메뉴 건너뛰기




Volumn 15, Issue 3, 2017, Pages 169-182

Diversity and evolution of class 2 CRISPR-Cas systems

Author keywords

[No Author keywords available]

Indexed keywords

ARCHAEAL GENOME; ARTICLE; BACTERIAL GENOME; CRISPR CAS SYSTEM; GENE LOCUS; GENE NOMENCLATURE; GENETIC ENGINEERING; GENETIC IDENTIFICATION; GENETIC VARIABILITY; GENOMICS; MICROBIAL DIVERSITY; MOLECULAR EVOLUTION; NONHUMAN; PRIORITY JOURNAL; ARCHAEON; BACTERIUM; GENE EDITING; GENETICS; PROCEDURES; PROTEIN DOMAIN;

EID: 85010207605     PISSN: 17401526     EISSN: 17401534     Source Type: Journal    
DOI: 10.1038/nrmicro.2016.184     Document Type: Article
Times cited : (782)

References (80)
  • 1
    • 34248374277 scopus 로고    scopus 로고
    • A putative RNA-interferencebased immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
    • Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-interferencebased immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006).
    • (2006) Biol. Direct , vol.1 , pp. 7
    • Makarova, K.S.1    Grishin, N.V.2    Shabalina, S.A.3    Wolf, Y.I.4    Koonin, E.V.5
  • 2
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 (2007).
    • (2007) Science , vol.315 , pp. 1709-1712
    • Barrangou, R.1
  • 3
    • 84876440888 scopus 로고    scopus 로고
    • CRISPR-Cas systems and RNA-guided interference
    • Barrangou, R. CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip. Rev. RNA 4, 267-278 (2013).
    • (2013) Wiley Interdiscip. Rev. RNA , vol.4 , pp. 267-278
    • Barrangou, R.1
  • 4
    • 84943160849 scopus 로고    scopus 로고
    • CRISPR-Cas immunity in prokaryotes
    • Marraffini, L. A. CRISPR-Cas immunity in prokaryotes. Nature 526, 55-61 (2015).
    • (2015) Nature , vol.526 , pp. 55-61
    • Marraffini, L.A.1
  • 5
    • 84982855973 scopus 로고    scopus 로고
    • Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
    • Mohanraju, P. et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353, aad5147 (2016).
    • (2016) Science , vol.353 , pp. aad5147
    • Mohanraju, P.1
  • 7
    • 79960554003 scopus 로고    scopus 로고
    • Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems
    • Makarova, K. S., Aravind, L., Wolf, Y. I. & Koonin, E. V. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct 6, 38 (2011).
    • (2011) Biol. Direct , vol.6 , pp. 38
    • Makarova, K.S.1    Aravind, L.2    Wolf, Y.I.3    Koonin, E.V.4
  • 8
    • 84887971081 scopus 로고    scopus 로고
    • The basic building blocks and evolution of CRISPR-Cas systems
    • Makarova, K. S., Wolf, Y. I. & Koonin, E. V. The basic building blocks and evolution of CRISPR-Cas systems. Biochem. Soc. Trans. 41, 1392-1400 (2013).
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 1392-1400
    • Makarova, K.S.1    Wolf, Y.I.2    Koonin, E.V.3
  • 9
    • 84857812156 scopus 로고    scopus 로고
    • Nature and intensity of selection pressure on CRISPR-associated genes
    • Takeuchi, N., Wolf, Y. I., Makarova, K. S. & Koonin, E. V. Nature and intensity of selection pressure on CRISPR-associated genes. J. Bacteriol. 194, 1216-1225 (2012).
    • (2012) J. Bacteriol. , vol.194 , pp. 1216-1225
    • Takeuchi, N.1    Wolf, Y.I.2    Makarova, K.S.3    Koonin, E.V.4
  • 10
    • 84897440729 scopus 로고    scopus 로고
    • To acquire or resist: The complex biological effects of CRISPR-Cas systems
    • Bondy-Denomy, J. & Davidson, A. R. To acquire or resist: the complex biological effects of CRISPR-Cas systems. Trends Microbiol. 22, 218-225 (2014).
    • (2014) Trends Microbiol. , vol.22 , pp. 218-225
    • Bondy-Denomy, J.1    Davidson, A.R.2
  • 11
    • 84943188033 scopus 로고    scopus 로고
    • Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins
    • Bondy-Denomy, J. et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526, 136-139 (2015).
    • (2015) Nature , vol.526 , pp. 136-139
    • Bondy-Denomy, J.1
  • 12
    • 84964433283 scopus 로고    scopus 로고
    • The diversity-generating benefits of a prokaryotic adaptive immune system
    • van Houte, S. et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 385-388 (2016).
    • (2016) Nature , vol.532 , pp. 385-388
    • Van Houte, S.1
  • 13
    • 79956157571 scopus 로고    scopus 로고
    • Evolution and classification of the CRISPR-Cas systems
    • Makarova, K. S. et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9, 467-477 (2011).
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 467-477
    • Makarova, K.S.1
  • 14
    • 84929623462 scopus 로고    scopus 로고
    • Annotation and classification of CRISPR-Cas systems
    • Makarova, K. S. & Koonin, E. V. Annotation and classification of CRISPR-Cas systems. Methods Mol. Biol. 1311, 47-75 (2015).
    • (2015) Methods Mol. Biol. , vol.1311 , pp. 47-75
    • Makarova, K.S.1    Koonin, E.V.2
  • 15
    • 84944449180 scopus 로고    scopus 로고
    • An updated evolutionary classification of CRISPR-Cas systems
    • Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722-736 (2015).
    • (2015) Nat. Rev. Microbiol. , vol.13 , pp. 722-736
    • Makarova, K.S.1
  • 16
    • 84947736727 scopus 로고    scopus 로고
    • Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
    • Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385-397 (2015).
    • (2015) Mol. Cell , vol.60 , pp. 385-397
    • Shmakov, S.1
  • 18
    • 49649114086 scopus 로고    scopus 로고
    • Small CRISPR RNAs guide antiviral defense in prokaryotes
    • Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964 (2008).
    • (2008) Science , vol.321 , pp. 960-964
    • Brouns, S.J.1
  • 19
    • 79955574254 scopus 로고    scopus 로고
    • Structural basis for CRISPR RNAguided DNA recognition by Cascade
    • Jore, M. M. et al. Structural basis for CRISPR RNAguided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18, 529-536 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 529-536
    • Jore, M.M.1
  • 20
    • 84942079467 scopus 로고    scopus 로고
    • CRISPR RNA binding and DNA target recognition by purified Cascade complexes from Escherichia coli
    • Beloglazova, N. et al. CRISPR RNA binding and DNA target recognition by purified Cascade complexes from Escherichia coli. Nucleic Acids Res. 43, 530-543 (2015).
    • (2015) Nucleic Acids Res. , vol.43 , pp. 530-543
    • Beloglazova, N.1
  • 22
    • 84885336337 scopus 로고    scopus 로고
    • Structure of the CRISPR interference complex CSM reveals key similarities with cascade
    • Rouillon, C. et al. Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol. Cell 52, 124-134 (2013).
    • (2013) Mol. Cell , vol.52 , pp. 124-134
    • Rouillon, C.1
  • 23
    • 84912066885 scopus 로고    scopus 로고
    • RNA targeting by the type III?A CRISPR-Cas Csm complex of Thermus thermophilus
    • Staals, R. H. et al. RNA targeting by the type III?A CRISPR-Cas Csm complex of Thermus thermophilus. Mol. Cell 56, 518-530 (2014).
    • (2014) Mol. Cell , vol.56 , pp. 518-530
    • Staals, R.H.1
  • 24
    • 84928925211 scopus 로고    scopus 로고
    • Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog
    • Osawa, T., Inanaga, H., Sato, C. & Numata, T. Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog. Mol. Cell 58, 418-430 (2015).
    • (2015) Mol. Cell , vol.58 , pp. 418-430
    • Osawa, T.1    Inanaga, H.2    Sato, C.3    Numata, T.4
  • 26
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 27
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 28
    • 84884856342 scopus 로고    scopus 로고
    • Cas9 as a versatile tool for engineering biology
    • Mali, P., Esvelt, K. M. & Church, G. M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957-963 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 957-963
    • Mali, P.1    Esvelt, K.M.2    Church, G.M.3
  • 29
    • 84866859751 scopus 로고    scopus 로고
    • Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
    • Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579-E2586 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. E2579-E2586
    • Gasiunas, G.1    Barrangou, R.2    Horvath, P.3    Siksnys, V.4
  • 30
    • 84896733529 scopus 로고    scopus 로고
    • Crystal structure of Cas9 in complex with guide RNA and target DNA
    • Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949 (2014).
    • (2014) Cell , vol.156 , pp. 935-949
    • Nishimasu, H.1
  • 31
    • 84940368054 scopus 로고    scopus 로고
    • Crystal structure of Staphylococcus aureus Cas9
    • Nishimasu, H. et al. Crystal structure of Staphylococcus aureus Cas9. Cell 162, 1113-1126 (2015).
    • (2015) Cell , vol.162 , pp. 1113-1126
    • Nishimasu, H.1
  • 32
    • 84946215320 scopus 로고    scopus 로고
    • Conformational control of DNA target cleavage by CRISPR-Cas9
    • Sternberg, S. H., LaFrance, B., Kaplan, M. & Doudna, J. A. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527, 110-113 (2015).
    • (2015) Nature , vol.527 , pp. 110-113
    • Sternberg, S.H.1    LaFrance, B.2    Kaplan, M.3    Doudna, J.A.4
  • 33
    • 80755145195 scopus 로고    scopus 로고
    • The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
    • Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275-9282 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. 9275-9282
    • Sapranauskas, R.1
  • 34
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 (2011).
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1
  • 35
    • 84878211288 scopus 로고    scopus 로고
    • The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems
    • Chylinski, K., Le Rhun, A. & Charpentier, E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 10, 726-737 (2013).
    • (2013) RNA Biol. , vol.10 , pp. 726-737
    • Chylinski, K.1    Le Rhun, A.2    Charpentier, E.3
  • 36
    • 84922322005 scopus 로고    scopus 로고
    • Guide RNA functional modules direct Cas9 activity and orthogonality
    • Briner, A. E. et al. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol. Cell 56, 333-339 (2014).
    • (2014) Mol. Cell , vol.56 , pp. 333-339
    • Briner, A.E.1
  • 37
    • 84875366919 scopus 로고    scopus 로고
    • First indication for a functional CRISPR/Cas system in Francisella tularensis
    • Schunder, E., Rydzewski, K., Grunow, R. & Heuner, K. First indication for a functional CRISPR/Cas system in Francisella tularensis. Int. J. Med. Microbiol. 303, 51-60 (2013).
    • (2013) Int. J. Med. Microbiol. , vol.303 , pp. 51-60
    • Schunder, E.1    Rydzewski, K.2    Grunow, R.3    Heuner, K.4
  • 38
    • 84975678715 scopus 로고    scopus 로고
    • Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
    • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771 (2015).
    • (2015) Cell , vol.163 , pp. 759-771
    • Zetsche, B.1
  • 39
    • 84964831029 scopus 로고    scopus 로고
    • The crystal structure of Cpf1 in complex with CRISPR RNA
    • Dong, D. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522-526 (2016).
    • (2016) Nature , vol.532 , pp. 522-526
    • Dong, D.1
  • 40
    • 84963973892 scopus 로고    scopus 로고
    • Crystal structure of Cpf1 in complex with guide RNA and target DNA
    • Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949-962 (2016).
    • (2016) Cell , vol.165 , pp. 949-962
    • Yamano, T.1
  • 41
    • 84964862130 scopus 로고    scopus 로고
    • The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
    • Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517-521 (2016).
    • (2016) Nature , vol.532 , pp. 517-521
    • Fonfara, I.1    Richter, H.2    Bratovic, M.3    Le Rhun, A.4    Charpentier, E.5
  • 42
    • 84974606818 scopus 로고    scopus 로고
    • C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
    • Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).
    • (2016) Science , vol.353 , pp. aaf5573
    • Abudayyeh, O.O.1
  • 43
    • 84876181928 scopus 로고    scopus 로고
    • ISDra2 transposition in Deinococcus radiodurans is downregulated by TnpB
    • Pasternak, C. et al. ISDra2 transposition in Deinococcus radiodurans is downregulated by TnpB. Mol. Microbiol. 88, 443-455 (2013).
    • (2013) Mol. Microbiol. , vol.88 , pp. 443-455
    • Pasternak, C.1
  • 44
    • 84876266440 scopus 로고    scopus 로고
    • Homologues of bacterial TnpB-IS605 are widespread in diverse eukaryotic transposable elements
    • Bao, W. & Jurka, J. Homologues of bacterial TnpB-IS605 are widespread in diverse eukaryotic transposable elements. Mob. DNA 4, 12 (2013).
    • (2013) Mob. DNA , vol.4 , pp. 12
    • Bao, W.1    Jurka, J.2
  • 45
    • 84961166483 scopus 로고    scopus 로고
    • ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs
    • Kapitonov, V. V., Makarova, K. S. & Koonin, E. V. ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs. J. Bacteriol. 198, 797-807 (2015).
    • (2015) J. Bacteriol. , vol.198 , pp. 797-807
    • Kapitonov, V.V.1    Makarova, K.S.2    Koonin, E.V.3
  • 46
    • 84954236549 scopus 로고    scopus 로고
    • Sense overlapping transcripts in IS1341?type transposase genes are functional non-coding RNAs in archaea
    • Gomes-Filho, J. V. et al. Sense overlapping transcripts in IS1341?type transposase genes are functional non-coding RNAs in archaea. RNA Biol. 12, 490-500 (2015).
    • (2015) RNA Biol. , vol.12 , pp. 490-500
    • Gomes-Filho, J.V.1
  • 48
    • 84878893667 scopus 로고    scopus 로고
    • Comprehensive analysis of the HEPN superfamily: Identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing
    • Anantharaman, V., Makarova, K. S., Burroughs, A. M., Koonin, E. V. & Aravind, L. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol. Direct 8, 15 (2013).
    • (2013) Biol. Direct , vol.8 , pp. 15
    • Anantharaman, V.1    Makarova, K.S.2    Burroughs, A.M.3    Koonin, E.V.4    Aravind, L.5
  • 50
    • 84868685897 scopus 로고    scopus 로고
    • Live virus-free or die: Coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes
    • Makarova, K. S., Anantharaman, V., Aravind, L. & Koonin, E. V. Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol. Direct 7, 40 (2012).
    • (2012) Biol. Direct , vol.7 , pp. 40
    • Makarova, K.S.1    Anantharaman, V.2    Aravind, L.3    Koonin, E.V.4
  • 51
    • 84925448093 scopus 로고    scopus 로고
    • Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems
    • Iranzo, J., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems. BMC Evol. Biol. 15, 43 (2015).
    • (2015) BMC Evol. Biol. , vol.15 , pp. 43
    • Iranzo, J.1    Lobkovsky, A.E.2    Wolf, Y.I.3    Koonin, E.V.4
  • 52
    • 84991728709 scopus 로고    scopus 로고
    • Two distinct RNase activities of CRISPR?C2c2 enable guide-RNA processing and RNA detection
    • East-Seletsky, A. et al. Two distinct RNase activities of CRISPR?C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270-273 (2016).
    • (2016) Nature , vol.538 , pp. 270-273
    • East-Seletsky, A.1
  • 53
    • 84937511221 scopus 로고    scopus 로고
    • Origins and evolution of viruses of eukaryotes: The ultimate modularity
    • Koonin, E. V., Dolja, V. V. & Krupovic, M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479-480, 2-25 (2015).
    • (2015) Virology , vol.479-480 , pp. 2-25
    • Koonin, E.V.1    Dolja, V.V.2    Krupovic, M.3
  • 54
    • 84956762041 scopus 로고    scopus 로고
    • The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease
    • Sheppard, N. F., Glover, C. V., Terns, R. M. & Terns, M. P. The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease. RNA 22, 216-224 (2016).
    • (2016) RNA , vol.22 , pp. 216-224
    • Sheppard, N.F.1    Glover, C.V.2    Terns, R.M.3    Terns, M.P.4
  • 55
    • 84958690222 scopus 로고    scopus 로고
    • Structural basis for the endoribonuclease activity of the type III?A CRISPRassociated protein Csm6
    • Niewoehner, O. & Jinek, M. Structural basis for the endoribonuclease activity of the type III?A CRISPRassociated protein Csm6. RNA 22, 318-329 (2016).
    • (2016) RNA , vol.22 , pp. 318-329
    • Niewoehner, O.1    Jinek, M.2
  • 57
    • 33751226288 scopus 로고    scopus 로고
    • What is the extent of prokaryotic diversity?
    • Curtis, T. P. et al. What is the extent of prokaryotic diversity? Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 2023-2037 (2006).
    • (2006) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.361 , pp. 2023-2037
    • Curtis, T.P.1
  • 58
    • 59849086092 scopus 로고    scopus 로고
    • The bacterial species challenge: Making sense of genetic and ecological diversity
    • Fraser, C., Alm, E. J., Polz, M. F., Spratt, B. G. & Hanage, W. P. The bacterial species challenge: making sense of genetic and ecological diversity. Science 323, 741-746 (2009).
    • (2009) Science , vol.323 , pp. 741-746
    • Fraser, C.1    Alm, E.J.2    Polz, M.F.3    Spratt, B.G.4    Hanage, W.P.5
  • 59
    • 53849104257 scopus 로고    scopus 로고
    • The rational exploration of microbial diversity
    • Quince, C., Curtis, T. P. & Sloan, W. T. The rational exploration of microbial diversity. ISME J. 2, 997-1006 (2008).
    • (2008) ISME J. , vol.2 , pp. 997-1006
    • Quince, C.1    Curtis, T.P.2    Sloan, W.T.3
  • 60
    • 84969791285 scopus 로고    scopus 로고
    • Comparison of Cas9 activators in multiple species
    • Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563-567 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 563-567
    • Chavez, A.1
  • 61
    • 84961290066 scopus 로고    scopus 로고
    • Editing the epigenome: Technologies for programmable transcription and epigenetic modulation
    • Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127-137 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 127-137
    • Thakore, P.I.1    Black, J.B.2    Hilton, I.B.3    Gersbach, C.A.4
  • 62
    • 84894063115 scopus 로고    scopus 로고
    • Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
    • Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479-1491 (2013).
    • (2013) Cell , vol.155 , pp. 1479-1491
    • Chen, B.1
  • 63
    • 84946919064 scopus 로고    scopus 로고
    • Dynamics of CRISPR-Cas9 genome interrogation in living cells
    • Knight, S. C. et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350, 823-826 (2015).
    • (2015) Science , vol.350 , pp. 823-826
    • Knight, S.C.1
  • 64
    • 84961226910 scopus 로고    scopus 로고
    • Programmable RNA tracking in live cells with CRISPR/Cas9
    • Nelles, D. A. et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165, 488-496 (2016).
    • (2016) Cell , vol.165 , pp. 488-496
    • Nelles, D.A.1
  • 65
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 (2014).
    • (2014) Cell , vol.157 , pp. 1262-1278
    • Hsu, P.D.1    Lander, E.S.2    Zhang, F.3
  • 66
    • 84981347695 scopus 로고    scopus 로고
    • Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
    • Kleinstiver, B. P. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34, 869-874 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 869-874
    • Kleinstiver, B.P.1
  • 67
    • 84981356862 scopus 로고    scopus 로고
    • Generation of knockout mice by Cpf1?mediated gene targeting
    • Kim, Y. et al. Generation of knockout mice by Cpf1?mediated gene targeting. Nat. Biotechnol. 34, 808-810 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 808-810
    • Kim, Y.1
  • 68
    • 84981342035 scopus 로고    scopus 로고
    • Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins
    • Hur, J. K. et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat. Biotechnol. 34, 807-808 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 807-808
    • Hur, J.K.1
  • 69
    • 84981318543 scopus 로고    scopus 로고
    • Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells
    • Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863-868 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 863-868
    • Kim, D.1
  • 70
    • 85006401289 scopus 로고    scopus 로고
    • C?Brick: A new standard for assembly of biological parts using Cpf1
    • Li, S. Y., Zhao, G. P. & Wang, J. C?Brick: a new standard for assembly of biological parts using Cpf1. ACS Synth. Biol. http://dx.doi.org/10.1021/ acssynbio.6b00114 (2016).
    • (2016) ACS Synth. Biol.
    • Li, S.Y.1    Zhao, G.P.2    Wang, J.3
  • 71
    • 84913568580 scopus 로고    scopus 로고
    • Programmable RNA recognition and cleavage by CRISPR/Cas9
    • O'Connell, M. R. et al. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516, 263-266 (2014).
    • (2014) Nature , vol.516 , pp. 263-266
    • O'Connell, M.R.1
  • 72
    • 33846975418 scopus 로고    scopus 로고
    • PILER?CR: Fast and accurate identification of CRISPR repeats
    • Edgar, R. C. PILER?CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8, 18 (2007).
    • (2007) BMC Bioinformatics , vol.8 , pp. 18
    • Edgar, R.C.1
  • 73
    • 34547579396 scopus 로고    scopus 로고
    • CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats
    • Grissa, I., Vergnaud, G. & Pourcel, C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35, W52-W57 (2007).
    • (2007) Nucleic Acids Res. , vol.35 , pp. W52-W57
    • Grissa, I.1    Vergnaud, G.2    Pourcel, C.3
  • 74
    • 84991407954 scopus 로고    scopus 로고
    • Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I?F systems
    • Almendros, C., Guzman, N. M., Garcia-Martinez, J. & Mojica, F. J. Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I?F systems. Nat. Microbiol. 1, 16081 (2016).
    • (2016) Nat. Microbiol. , vol.1 , pp. 16081
    • Almendros, C.1    Guzman, N.M.2    Garcia-Martinez, J.3    Mojica, F.J.4
  • 75
    • 84877304698 scopus 로고    scopus 로고
    • Comparative genomics of defense systems in archaea and bacteria
    • Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res. 41, 4360-4377 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4360-4377
    • Makarova, K.S.1    Wolf, Y.I.2    Koonin, E.V.3
  • 76
    • 85008512771 scopus 로고    scopus 로고
    • C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism
    • Liu, L. et al. C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol. Cell http://dx.doi.org/10.1016/j.molcel.2016.11.040 (2016).
    • (2016) Mol. Cell
    • Liu, L.1
  • 77
    • 85006511857 scopus 로고    scopus 로고
    • PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease
    • Yang, H., Gao, P., Rajashankar, K. R. & Patel, D. J. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167, 1814-1828.e12 (2016).
    • (2016) Cell , vol.167 , pp. 1814-1814e12
    • Yang, H.1    Gao, P.2    Rajashankar, K.R.3    Patel, D.J.4
  • 78
    • 85009228507 scopus 로고    scopus 로고
    • Two distant catalytic sites are responsible for C2c2 RNase activities
    • Liu, L. et al. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168, 121-134.e12 (2017).
    • (2017) Cell , vol.168 , pp. 121-121e12
    • Liu, L.1
  • 79
    • 85008425651 scopus 로고    scopus 로고
    • Cas13b is a type VI-B CRISPRassociated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28
    • Smargon, A. A. et al. Cas13b is a type VI-B CRISPRassociated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell http://dx.doi.org/10.1016/j.molcel.2016.12.023 (2017).
    • (2017) Mol. Cell
    • Smargon, A.A.1
  • 80
    • 85012284419 scopus 로고    scopus 로고
    • New CRISPR-Cas systems from uncultivated microbes
    • Burstein, D. et al. New CRISPR-Cas systems from uncultivated microbes. Nature http://dx.doi. org/10.1038/nature21059 (2016).
    • (2016) Nature
    • Burstein, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.