메뉴 건너뛰기




Volumn 22, Issue 4, 2017, Pages 298-307

Beyond Genomics: Studying Evolution with Gene Coexpression Networks

Author keywords

[No Author keywords available]

Indexed keywords

EVOLUTION; GENE REGULATORY NETWORK; GENETICS; GENOMICS; MOLECULAR EVOLUTION; PHYLOGENY; PHYSIOLOGY; PROCEDURES;

EID: 85009997645     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2016.12.011     Document Type: Review
Times cited : (58)

References (88)
  • 1
    • 37849032457 scopus 로고    scopus 로고
    • The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants
    • 1 Rensing, S.A., et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319 (2008), 64–69.
    • (2008) Science , vol.319 , pp. 64-69
    • Rensing, S.A.1
  • 2
    • 35348896591 scopus 로고    scopus 로고
    • The Chlamydomonas genome reveals the evolution of key animal and plant functions
    • 2 Merchant, S.S., et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318 (2010), 245–250.
    • (2010) Science , vol.318 , pp. 245-250
    • Merchant, S.S.1
  • 3
    • 84973532330 scopus 로고    scopus 로고
    • Genome mapping in plant comparative genomics
    • 3 Chaney, L., et al. Genome mapping in plant comparative genomics. Trends Plant Sci. 21 (2016), 770–780.
    • (2016) Trends Plant Sci. , vol.21 , pp. 770-780
    • Chaney, L.1
  • 4
    • 0036439421 scopus 로고    scopus 로고
    • Gene co-option in physiological and morphological evolution
    • 4 True, J.R., Carroll, S.B., Gene co-option in physiological and morphological evolution. Annu. Rev. Cell Dev. Biol. 18 (2002), 53–80.
    • (2002) Annu. Rev. Cell Dev. Biol. , vol.18 , pp. 53-80
    • True, J.R.1    Carroll, S.B.2
  • 5
    • 78049463790 scopus 로고    scopus 로고
    • Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis
    • 5 Zhong, R., et al. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci. 15 (2010), 625–632.
    • (2010) Trends Plant Sci. , vol.15 , pp. 625-632
    • Zhong, R.1
  • 6
    • 79956309501 scopus 로고    scopus 로고
    • The Selaginella genome identifies genetic changes associated with the evolution of vascular plants
    • 6 Banks, J.A., et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332 (2011), 960–963.
    • (2011) Science , vol.332 , pp. 960-963
    • Banks, J.A.1
  • 7
    • 84897374792 scopus 로고    scopus 로고
    • Towards revealing the functions of all genes in plants
    • 7 Rhee, S.Y., Mutwil, M., Towards revealing the functions of all genes in plants. Trends Plant Sci. 19 (2014), 212–221.
    • (2014) Trends Plant Sci. , vol.19 , pp. 212-221
    • Rhee, S.Y.1    Mutwil, M.2
  • 8
    • 84874663959 scopus 로고    scopus 로고
    • A large-scale evaluation of computational protein function prediction
    • 8 Radivojac, P., et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 10 (2013), 221–227.
    • (2013) Nat. Methods , vol.10 , pp. 221-227
    • Radivojac, P.1
  • 9
    • 84960895070 scopus 로고    scopus 로고
    • Tools of the trade: studying molecular networks in plants
    • 9 Proost, S., Mutwil, M., Tools of the trade: studying molecular networks in plants. Curr. Opin. Plant Biol. 30 (2016), 130–140.
    • (2016) Curr. Opin. Plant Biol. , vol.30 , pp. 130-140
    • Proost, S.1    Mutwil, M.2
  • 10
    • 84857780876 scopus 로고    scopus 로고
    • Evidence for network evolution in an Arabidopsis interactome map
    • 10 Arabidopsis Interactome Mapping Consortium, Evidence for network evolution in an Arabidopsis interactome map. Science 333 (2011), 601–607.
    • (2011) Science , vol.333 , pp. 601-607
    • Arabidopsis Interactome Mapping Consortium1
  • 11
    • 84865864061 scopus 로고    scopus 로고
    • Comparative co-expression analysis in plant biology
    • 11 Movahedi, S., et al. Comparative co-expression analysis in plant biology. Plant Cell Environ. 35 (2012), 1787–1798.
    • (2012) Plant Cell Environ. , vol.35 , pp. 1787-1798
    • Movahedi, S.1
  • 12
    • 84941129438 scopus 로고    scopus 로고
    • AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species
    • 12 Lee, T., et al. AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res. 43 (2015), D996–D1002.
    • (2015) Nucleic Acids Res. , vol.43 , pp. D996-D1002
    • Lee, T.1
  • 13
    • 73249138596 scopus 로고    scopus 로고
    • Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm
    • 13 Mutwil, M., et al. Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol. 152 (2010), 29–43.
    • (2010) Plant Physiol. , vol.152 , pp. 29-43
    • Mutwil, M.1
  • 14
    • 25144498379 scopus 로고    scopus 로고
    • A human protein-protein interaction network: a resource for annotating the proteome
    • 14 Stelzl, U., et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122 (2005), 957–968.
    • (2005) Cell , vol.122 , pp. 957-968
    • Stelzl, U.1
  • 15
    • 0037012880 scopus 로고    scopus 로고
    • Specificity and stability in topology of protein networks
    • 15 Maslov, S., Sneppen, K., Specificity and stability in topology of protein networks. Science 296 (2002), 910–913.
    • (2002) Science , vol.296 , pp. 910-913
    • Maslov, S.1    Sneppen, K.2
  • 16
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • 16 Stuart, J.M., et al. A gene-coexpression network for global discovery of conserved genetic modules. Science 302 (2003), 249–255.
    • (2003) Science , vol.302 , pp. 249-255
    • Stuart, J.M.1
  • 17
    • 84905460159 scopus 로고    scopus 로고
    • Genome-scale co-expression network comparison across Escherichia coli and Salmonella enterica serovar Typhimurium reveals significant conservation at the regulon level of local regulators despite their dissimilar lifestyles
    • 17 Zarrineh, P., et al. Genome-scale co-expression network comparison across Escherichia coli and Salmonella enterica serovar Typhimurium reveals significant conservation at the regulon level of local regulators despite their dissimilar lifestyles. PLoS One, 9, 2014, e102871.
    • (2014) PLoS One , vol.9 , pp. e102871
    • Zarrineh, P.1
  • 18
    • 84904248652 scopus 로고    scopus 로고
    • Comparative analysis of the transcriptome across distant species
    • 18 Gerstein, M.B., et al. Comparative analysis of the transcriptome across distant species. Nature 512 (2014), 445–448.
    • (2014) Nature , vol.512 , pp. 445-448
    • Gerstein, M.B.1
  • 19
    • 79955581503 scopus 로고    scopus 로고
    • PlaNet: combined sequence and expression comparisons across plant networks derived from seven species
    • 19 Mutwil, M., et al. PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell 23 (2011), 895–910.
    • (2011) Plant Cell , vol.23 , pp. 895-910
    • Mutwil, M.1
  • 20
    • 84865548194 scopus 로고    scopus 로고
    • Large-scale co-expression approach to dissect secondary cell wall formation across plant species
    • 20 Ruprecht, C., et al. Large-scale co-expression approach to dissect secondary cell wall formation across plant species. Front. Plant Sci. 2 (2011), 1–13.
    • (2011) Front. Plant Sci. , vol.2 , pp. 1-13
    • Ruprecht, C.1
  • 21
    • 84871911095 scopus 로고    scopus 로고
    • The MORPH algorithm: ranking candidate genes for membership in Arabidopsis and tomato pathways
    • 21 Tzfadia, O., et al. The MORPH algorithm: ranking candidate genes for membership in Arabidopsis and tomato pathways. Plant Cell 24 (2012), 4389–4406.
    • (2012) Plant Cell , vol.24 , pp. 4389-4406
    • Tzfadia, O.1
  • 22
    • 84875968177 scopus 로고    scopus 로고
    • Functional knowledge transfer for high-accuracy prediction of under-studied biological processes
    • 22 Park, C.Y., et al. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes. PLoS Comput. Biol., 9, 2013, e1002957.
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1002957
    • Park, C.Y.1
  • 23
    • 84959290908 scopus 로고    scopus 로고
    • FamNet: a framework to identify multiplied modules driving pathway expansion in plants
    • 23 Ruprecht, C., et al. FamNet: a framework to identify multiplied modules driving pathway expansion in plants. Plant Physiol. 170 (2016), 1878–1894.
    • (2016) Plant Physiol. , vol.170 , pp. 1878-1894
    • Ruprecht, C.1
  • 24
    • 79959970191 scopus 로고    scopus 로고
    • Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice
    • 24 Movahedi, S., et al. Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice. Plant Physiol. 156 (2011), 1316–1330.
    • (2011) Plant Physiol. , vol.156 , pp. 1316-1330
    • Movahedi, S.1
  • 25
    • 79959995342 scopus 로고    scopus 로고
    • Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice
    • 25 Ficklin, S.P., Feltus, F.A., Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice. Plant Physiol. 156 (2011), 1244–1256.
    • (2011) Plant Physiol. , vol.156 , pp. 1244-1256
    • Ficklin, S.P.1    Feltus, F.A.2
  • 26
    • 78650753473 scopus 로고    scopus 로고
    • A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity
    • 26 Humphry, M., et al. A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 21896–21901.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 21896-21901
    • Humphry, M.1
  • 27
    • 54849436208 scopus 로고    scopus 로고
    • The quest for orthologs: finding the corresponding gene across genomes
    • 27 Kuzniar, A., et al. The quest for orthologs: finding the corresponding gene across genomes. Trends Genet. 24 (2008), 539–551.
    • (2008) Trends Genet. , vol.24 , pp. 539-551
    • Kuzniar, A.1
  • 28
    • 75649134588 scopus 로고    scopus 로고
    • PLAZA: a comparative genomics resource to study gene and genome evolution in plants
    • 28 Proost, S., et al. PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21 (2009), 3718–3731.
    • (2009) Plant Cell , vol.21 , pp. 3718-3731
    • Proost, S.1
  • 29
    • 84856569514 scopus 로고    scopus 로고
    • Dissecting plant genomes with the PLAZA comparative genomics platform
    • 29 Van Bel, M., et al. Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol. 158 (2012), 590–600.
    • (2012) Plant Physiol. , vol.158 , pp. 590-600
    • Van Bel, M.1
  • 30
    • 84866080959 scopus 로고    scopus 로고
    • BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species
    • 30 Patel, R.V., et al. BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. Plant J. 71 (2012), 1038–1050.
    • (2012) Plant J. , vol.71 , pp. 1038-1050
    • Patel, R.V.1
  • 31
    • 84982985749 scopus 로고    scopus 로고
    • Expression pattern similarities support the prediction of orthologs retaining common functions after gene duplication events
    • 31 Das, M., et al. Expression pattern similarities support the prediction of orthologs retaining common functions after gene duplication events. Plant Physiol. 171 (2016), 2343–2357.
    • (2016) Plant Physiol. , vol.171 , pp. 2343-2357
    • Das, M.1
  • 32
    • 84907364269 scopus 로고    scopus 로고
    • Elucidating gene function and function evolution through comparison of co-expression networks of plants
    • 32 Hansen, B.O., et al. Elucidating gene function and function evolution through comparison of co-expression networks of plants. Front. Plant Sci. 5 (2014), 1–9.
    • (2014) Front. Plant Sci. , vol.5 , pp. 1-9
    • Hansen, B.O.1
  • 33
    • 84964913549 scopus 로고    scopus 로고
    • ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression
    • 33 Aoki, Y., et al. ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol., 57, 2015, e5.
    • (2015) Plant Cell Physiol. , vol.57 , pp. e5
    • Aoki, Y.1
  • 34
    • 84956689126 scopus 로고    scopus 로고
    • CoExpNetViz: comparative co-expression networks construction and visualization tool
    • 34 Tzfadia, O., et al. CoExpNetViz: comparative co-expression networks construction and visualization tool. Front. Plant Sci., 6, 2016, 1194.
    • (2016) Front. Plant Sci. , vol.6 , pp. 1194
    • Tzfadia, O.1
  • 35
    • 64949084332 scopus 로고    scopus 로고
    • The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates
    • 35 Yee, D., Goring, D.R., The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J. Exp. Bot. 60 (2009), 1109–1121.
    • (2009) J. Exp. Bot. , vol.60 , pp. 1109-1121
    • Yee, D.1    Goring, D.R.2
  • 36
    • 77950388941 scopus 로고    scopus 로고
    • Polygenic and directional regulatory evolution across pathways in Saccharomyces
    • 36 Bullard, J.H., et al. Polygenic and directional regulatory evolution across pathways in Saccharomyces. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 5058–5063.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 5058-5063
    • Bullard, J.H.1
  • 37
    • 84959010819 scopus 로고    scopus 로고
    • Polygenic evolution of a sugar specialization trade-off in yeast
    • 37 Roop, J.I., et al. Polygenic evolution of a sugar specialization trade-off in yeast. Nature 530 (2016), 336–339.
    • (2016) Nature , vol.530 , pp. 336-339
    • Roop, J.I.1
  • 38
    • 70349532703 scopus 로고    scopus 로고
    • Evolution of a novel phenolic pathway for pollen development
    • 38 Matsuno, M., et al. Evolution of a novel phenolic pathway for pollen development. Science 325 (2009), 1688–1692.
    • (2009) Science , vol.325 , pp. 1688-1692
    • Matsuno, M.1
  • 39
    • 43949145613 scopus 로고    scopus 로고
    • An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana
    • 39 Ehlting, J., et al. An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana. BMC Plant Biol., 8, 2008, 47.
    • (2008) BMC Plant Biol. , vol.8 , pp. 47
    • Ehlting, J.1
  • 40
    • 35748936426 scopus 로고    scopus 로고
    • A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages
    • 40 Domazet-Loso, T., et al. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 23 (2007), 533–539.
    • (2007) Trends Genet. , vol.23 , pp. 533-539
    • Domazet-Loso, T.1
  • 41
    • 0035960024 scopus 로고    scopus 로고
    • Auxin transport inhibitors block PIN1 cycling and vesicle trafficking
    • 41 Geldner, N., et al. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413 (2001), 425–428.
    • (2001) Nature , vol.413 , pp. 425-428
    • Geldner, N.1
  • 42
    • 0345167799 scopus 로고    scopus 로고
    • Local, efflux-dependent auxin gradients as a common module for plant organ formation
    • 42 Benková, E., et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115 (2003), 591–602.
    • (2003) Cell , vol.115 , pp. 591-602
    • Benková, E.1
  • 43
    • 0034020523 scopus 로고    scopus 로고
    • Auxin regulates the initiation and radial position of plant lateral organs
    • 43 Reinhardt, D., Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12 (2000), 507–518.
    • (2000) Plant Cell , vol.12 , pp. 507-518
    • Reinhardt, D.1
  • 44
    • 69049101213 scopus 로고    scopus 로고
    • Auxin transport routes in plant development
    • 44 Petrasek, J., Friml, J., Auxin transport routes in plant development. Development 136 (2009), 2675–2688.
    • (2009) Development , vol.136 , pp. 2675-2688
    • Petrasek, J.1    Friml, J.2
  • 45
    • 34548606390 scopus 로고    scopus 로고
    • Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux
    • 45 Michniewicz, M., et al. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130 (2007), 1044–1056.
    • (2007) Cell , vol.130 , pp. 1044-1056
    • Michniewicz, M.1
  • 46
    • 84873735651 scopus 로고    scopus 로고
    • Evolution and structural diversification of PILS putative auxin carriers in plants
    • 46 Feraru, E., et al. Evolution and structural diversification of PILS putative auxin carriers in plants. Front. Plant Sci., 3, 2012, 227.
    • (2012) Front. Plant Sci. , vol.3 , pp. 227
    • Feraru, E.1
  • 47
    • 0030140041 scopus 로고    scopus 로고
    • Early genes and auxin action
    • 47 Abel, S., Theologis, A., Early genes and auxin action. Plant Physiol. 111 (1996), 9–17.
    • (1996) Plant Physiol. , vol.111 , pp. 9-17
    • Abel, S.1    Theologis, A.2
  • 48
    • 84886257715 scopus 로고    scopus 로고
    • Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis
    • 48 Ranocha, P., et al. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat. Commun., 4, 2013, 2625.
    • (2013) Nat. Commun. , vol.4 , pp. 2625
    • Ranocha, P.1
  • 49
    • 77953805618 scopus 로고    scopus 로고
    • Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid
    • 49 Ruzicka, K., et al. Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 10749–10753.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 10749-10753
    • Ruzicka, K.1
  • 50
    • 0142072737 scopus 로고    scopus 로고
    • Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes
    • 50 Emery, J.F., et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13 (2003), 1768–1774.
    • (2003) Curr. Biol. , vol.13 , pp. 1768-1774
    • Emery, J.F.1
  • 51
    • 3442880813 scopus 로고    scopus 로고
    • KNAT6 gene of Arabidopsis is expressed in roots and is required for correct lateral root formation
    • 51 Dean, G., et al. KNAT6 gene of Arabidopsis is expressed in roots and is required for correct lateral root formation. Plant Mol. Biol. 54 (2004), 71–84.
    • (2004) Plant Mol. Biol. , vol.54 , pp. 71-84
    • Dean, G.1
  • 52
    • 0033799613 scopus 로고    scopus 로고
    • Vascular continuity and auxin signals
    • 52 Berleth, T., et al. Vascular continuity and auxin signals. Trends Plant Sci. 5 (2000), 387–393.
    • (2000) Trends Plant Sci. , vol.5 , pp. 387-393
    • Berleth, T.1
  • 53
    • 77950354050 scopus 로고    scopus 로고
    • Interplay of auxin, KANADI and class III HD-ZIP transcription factors in vascular tissue formation
    • 53 Ilegems, M., et al. Interplay of auxin, KANADI and class III HD-ZIP transcription factors in vascular tissue formation. Development 137 (2010), 975–984.
    • (2010) Development , vol.137 , pp. 975-984
    • Ilegems, M.1
  • 54
    • 34250169781 scopus 로고    scopus 로고
    • PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development
    • 54 Fisher, K., Turner, S., PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr. Biol. 17 (2007), 1061–1066.
    • (2007) Curr. Biol. , vol.17 , pp. 1061-1066
    • Fisher, K.1    Turner, S.2
  • 55
    • 0033638561 scopus 로고    scopus 로고
    • A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root
    • 55 Mähönen, A.P., et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 14 (2000), 2938–2943.
    • (2000) Genes Dev. , vol.14 , pp. 2938-2943
    • Mähönen, A.P.1
  • 56
    • 84983349582 scopus 로고    scopus 로고
    • MOL1 is required for cambium homeostasis in Arabidopsis
    • 56 Gursanscky, N.R., et al. MOL1 is required for cambium homeostasis in Arabidopsis. Plant J. 86 (2016), 210–220.
    • (2016) Plant J. , vol.86 , pp. 210-220
    • Gursanscky, N.R.1
  • 57
    • 0030575903 scopus 로고    scopus 로고
    • CKI1, a histidine kinase homolog implicated in cytokinin signal transduction
    • 57 Kakimoto, T., CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274 (1996), 982–985.
    • (1996) Science , vol.274 , pp. 982-985
    • Kakimoto, T.1
  • 58
    • 84867881743 scopus 로고    scopus 로고
    • Structure-based prediction of protein–protein interactions on a genome-wide scale
    • 58 Zhang, Q.C., et al. Structure-based prediction of protein–protein interactions on a genome-wide scale. Nature 490 (2012), 556–560.
    • (2012) Nature , vol.490 , pp. 556-560
    • Zhang, Q.C.1
  • 59
    • 84900509552 scopus 로고    scopus 로고
    • Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins
    • 59 Zhang, K., et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun., 5, 2014, 3274.
    • (2014) Nat. Commun. , vol.5 , pp. 3274
    • Zhang, K.1
  • 60
    • 84975217646 scopus 로고    scopus 로고
    • Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins
    • Published online June 1, 2016
    • 60 Lavy, M., et al. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. Elife, 2016, 10.7554/elife.13325 Published online June 1, 2016.
    • (2016) Elife
    • Lavy, M.1
  • 61
    • 84859890901 scopus 로고    scopus 로고
    • Redundancy and rewiring of genetic networks following genome-wide duplication events
    • 61 De Smet, R., Van de Peer, Y., Redundancy and rewiring of genetic networks following genome-wide duplication events. Curr. Opin. Plant Biol. 15 (2012), 168–176.
    • (2012) Curr. Opin. Plant Biol. , vol.15 , pp. 168-176
    • De Smet, R.1    Van de Peer, Y.2
  • 62
    • 3142700743 scopus 로고    scopus 로고
    • Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes
    • 62 Blanc, G., Wolfe, K.H., Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16 (2004), 1667–1678.
    • (2004) Plant Cell , vol.16 , pp. 1667-1678
    • Blanc, G.1    Wolfe, K.H.2
  • 63
    • 33646230540 scopus 로고    scopus 로고
    • Functional partitioning of yeast co-expression networks after genome duplication
    • 63 Conant, G.C., Wolfe, K.H., Functional partitioning of yeast co-expression networks after genome duplication. PLoS Biol., 4, 2006, e109.
    • (2006) PLoS Biol. , vol.4 , pp. e109
    • Conant, G.C.1    Wolfe, K.H.2
  • 64
    • 34548501747 scopus 로고    scopus 로고
    • Natural history and evolutionary principles of gene duplication in fungi
    • 64 Wapinski, I., et al. Natural history and evolutionary principles of gene duplication in fungi. Nature 449 (2007), 54–61.
    • (2007) Nature , vol.449 , pp. 54-61
    • Wapinski, I.1
  • 65
    • 17844390103 scopus 로고    scopus 로고
    • Novel specificities emerge by stepwise duplication of functional modules
    • 65 Pereira-Leal, J.B., Teichmann, S.A., Novel specificities emerge by stepwise duplication of functional modules. Genome Res. 15 (2005), 552–559.
    • (2005) Genome Res. , vol.15 , pp. 552-559
    • Pereira-Leal, J.B.1    Teichmann, S.A.2
  • 66
    • 0038157152 scopus 로고    scopus 로고
    • Dosage sensitivity and the evolution of gene families in yeast
    • 66 Papp, B., et al. Dosage sensitivity and the evolution of gene families in yeast. Nature 424 (2003), 194–197.
    • (2003) Nature , vol.424 , pp. 194-197
    • Papp, B.1
  • 67
    • 84871822072 scopus 로고    scopus 로고
    • Inference of genome duplications from age distributions revisited
    • 67 Vanneste, K., et al. Inference of genome duplications from age distributions revisited. Mol. Biol. Evol. 30 (2013), 177–190.
    • (2013) Mol. Biol. Evol. , vol.30 , pp. 177-190
    • Vanneste, K.1
  • 68
    • 84857242898 scopus 로고    scopus 로고
    • Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants
    • 68 Price, D.C., et al. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335 (2012), 843–847.
    • (2012) Science , vol.335 , pp. 843-847
    • Price, D.C.1
  • 69
    • 11144354393 scopus 로고    scopus 로고
    • Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D
    • 69 Matsuzaki, M., et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428 (2004), 653–657.
    • (2004) Nature , vol.428 , pp. 653-657
    • Matsuzaki, M.1
  • 70
    • 84901711172 scopus 로고    scopus 로고
    • Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation
    • 70 Hori, K., et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun., 5, 2014, 3978.
    • (2014) Nat. Commun. , vol.5 , pp. 3978
    • Hori, K.1
  • 71
    • 84878420758 scopus 로고    scopus 로고
    • The Norway spruce genome sequence and conifer genome evolution
    • 71 Nystedt, B., et al. The Norway spruce genome sequence and conifer genome evolution. Nature 497 (2013), 579–584.
    • (2013) Nature , vol.497 , pp. 579-584
    • Nystedt, B.1
  • 72
    • 84890829647 scopus 로고    scopus 로고
    • The Amborella genome and the evolution of flowering plants
    • 72 Albert, V.A., et al. The Amborella genome and the evolution of flowering plants. Science, 342, 2013, 1241089.
    • (2013) Science , vol.342 , pp. 1241089
    • Albert, V.A.1
  • 73
    • 84907150192 scopus 로고    scopus 로고
    • The map-based sequence of the rice genome
    • 73 International Rice Genome Sequencing Project, The map-based sequence of the rice genome. Nature 436 (2005), 793–800.
    • (2005) Nature , vol.436 , pp. 793-800
    • International Rice Genome Sequencing Project1
  • 74
    • 0034649566 scopus 로고    scopus 로고
    • Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
    • 74 The Arabidopsis Genome Initiative, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 (2000), 796–815.
    • (2000) Nature , vol.408 , pp. 796-815
    • The Arabidopsis Genome Initiative1
  • 75
    • 17044416291 scopus 로고    scopus 로고
    • Reconstructing patterns of reticulate evolution in plants
    • 75 Linder, C.R., Rieseberg, L.H., Reconstructing patterns of reticulate evolution in plants. Am. J. Bot. 91 (2004), 1700–1708.
    • (2004) Am. J. Bot. , vol.91 , pp. 1700-1708
    • Linder, C.R.1    Rieseberg, L.H.2
  • 76
    • 84856585935 scopus 로고    scopus 로고
    • Phytozome: a comparative platform for green plant genomics
    • 76 Goodstein, D.M., et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40 (2012), D1178–D1186.
    • (2012) Nucleic Acids Res. , vol.40 , pp. D1178-D1186
    • Goodstein, D.M.1
  • 77
    • 38549175740 scopus 로고    scopus 로고
    • GreenPhylDB: a database for plant comparative genomics
    • 77 Conte, M.G., et al. GreenPhylDB: a database for plant comparative genomics. Nucleic Acids Res. 36 (2008), D991–D998.
    • (2008) Nucleic Acids Res. , vol.36 , pp. D991-D998
    • Conte, M.G.1
  • 78
    • 38549166729 scopus 로고    scopus 로고
    • PlantGDB: a resource for comparative plant genomics
    • 78 Duvick, J., et al. PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res. 36 (2008), D959–D965.
    • (2008) Nucleic Acids Res. , vol.36 , pp. D959-D965
    • Duvick, J.1
  • 79
    • 70449115789 scopus 로고    scopus 로고
    • Co-expression tools for plant biology: opportunities for hypothesis generation and caveats
    • 79 Usadel, B., et al. Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 32 (2009), 1633–1651.
    • (2009) Plant Cell Environ. , vol.32 , pp. 1633-1651
    • Usadel, B.1
  • 80
    • 84964258777 scopus 로고    scopus 로고
    • Learning from co-expression networks: possibilities and challenges
    • 80 Serin, E.A.R., et al. Learning from co-expression networks: possibilities and challenges. Front. Plant Sci., 7, 2016, 444.
    • (2016) Front. Plant Sci. , vol.7 , pp. 444
    • Serin, E.A.R.1
  • 81
    • 27644451872 scopus 로고    scopus 로고
    • Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics
    • 81 Brown, D.M., et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17 (2005), 2281–2295.
    • (2005) Plant Cell , vol.17 , pp. 2281-2295
    • Brown, D.M.1
  • 82
    • 20844445318 scopus 로고    scopus 로고
    • Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets
    • 82 Persson, S., et al. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 8633–8638.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 8633-8638
    • Persson, S.1
  • 83
    • 71149108056 scopus 로고    scopus 로고
    • Correlation of mRNA and protein in complex biological samples
    • 83 Maier, T., et al. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583 (2009), 3966–3973.
    • (2009) FEBS Lett. , vol.583 , pp. 3966-3973
    • Maier, T.1
  • 84
    • 84962097341 scopus 로고    scopus 로고
    • The potential of single-cell profiling in plants
    • 84 Efroni, I., Birnbaum, K.D., The potential of single-cell profiling in plants. Genome Biol., 17, 2016, 65.
    • (2016) Genome Biol. , vol.17 , pp. 65
    • Efroni, I.1    Birnbaum, K.D.2
  • 85
    • 77952799294 scopus 로고    scopus 로고
    • CoP: a database for characterizing co-expressed gene modules with biological information in plants
    • 85 Ogata, Y., et al. CoP: a database for characterizing co-expressed gene modules with biological information in plants. Bioinformatics 26 (2010), 1267–1268.
    • (2010) Bioinformatics , vol.26 , pp. 1267-1268
    • Ogata, Y.1
  • 86
    • 70449657085 scopus 로고    scopus 로고
    • STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data
    • 86 Jupiter, D., et al. STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data. BMC Bioinformatics, 10, 2009, 332.
    • (2009) BMC Bioinformatics , vol.10 , pp. 332
    • Jupiter, D.1
  • 87
    • 79951562208 scopus 로고    scopus 로고
    • ATTED-II updates: condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants
    • 87 Obayashi, T., et al. ATTED-II updates: condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants. Plant Cell Physiol. 52 (2011), 213–219.
    • (2011) Plant Cell Physiol. , vol.52 , pp. 213-219
    • Obayashi, T.1
  • 88
    • 84863780541 scopus 로고    scopus 로고
    • CORNET 2. 0: integrating plant coexpression, protein-protein interactions, regulatory interactions, gene associations and functional annotations
    • 88 De Bodt, S., et al. CORNET 2. 0: integrating plant coexpression, protein-protein interactions, regulatory interactions, gene associations and functional annotations. New Phytol. 195 (2012), 707–720.
    • (2012) New Phytol. , vol.195 , pp. 707-720
    • De Bodt, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.