592-601
    • Desta, Z.A.1    Ortiz, R.2
  • 24
    • 33845618112 scopus 로고    scopus 로고
    • The molecular genetics of crop domestication
    • Doebley JF, Gaut BS, Smith BD. 2006. The molecular genetics of crop domestication. Cell 127: 1309–1321.
    • (2006) Cell , vol.127 , pp. 1309-1321
    • Doebley, J.F.1    Gaut, B.S.2    Smith, B.D.3
  • 25
    • 84978259349 scopus 로고    scopus 로고
    • The impact of genomics technology on adapting plants to climate change
    • Edwards D, Batley J, eds., New York, NY, USA: Springer
    • Edwards D. 2016. The impact of genomics technology on adapting plants to climate change. In: Edwards D, Batley J, eds. Plant genomics and climate change. New York, NY, USA: Springer, 173–178.
    • (2016) Plant Genomics and Climate Change , pp. 173-178
    • Edwards, D.1
  • 27
    • 84971006580 scopus 로고    scopus 로고
    • High efficiency of targeted mutagenesis in Arabidopsis via meiotic promoter-driven expression of Cas9 endonuclease
    • Eid A, Ali Z, Mahfouz MM. 2016. High efficiency of targeted mutagenesis in Arabidopsis via meiotic promoter-driven expression of Cas9 endonuclease. Plant Cell Reports 35: 1555–1558.
    • (2016) Plant Cell Reports , vol.35 , pp. 1555-1558
    • Eid, A.1    Ali, Z.2    Mahfouz, M.M.3
  • 29
    • 84904068340 scopus 로고    scopus 로고
    • Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana
    • Fauser F, Schiml S, Puchta H. 2014. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant Journal 79: 348–359.
    • (2014) Plant Journal , vol.79 , pp. 348-359
    • Fauser, F.1    Schiml, S.2    Puchta, H.3
  • 39
    • 84893287073 scopus 로고    scopus 로고
    • E-CRISP: Fast CRISPR target site identification
    • Heigwer F, Kerr G, Boutros M. 2014. E-CRISP: fast CRISPR target site identification. Nature Methods 11: 122–124.
    • (2014) Nature Methods , vol.11 , pp. 122-124
    • Heigwer, F.1    Kerr, G.2    Boutros, M.3
  • 42
    • 84892553666 scopus 로고    scopus 로고
    • Genetic engineering and breeding of drought-resistant crops
    • Hu HH, Xiong LZ. 2014. Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology 65: 715–741.
    • (2014) Annual Review of Plant Biology , vol.65 , pp. 715-741
    • Hu, H.H.1    Xiong, L.Z.2
  • 44
    • 84973539348 scopus 로고    scopus 로고
    • CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection
    • Iaffaldano B, Zhang YX, Cornish K. 2016. CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection. Industrial Crops and Products 89: 356–362.
    • (2016) Industrial Crops and Products , vol.89 , pp. 356-362
    • Iaffaldano, B.1    Zhang, Y.X.2    Cornish, K.3
  • 46
    • 34447093550 scopus 로고    scopus 로고
    • Agrobacterium-mediated transformation of maize
    • Ishida Y, Hiei Y, Komari T. 2007. Agrobacterium-mediated transformation of maize. Nature Protocols 2: 1614–1621.
    • (2007) Nature Protocols , vol.2 , pp. 1614-1621
    • Ishida, Y.1    Hiei, Y.2    Komari, T.3
  • 49
    • 84947775797 scopus 로고    scopus 로고
    • Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants
    • Ji X, Zhang HW, Zhang Y, Wang YP, Gao CX. 2015. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nature Plants 1: 15 144.
    • (2015) Nature Plants , vol.1 , pp. 15 144
    • Ji, X.1    Zhang, H.W.2    Zhang, Y.3    Wang, Y.P.4    Gao, C.X.5
  • 50
    • 84886926151 scopus 로고    scopus 로고
    • Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
    • Jiang WZ, Zhou HB, Bi HH, Fromm M, Yang B, Weeks DP. 2013. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41: e188.
    • (2013) Nucleic Acids Research , vol.41 , pp. e188
    • Jiang, W.Z.1    Zhou, H.B.2    Bi, H.H.3    Fromm, M.4    Yang, B.5    Weeks, D.P.6
  • 51
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 53
    • 84898665052 scopus 로고    scopus 로고
    • Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
    • Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology 32: 267–273.
    • (2014) Nature Biotechnology , vol.32 , pp. 267-273
    • Koike-Yusa, H.1    Li, Y.2    Tan, E.P.3    Velasco-Herrera Mdel, C.4    Yusa, K.5
  • 54
    • 84971006562 scopus 로고    scopus 로고
    • Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
    • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533: 420–424.
    • (2016) Nature , vol.533 , pp. 420-424
    • Komor, A.C.1    Kim, Y.B.2    Packer, M.S.3    Zuris, J.A.4    Liu, D.R.5
  • 58
    • 84863275797 scopus 로고    scopus 로고
    • Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases
    • Lee HJ, Kweon J, Kim E, Kim S, Kim JS. 2012. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Research 22: 539–548.
    • (2012) Genome Research , vol.22 , pp. 539-548
    • Lee, H.J.1    Kweon, J.2    Kim, E.3    Kim, S.4    Kim, J.S.5
  • 60
  • 61
    • 84883785822 scopus 로고    scopus 로고
    • Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
    • Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31: 688–691.
    • (2013) Nature Biotechnology , vol.31 , pp. 688-691
    • Li, J.-F.1    Norville, J.E.2    Aach, J.3    McCormack, M.4    Zhang, D.5    Bush, J.6    Church, G.M.7    Sheen, J.8
  • 67
    • 84938748218 scopus 로고    scopus 로고
    • A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants
    • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y et al. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8: 1274–1284.
    • (2015) Molecular Plant , vol.8 , pp. 1274-1284
    • Ma, X.1    Zhang, Q.2    Zhu, Q.3    Liu, W.4    Chen, Y.5    Qiu, R.6    Wang, B.7    Yang, Z.8    Li, H.9    Lin, Y.10
  • 68
    • 84964620180 scopus 로고    scopus 로고
    • Crop diversity: An unexploited treasure trove for food security
    • Massawe F, Mayes S, Cheng A. 2016. Crop diversity: an unexploited treasure trove for food security. Trends in Plant Science 21: 365–368.
    • (2016) Trends in Plant Science , vol.21 , pp. 365-368
    • Massawe, F.1    Mayes, S.2    Cheng, A.3
  • 69
    • 0030840596 scopus 로고    scopus 로고
    • Agricultural intensification and ecosystem properties
    • Matson PA, Parton WJ, Power AG, Swift MJ. 1997. Agricultural intensification and ecosystem properties. Science 277: 504–509.
    • (1997) Science , vol.277 , pp. 504-509
    • Matson, P.A.1    Parton, W.J.2    Power, A.G.3    Swift, M.J.4
  • 72
    • 84925141106 scopus 로고    scopus 로고
    • Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability
    • Mickelbart MV, Hasegawa PM, Bailey-Serres J. 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics 16: 237–251.
    • (2015) Nature Reviews Genetics , vol.16 , pp. 237-251
    • Mickelbart, M.V.1    Hasegawa, P.M.2    Bailey-Serres, J.3
  • 73
    • 84971507156 scopus 로고    scopus 로고
    • Precision targeted mutagenesis via Cas9 paired nickases in rice
    • Mikami M, Toki S, Endo M. 2016. Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant and Cell Physiology 57: 1058–1068.
    • (2016) Plant and Cell Physiology , vol.57 , pp. 1058-1068
    • Mikami, M.1    Toki, S.2    Endo, M.3
  • 74
    • 77955126385 scopus 로고    scopus 로고
    • Production of the cancer-preventive glucoraphanin in tobacco
    • Mikkelsen MD, Olsen CE, Halkier BA. 2010. Production of the cancer-preventive glucoraphanin in tobacco. Molecular Plant 3: 751–759.
    • (2010) Molecular Plant , vol.3 , pp. 751-759
    • Mikkelsen, M.D.1    Olsen, C.E.2    Halkier, B.A.3
  • 76
    • 84883828590 scopus 로고    scopus 로고
    • Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease
    • Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology 31: 691–693.
    • (2013) Nature Biotechnology , vol.31 , pp. 691-693
    • Nekrasov, V.1    Staskawicz, B.2    Weigel, D.3    Jones, J.D.G.4    Kamoun, S.5
  • 77
    • 85016748230 scopus 로고    scopus 로고
    • Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion
    • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S. 2017. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports 7: 482.
    • (2017) Scientific Reports , vol.7 , pp. 482
    • Nekrasov, V.1    Wang, C.2    Win, J.3    Lanz, C.4    Weigel, D.5    Kamoun, S.6
  • 82
    • 34047128282 scopus 로고    scopus 로고
    • Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining
    • Pacher M, Schmidt-Puchta W, Puchta H. 2007. Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175:21–29.
    • (2007) Genetics , vol.175 , pp. 21-29
    • Pacher, M.1    Schmidt-Puchta, W.2    Puchta, H.3
  • 84
    • 84884155038 scopus 로고    scopus 로고
    • High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
    • Pattanayak V, Lin S, Guilinger JP, Ma EB, Doudna JA, Liu DR. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology 31: 839–843.
    • (2013) Nature Biotechnology , vol.31 , pp. 839-843
    • Pattanayak, V.1    Lin, S.2    Guilinger, J.P.3    Ma, E.B.4    Doudna, J.A.5    Liu, D.R.6
  • 86
    • 85058912006 scopus 로고    scopus 로고
    • Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus
    • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal 10: 1011–1013.
    • (2017) Plant Biotechnology Journal , vol.10 , pp. 1011-1013
    • Peng, A.1    Chen, S.2    Lei, T.3    Xu, L.4    He, Y.5    Wu, L.6    Yao, L.7    Zou, X.8
  • 88
    • 11444267813 scopus 로고    scopus 로고
    • The repair of double-strand breaks in plants: Mechanisms and consequences for genome evolution
    • Puchta H. 2005. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. Journal of Experimental Botany 56:1–14.
    • (2005) Journal of Experimental Botany , vol.56 , pp. 1-14
    • Puchta, H.1
  • 89
    • 85027953332 scopus 로고    scopus 로고
    • Using CRISPR/Cas in three dimensions: Towards synthetic plant genomes, transcriptomes and epigenomes
    • Puchta H. 2016. Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant Journal 87:5–15.
    • (2016) Plant Journal , vol.87 , pp. 5-15
    • Puchta, H.1
  • 90
    • 84999711685 scopus 로고    scopus 로고
    • Applying CRISPR/Cas for genome engineering in plants: The best is yet to come
    • Puchta H. 2017. Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Current Opinion in Plant Biology 36:1–8.
    • (2017) Current Opinion in Plant Biology , vol.36 , pp. 1-8
    • Puchta, H.1
  • 91
    • 84991826622 scopus 로고    scopus 로고
    • High-efficiency CRISPR/ Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize
    • Qi W, Zhu T, Tian Z, Li C, Zhang W, Song R. 2016. High-efficiency CRISPR/ Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnology 16: 58.
    • (2016) BMC Biotechnology , vol.16 , pp. 58
    • Qi, W.1    Zhu, T.2    Tian, Z.3    Li, C.4    Zhang, W.5    Song, R.6
  • 94
    • 84907331721 scopus 로고    scopus 로고
    • Expansion of the CRISPR-Cas9 genome targeting space through the use of H1 promoter-expressed guide RNAs
    • Ranganathan V, Wahlin K, Maruotti J, Zack DJ. 2014. Expansion of the CRISPR-Cas9 genome targeting space through the use of H1 promoter-expressed guide RNAs. Nature Communications 5: 4516.
    • (2014) Nature Communications , vol.5 , pp. 4516
    • Ranganathan, V.1    Wahlin, K.2    Maruotti, J.3    Zack, D.J.4
  • 95
    • 84879248721 scopus 로고    scopus 로고
    • Yield trends are insufficient to double global crop production by 2050
    • Ray DK, Mueller ND, West PC, Foley JA. 2013. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8: e66428.
    • (2013) Plos ONE , vol.8
    • Ray, D.K.1    Mueller, N.D.2    West, P.C.3    Foley, J.A.4
  • 99
    • 84966293747 scopus 로고    scopus 로고
    • CRISPR-directed mitotic recombination enables genetic mapping without crosses
    • Sadhu MJ, Bloom JS, Day L, Kruglyak L. 2016. CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science 352: 1113–1116.
    • (2016) Science , vol.352 , pp. 1113-1116
    • Sadhu, M.J.1    Bloom, J.S.2    Day, L.3    Kruglyak, L.4
  • 101
    • 84941956073 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field
    • Schaeffer SM, Nakata PA. 2015. CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Science 240: 130–142.
    • (2015) Plant Science , vol.240 , pp. 130-142
    • Schaeffer, S.M.1    Nakata, P.A.2
  • 102
    • 85015246013 scopus 로고    scopus 로고
    • Genome editors take on crops
    • Scheben A, Edwards D. 2017. Genome editors take on crops. Science 355: 1122–1123.
    • (2017) Science , vol.355 , pp. 1122-1123
    • Scheben, A.1    Edwards, D.2
  • 103
    • 84916624400 scopus 로고    scopus 로고
    • The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny
    • Schiml S, Fauser F, Puchta H. 2014. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant Journal 80: 1139–1150.
    • (2014) Plant Journal , vol.80 , pp. 1139-1150
    • Schiml, S.1    Fauser, F.2    Puchta, H.3
  • 104
    • 84976505796 scopus 로고    scopus 로고
    • Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes
    • Schiml S, Fauser F, Puchta H. 2016. Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes. Proceedings of the National Academy of Sciences, USA 113: 7266–7271.
    • (2016) Proceedings of the National Academy of Sciences, USA , vol.113 , pp. 7266-7271
    • Schiml, S.1    Fauser, F.2    Puchta, H.3
  • 105
    • 84965029312 scopus 로고    scopus 로고
    • Genome editing: Intellectual property and product development in plant biotechnology
    • Schinkel H, Schillberg S. 2016. Genome editing: intellectual property and product development in plant biotechnology. Plant Cell Reports 35: 1487–1491.
    • (2016) Plant Cell Reports , vol.35 , pp. 1487-1491
    • Schinkel, H.1    Schillberg, S.2
  • 106
    • 84907378170 scopus 로고    scopus 로고
    • New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: Example pennycress (Thlaspi arvense L.)
    • Sedbrook JC, Phippen WB, Marks MD. 2014. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Plant Science 227: 122–132.
    • (2014) Plant Science , vol.227 , pp. 122-132
    • Sedbrook, J.C.1    Phippen, W.B.2    Marks, M.D.3
  • 109
    • 84893164517 scopus 로고    scopus 로고
    • High-Throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop
    • Shapter FM, Cross M, Ablett G, Malory S, Chivers IH, King GJ, Henry RJ. 2013. High-Throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop. PLoS ONE 8: e82641.
    • (2013) Plos ONE , vol.8
    • Shapter, F.M.1    Cross, M.2    Ablett, G.3    Malory, S.4    Chivers, I.H.5    King, G.J.6    Henry, R.J.7
  • 110
    • 85006371362 scopus 로고    scopus 로고
    • Engineering chloroplasts to improve Rubisco catalysis: Prospects for translating improvements into food and fiber crops
    • Sharwood RE. 2017. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. New Phytologist 213: 494–510.
    • (2017) New Phytologist , vol.213 , pp. 494-510
    • Sharwood, R.E.1
  • 115
    • 0023948705 scopus 로고
    • Mapping protein-DNA interactions in vivo with formaldehyde: Evidence that histone H4 is retained on a highly transcribed gene
    • Solomon MJ, Larsen PL, Varshavsky A. 1988. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53: 937–947.
    • (1988) Cell , vol.53 , pp. 937-947
    • Solomon, M.J.1    Larsen, P.L.2    Varshavsky, A.3
  • 117
    • 84961350912 scopus 로고    scopus 로고
    • Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus
    • Steinert J, Schiml S, Fauser F, Puchta H. 2015. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant Journal 84: 1295–1305.
    • (2015) Plant Journal , vol.84 , pp. 1295-1305
    • Steinert, J.1    Schiml, S.2    Fauser, F.3    Puchta, H.4
  • 118
    • 84962407106 scopus 로고    scopus 로고
    • Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase
    • Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L. 2016. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant 9: 628–631.
    • (2016) Molecular Plant , vol.9 , pp. 628-631
    • Sun, Y.1    Zhang, X.2    Wu, C.3    He, Y.4    Ma, Y.5    Hou, H.6    Guo, X.7    Du, W.8    Zhao, Y.9    Xia, L.10
  • 120
    • 84942901283 scopus 로고    scopus 로고
    • Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA
    • Svitashev S, Young JK, Schwartz C, Gao HR, Falco SC, Cigan AM. 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology 169: 931–945.
    • (2015) Plant Physiology , vol.169 , pp. 931-945
    • Svitashev, S.1    Young, J.K.2    Schwartz, C.3    Gao, H.R.4    Falco, S.C.5    Cigan, A.M.6
  • 127
    • 84992743464 scopus 로고    scopus 로고
    • Methods for optimizing CRISPR-Cas9 genome editing specificity
    • Tycko J, Myer VE, Hsu PD. 2016. Methods for optimizing CRISPR-Cas9 genome editing specificity. Molecular Cell 63: 355–370.
    • (2016) Molecular Cell , vol.63 , pp. 355-370
    • Tycko, J.1    Myer, V.E.2    Hsu, P.D.3
  • 130
    • 84997406501 scopus 로고    scopus 로고
    • CRISPR-edited crops free to enter market, skip regulation
    • Waltz E. 2016. CRISPR-edited crops free to enter market, skip regulation. Nature Biotechnology 34: 582.
    • (2016) Nature Biotechnology , vol.34 , pp. 582
    • Waltz, E.1
  • 131
    • 84977500985 scopus 로고    scopus 로고
    • Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the erf transcription factor gene OsERF922
    • Wang FJ, Wang CL, Liu PQ, Lei CL, Hao W, Gao Y, Liu YG, Zhao KJ. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the erf transcription factor gene OsERF922. PLoS ONE 11: e0154027.
    • (2016) Plos ONE , vol.11
    • Wang, F.J.1    Wang, C.L.2    Liu, P.Q.3    Lei, C.L.4    Hao, W.5    Gao, Y.6    Liu, Y.G.7    Zhao, K.J.8
  • 132
    • 85017390010 scopus 로고    scopus 로고
    • Multiplex gene editing in rice using the CRISPR-Cpf1 system
    • Wang M, Mao Y, Lu Y, Tao X, Zhu J-k. 2017. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Molecular Plant 10: 1011–1013.
    • (2017) Molecular Plant , vol.10 , pp. 1011-1013
    • Wang, M.1    Mao, Y.2    Lu, Y.3    Tao, X.4    J-K, Z.5
  • 133
    • 84921934205 scopus 로고    scopus 로고
    • Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
    • Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32: 947–951.
    • (2014) Nature Biotechnology , vol.32 , pp. 947-951
    • Wang, Y.P.1    Cheng, X.2    Shan, Q.W.3    Zhang, Y.4    Liu, J.X.5    Gao, C.X.6    Qiu, J.L.7
  • 134
    • 84937568562 scopus 로고    scopus 로고
    • Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation
    • Wang Z-P, Xing H-L, Dong L, Zhang H-Y, Han C-Y, Wang X-C, Chen Q-J. 2015. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology 16: 144.
    • (2015) Genome Biology , vol.16 , pp. 144
    • Wang, Z.-P.1    Xing, H.-L.2    Dong, L.3    Zhang, H.-Y.4    Han, C.-Y.5    Wang, X.-C.6    Chen, Q.-J.7
  • 137
    • 85019131232 scopus 로고    scopus 로고
    • Characterization of paired Cas9 nickases induced mutations in maize mesophyll protoplasts
    • Wolter F, Edelmann S, Kadri A, Scholten S. 2017. Characterization of paired Cas9 nickases induced mutations in maize mesophyll protoplasts. Maydica 62: 1–11.
    • (2017) Maydica , vol.62 , pp. 1-11
    • Wolter, F.1    Edelmann, S.2    Kadri, A.3    Scholten, S.4
  • 138
    • 85014106736 scopus 로고    scopus 로고
    • Knocking out consumer concerns and regulator’s rules: Efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals
    • Wolter F, Puchta H. 2017. Knocking out consumer concerns and regulator’s rules: efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biology 18: 43.
    • (2017) Genome Biology , vol.18 , pp. 43
    • Wolter, F.1    Puchta, H.2
  • 140
    • 84925262435 scopus 로고    scopus 로고
    • Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system
    • Xie K, Minkenberg B, Yang Y. 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences, USA 112: 3570–3575.
    • (2015) Proceedings of the National Academy of Sciences, USA , vol.112 , pp. 3570-3575
    • Xie, K.1    Minkenberg, B.2    Yang, Y.3
  • 141
    • 84899895901 scopus 로고    scopus 로고
    • Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops
    • Xie K, Zhang J, Yang Y. 2014. Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Molecular Plant 7: 923–926.
    • (2014) Molecular Plant , vol.7 , pp. 923-926
    • Xie, K.1    Zhang, J.2    Yang, Y.3
  • 143
    • 84947723842 scopus 로고    scopus 로고
    • High-Efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system
    • Yan L, Wei S, Wu Y, Hu R, Li H, Yang W, Xie Q. 2015. High-Efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Molecular Plant 8: 1820–1823.
    • (2015) Molecular Plant , vol.8 , pp. 1820-1823
    • Yan, L.1    Wei, S.2    Wu, Y.3    Hu, R.4    Li, H.5    Yang, W.6    Xie, Q.7
  • 144
    • 0033983338 scopus 로고    scopus 로고
    • Engineering the provitamin A (Beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm
    • Ye XD, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I. 2000. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305.
    • (2000) Science , vol.287 , pp. 303-305
    • Ye, X.D.1    Al-Babili, S.2    Kloti, A.3    Zhang, J.4    Lucca, P.5    Beyer, P.6    Potrykus, I.7
  • 145
    • 85015710733 scopus 로고    scopus 로고
    • Improvements in genomic technologies: Application to crop genomics
    • Yuan Y, Bayer PE, Batley J, Edwards D. 2017. Improvements in genomic technologies: application to crop genomics. Trends in Biotechnology 35: 547–558.
    • (2017) Trends in Biotechnology , vol.35 , pp. 547-558
    • Yuan, Y.1    Bayer, P.E.2    Batley, J.3    Edwards, D.4
  • 150
    • 84921549293 scopus 로고    scopus 로고
    • Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice
    • Zhou H, Liu B, Weeks DP, Spalding MH, Yang B. 2014. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research 42: 10903–10914.
    • (2014) Nucleic Acids Research , vol.42 , pp. 10903-10914
    • Zhou, H.1    Liu, B.2    Weeks, D.P.3    Spalding, M.H.4    Yang, B.5
  • 152
    • 85008349846 scopus 로고    scopus 로고
    • Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato
    • Zsögön A, Cermak T, Voytas D, Peres LEP. 2017. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato. Plant Science 256: 120–130.
    • (2017) Plant Science , vol.256 , pp. 120-130
    • Zsögön, A.1    Cermak, T.2    Voytas, D.3    Peres, L.E.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.