-
1
-
-
84857097177
-
RNA guided genetic silencing systems in bacteria and archaea
-
Wiedenheft B, Sternberg SH, Doudna JA. RNA guided genetic silencing systems in bacteria and archaea. Nature. 2012;7385:331-8.
-
(2012)
Nature
, vol.7385
, pp. 331-338
-
-
Wiedenheft, B.1
Sternberg, S.H.2
Doudna, J.A.3
-
2
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;6096:816-21.
-
(2012)
Science
, vol.6096
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
3
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013;6121:823-6.
-
(2013)
Science
, vol.6121
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
4
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;7:4336-43.
-
(2013)
Nucleic Acids Res
, vol.7
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
5
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;3:227-9.
-
(2013)
Nat Biotechnol
, vol.3
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
Maeder, M.L.4
Tsai, S.Q.5
Sander, J.D.6
Peterson, R.T.7
Yeh, J.R.8
Joung, J.K.9
-
6
-
-
84880088705
-
Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease
-
Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O'Connor-Giles KM. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 2013;194:1029-35.
-
(2013)
Genetics
, vol.194
, pp. 1029-1035
-
-
Gratz, S.J.1
Cummings, A.M.2
Nguyen, J.N.3
Hamm, D.C.4
Donohue, L.K.5
Harrison, M.M.6
Wildonger, J.7
O'Connor-Giles, K.M.8
-
7
-
-
84874624936
-
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
-
Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;3:230-2.
-
(2013)
Nat Biotechnol
, vol.3
, pp. 230-232
-
-
Cho, S.W.1
Kim, S.2
Kim, J.M.3
Kim, J.S.4
-
8
-
-
84886926151
-
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
-
Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41:e188.
-
(2013)
Nucleic Acids Res
, vol.41
-
-
Jiang, W.1
Zhou, H.2
Bi, H.3
Fromm, M.4
Yang, B.5
Weeks, D.P.6
-
9
-
-
84922522034
-
The CRISPR-Cas system for plant genome editing: advances and opportunities
-
Kumar V, Jain M. The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot. 2015;66:47-57.
-
(2015)
J Exp Bot
, vol.66
, pp. 47-57
-
-
Kumar, V.1
Jain, M.2
-
10
-
-
84894321885
-
Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system
-
Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics. 2014;41:63-8.
-
(2014)
J Genet Genomics
, vol.41
, pp. 63-68
-
-
Liang, Z.1
Zhang, K.2
Chen, K.3
Gao, C.4
-
11
-
-
84942901283
-
Cigan AMTargeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA
-
Svitashev S, Young JK, Schwartz C, Gao H, Falco SC. Cigan AMTargeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiol. 2015;169:931-45.
-
(2015)
Plant Physiol
, vol.169
, pp. 931-945
-
-
Svitashev, S.1
Young, J.K.2
Schwartz, C.3
Gao, H.4
Falco, S.C.5
-
12
-
-
84957838490
-
Efficiency and Inheritance of targeted mutagenesis in maize using CRISPR-Cas9
-
Zhu J, Song N, Sun S, Yang W, Zhao H, Song W, Lai J. Efficiency and Inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genomics. 2016;43:25-36.
-
(2016)
J Genet Genomics
, vol.43
, pp. 25-36
-
-
Zhu, J.1
Song, N.2
Sun, S.3
Yang, W.4
Zhao, H.5
Song, W.6
Lai, J.7
-
13
-
-
84957839838
-
Efficient targeted genome modification in maize using CRISPR/Cas9 System
-
Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F. Efficient targeted genome modification in maize using CRISPR/Cas9 System. J Genet Genomics. 2016; 43:37-43.
-
(2016)
J Genet Genomics
, vol.43
, pp. 37-43
-
-
Feng, C.1
Yuan, J.2
Wang, R.3
Liu, Y.4
Birchler, J.A.5
Han, F.6
-
15
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;6121:819-23.
-
(2013)
Science
, vol.6121
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
-
16
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;4:910-8.
-
(2013)
Cell
, vol.4
, pp. 910-918
-
-
Wang, H.1
Yang, H.2
Shivalila, C.S.3
Dawlaty, M.M.4
Cheng, A.W.5
Zhang, F.6
Jaenisch, R.7
-
17
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688-91.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.8
, pp. 688-691
-
-
Li, J.F.1
Norville, J.E.2
Aach, J.3
McCormack, M.4
Zhang, D.5
Bush, J.6
Church, G.M.7
Sheen, J.8
-
18
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8):686-8.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.8
, pp. 686-688
-
-
Shan, Q.1
Wang, Y.2
Li, J.3
Zhang, Y.4
Chen, K.5
Liang, Z.6
Zhang, K.7
Liu, J.8
Xi, J.J.9
Qiu, J.L.10
Gao, C.11
-
19
-
-
84964313841
-
A CRISPR/Cas9 toolkit for multiplex genome editing in plants
-
Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 2014;14:327.
-
(2014)
BMC Plant Biol
, vol.14
, pp. 327
-
-
Xing, H.L.1
Dong, L.2
Wang, Z.P.3
Zhang, H.Y.4
Han, C.Y.5
Liu, B.6
Wang, X.C.7
Chen, Q.J.8
-
20
-
-
84938748218
-
A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plant
-
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plant. Mol Plant. 2015;8:1274.
-
(2015)
Mol Plant
, vol.8
, pp. 1274
-
-
Ma, X.1
Zhang, Q.2
Zhu, Q.3
Liu, W.4
Chen, Y.5
Qiu, R.6
Wang, B.7
Yang, Z.8
Li, H.9
Lin, Y.10
Xie, Y.11
Shen, R.12
Chen, S.13
Wang, Z.14
Chen, Y.15
Guo, J.16
Chen, L.17
Zhao, X.18
Dong, Z.19
Liu, Y.G.20
more..
-
21
-
-
84925262435
-
Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system
-
Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A. 2015;112:3570-5.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 3570-3575
-
-
Xie, K.1
Minkenberg, B.2
Yang, Y.3
-
22
-
-
0036000038
-
Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system
-
Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 2002;129:13-22.
-
(2002)
Plant Physiol
, vol.129
, pp. 13-22
-
-
Frame, B.R.1
Shou, H.2
Chikwamba, R.K.3
Zhang, Z.4
Xiang, C.5
Fonger, T.M.6
Pegg, S.E.K.7
Li, B.8
Nettleton, D.S.9
Pei, D.10
-
23
-
-
72749124013
-
Heritable targeted mutagenesis in maize using a designed endonuclease
-
Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D, et al. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J. 2010;61:176-87.
-
(2010)
Plant J
, vol.61
, pp. 176-187
-
-
Gao, H.1
Smith, J.2
Yang, M.3
Jones, S.4
Djukanovic, V.5
Nicholson, M.G.6
West, A.7
Bidney, D.8
Falco, S.C.9
Jantz, D.10
-
24
-
-
11944254685
-
New methods for extraction and quantitation of zeins reveal a high content of γ-zein in modified opaque-2 maize
-
Wallace JC, Lopes MA, Paiva E, Larkins BA. New methods for extraction and quantitation of zeins reveal a high content of γ-zein in modified opaque-2 maize. Plant Physiol. 1990;92:191-6.
-
(1990)
Plant Physiol
, vol.92
, pp. 191-196
-
-
Wallace, J.C.1
Lopes, M.A.2
Paiva, E.3
Larkins, B.A.4
-
25
-
-
84884962826
-
RNA-guided genome editing in plants using a CRISPR-Cas system
-
Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant. 2013;6(6):1975-83.
-
(2013)
Mol Plant
, vol.6
, Issue.6
, pp. 1975-1983
-
-
Xie, K.1
Yang, Y.2
-
26
-
-
84927770026
-
Genome-Wide Characterization of cis-Acting DNA Targets Reveals the Transcriptional Regulatory Framework of Opaque2 in Maize
-
Li C, Qiao Z, Qi W, Wang Q, Yuan Y, et al. Genome-Wide Characterization of cis-Acting DNA Targets Reveals the Transcriptional Regulatory Framework of Opaque2 in Maize. Plant Cell. 2015;27:532-45.
-
(2015)
Plant Cell
, vol.27
, pp. 532-545
-
-
Li, C.1
Qiao, Z.2
Qi, W.3
Wang, Q.4
Yuan, Y.5
-
27
-
-
84964834064
-
ZmMADS47 regulates zein gene transcription through interaction with Opaque2
-
Qiao Z, Qi W, Wang Q, Feng Y, Yang Q, Zhang N, Wang S, Tang Y, Song R. ZmMADS47 regulates zein gene transcription through interaction with Opaque2. Plos Genet. 2016. doi:10.1371/journal.pgen.1005991.
-
(2016)
Plos Genet
-
-
Qiao, Z.1
Qi, W.2
Wang, Q.3
Feng, Y.4
Yang, Q.5
Zhang, N.6
Wang, S.7
Tang, Y.8
Song, R.9
-
28
-
-
84906785551
-
Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa)
-
Li XJ, Zhang YF, Mm H, Sun F, Shen Y, Xiu ZH, Wang XM, Chen ZL, Sun S, Small I, Tan BC. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J. 2014;79:797-809.
-
(2014)
Plant J
, vol.79
, pp. 797-809
-
-
Li, X.J.1
Zhang, Y.F.2
Mm, H.3
Sun, F.4
Shen, Y.5
Xiu, Z.H.6
Wang, X.M.7
Chen, Z.L.8
Sun, S.9
Small, I.10
Tan, B.C.11
-
29
-
-
84943615534
-
Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize
-
Sun F, Wang XM, Bonnard G, Shen Y, Xiu Z, Li X, Gao D, Zhang Z, Tan BC. Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. Plant J. 2015;84:283-95.
-
(2015)
Plant J
, vol.84
, pp. 283-295
-
-
Sun, F.1
Wang, X.M.2
Bonnard, G.3
Shen, Y.4
Xiu, Z.5
Li, X.6
Gao, D.7
Zhang, Z.8
Tan, B.C.9
-
30
-
-
0025193146
-
External guide sequences for an RNA enzyme
-
Forster AC, Altman S. External guide sequences for an RNA enzyme. Science. 1990;249(4970):783-6.
-
(1990)
Science
, vol.249
, Issue.4970
, pp. 783-786
-
-
Forster, A.C.1
Altman, S.2
-
31
-
-
85027948074
-
Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta
-
Johnson RA, Gurevich V, Filler S, Samach A, Levy AA. Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta. Plant Mol Biol. 2015;87:143e156.
-
(2015)
Plant Mol Biol
, vol.87
, pp. 143-156
-
-
Johnson, R.A.1
Gurevich, V.2
Filler, S.3
Samach, A.4
Levy, A.A.5
-
32
-
-
84904068340
-
Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana
-
Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 2014;79:348e359.
-
(2014)
Plant J
, vol.79
, pp. 348-359
-
-
Fauser, F.1
Schiml, S.2
Puchta, H.3
-
33
-
-
84904639258
-
The CRISPR/Cas9 system produces specific and homozygous targete gene editing in rice in one gerneration
-
Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu J. The CRISPR/Cas9 system produces specific and homozygous targete gene editing in rice in one gerneration. Plant Biotech J. 2014;12: 797e807.
-
(2014)
Plant Biotech J
, vol.12
, pp. 797-807
-
-
Zhang, H.1
Zhang, J.2
Wei, P.3
Zhang, B.4
Gou, F.5
Feng, Z.6
Mao, Y.7
Yang, L.8
Zhang, H.9
Xu, N.10
Zhu, J.11
|