-
1
-
-
84903317244
-
Precision genome engineering and agriculture: opportunities and regulatory challenges
-
Voytas DF, Gao C. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 2014;12:e1001877.
-
(2014)
PLoS Biol.
, vol.12
, pp. e1001877
-
-
Voytas, D.F.1
Gao, C.2
-
2
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu Patrick D, Lander Eric S, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262-78.
-
(2014)
Cell.
, vol.157
, pp. 1262-1278
-
-
Hsu Patrick, D.1
Lander Eric, S.2
Zhang, F.3
-
3
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819-23.
-
(2013)
Science.
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
-
4
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823-6.
-
(2013)
Science.
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
-
5
-
-
84931846154
-
Editing plant genomes with CRISPR/Cas9
-
Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol. 2015;32:76-84.
-
(2015)
Curr Opin Biotechnol.
, vol.32
, pp. 76-84
-
-
Belhaj, K.1
Chaparro-Garcia, A.2
Kamoun, S.3
Patron, N.J.4
Nekrasov, V.5
-
6
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotech. 2013;31:688-91.
-
(2013)
Nat Biotech.
, vol.31
, pp. 688-691
-
-
Li, J.-F.1
Norville, J.E.2
Aach, J.3
McCormack, M.4
Zhang, D.5
Bush, J.6
-
7
-
-
84883828590
-
Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease
-
Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotech. 2013;31:691-3.
-
(2013)
Nat Biotech.
, vol.31
, pp. 691-693
-
-
Nekrasov, V.1
Staskawicz, B.2
Weigel, D.3
Jones, J.D.G.4
Kamoun, S.5
-
8
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotech. 2013;31:686-8.
-
(2013)
Nat Biotech.
, vol.31
, pp. 686-688
-
-
Shan, Q.1
Wang, Y.2
Li, J.3
Zhang, Y.4
Chen, K.5
Liang, Z.6
-
9
-
-
84896924524
-
Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis
-
Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang D-L, et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci. 2014;111:4632-7.
-
(2014)
Proc Natl Acad Sci.
, vol.111
, pp. 4632-4637
-
-
Feng, Z.1
Mao, Y.2
Xu, N.3
Zhang, B.4
Wei, P.5
Yang, D.-L.6
-
10
-
-
84904639258
-
The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
-
Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J. 2014;12:797-807.
-
(2014)
Plant Biotechnol J.
, vol.12
, pp. 797-807
-
-
Zhang, H.1
Zhang, J.2
Wei, P.3
Zhang, B.4
Gou, F.5
Feng, Z.6
-
11
-
-
84921549293
-
Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice
-
Zhou H, Liu B, Weeks DP, Spalding MH, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 2014;42:10903-14.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 10903-10914
-
-
Zhou, H.1
Liu, B.2
Weeks, D.P.3
Spalding, M.H.4
Yang, B.5
-
12
-
-
84921934205
-
Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
-
Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotech. 2014;32:947-51.
-
(2014)
Nat Biotech.
, vol.32
, pp. 947-951
-
-
Wang, Y.1
Cheng, X.2
Shan, Q.3
Zhang, Y.4
Liu, J.5
Gao, C.6
-
13
-
-
77957666224
-
Gibberellins control fruit patterning in Arabidopsis thaliana
-
Arnaud N, Girin T, Sorefan K, Fuentes S, Wood TA, Lawrenson T, et al. Gibberellins control fruit patterning in Arabidopsis thaliana. Genes Dev. 2010;24:2127-32.
-
(2010)
Genes Dev.
, vol.24
, pp. 2127-2132
-
-
Arnaud, N.1
Girin, T.2
Sorefan, K.3
Fuentes, S.4
Wood, T.A.5
Lawrenson, T.6
-
15
-
-
0036006873
-
PM19, a barley (Hordeum vulgare L.) gene encoding a putative plasma membrane protein, is expressed during embryo development and dormancy
-
Ranford JC, Bryce JH, Morris PC. PM19, a barley (Hordeum vulgare L.) gene encoding a putative plasma membrane protein, is expressed during embryo development and dormancy. J Exp Bot. 2002;53:147-8.
-
(2002)
J Exp Bot
, vol.53
, pp. 147-148
-
-
Ranford, J.C.1
Bryce, J.H.2
Morris, P.C.3
-
16
-
-
84939161463
-
Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL
-
Barrero JM, Cavanagh C, Verbyla KL, Tibbits JFG, Verbyla AP, Huang BE, et al. Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biol. 2015;16:93.
-
(2015)
Genome Biol.
, vol.16
, pp. 93
-
-
Barrero, J.M.1
Cavanagh, C.2
Verbyla, K.L.3
Tibbits, J.F.G.4
Verbyla, A.P.5
Huang, B.E.6
-
17
-
-
84920262090
-
The CRISPR/Cas9 system for plant genome editing and beyond
-
Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 2015;33:41-52.
-
(2015)
Biotechnol Adv.
, vol.33
, pp. 41-52
-
-
Bortesi, L.1
Fischer, R.2
-
18
-
-
84886926151
-
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
-
Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41(20):e188.
-
(2013)
Nucleic Acids Res
, vol.41
, Issue.20
, pp. e188
-
-
Jiang, W.1
Zhou, H.2
Bi, H.3
Fromm, M.4
Yang, B.5
Weeks, D.P.6
-
19
-
-
84865070369
-
A programmable dual-RNA-guided DNA Endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA Endonuclease in adaptive bacterial immunity. Science. 2012;337:816-21.
-
(2012)
Science.
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
20
-
-
84901594468
-
Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU
-
Hartung F, Schiemann J. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J. 2014;78:742-52.
-
(2014)
Plant J.
, vol.78
, pp. 742-752
-
-
Hartung, F.1
Schiemann, J.2
-
21
-
-
84935033103
-
Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system
-
Xu R-F, Li H, Qin R-Y, Li J, Qiu C-H, Yang Y-C, et al. Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep. 2015;5:11491.
-
(2015)
Sci Rep.
, vol.5
, pp. 11491
-
-
Xu, R.-F.1
Li, H.2
Qin, R.-Y.3
Li, J.4
Qiu, C.-H.5
Yang, Y.-C.6
-
22
-
-
33750097778
-
Brassica oleracea
-
In: Wang K, editor. New York: Humana Press
-
Sparrow P, Dale P, Irwin J. Brassica oleracea. In: Wang K, editor. Agrobacterium Protocols, vol. 343. New York: Humana Press; 2006. p. 417-26.
-
(2006)
Agrobacterium Protocols
, vol.343
, pp. 417-426
-
-
Sparrow, P.1
Dale, P.2
Irwin, J.3
-
23
-
-
33644902712
-
Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development
-
Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, et al. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J. 2006;45:804-18.
-
(2006)
Plant J.
, vol.45
, pp. 804-818
-
-
Mitchum, M.G.1
Yamaguchi, S.2
Hanada, A.3
Kuwahara, A.4
Yoshioka, Y.5
Kato, T.6
-
24
-
-
84908584019
-
Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system
-
Brooks C, Nekrasov V, Lippman ZB, Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 2014;166:1292-7.
-
(2014)
Plant Physiol.
, vol.166
, pp. 1292-1297
-
-
Brooks, C.1
Nekrasov, V.2
Lippman, Z.B.3
Eck, J.4
-
25
-
-
84941941829
-
Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice
-
Mikami M, Toki S, Endo M. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep. 2015;34:1807-15.
-
(2015)
Plant Cell Rep.
, vol.34
, pp. 1807-1815
-
-
Mikami, M.1
Toki, S.2
Endo, M.3
-
26
-
-
84922664019
-
Multi-gene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice
-
Endo M, Mikami M, Toki S. Multi-gene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 2015;56:41-7.
-
(2015)
Plant Cell Physiol.
, vol.56
, pp. 41-47
-
-
Endo, M.1
Mikami, M.2
Toki, S.3
-
27
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotech. 2013;31:233-9.
-
(2013)
Nat Biotech.
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
28
-
-
84884950106
-
CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity
-
Cradick TJ, Fine EJ, Antico CJ, Bao G. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013;41:9584-92.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 9584-9592
-
-
Cradick, T.J.1
Fine, E.J.2
Antico, C.J.3
Bao, G.4
-
29
-
-
84903138336
-
CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences
-
Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 2014;42:7473-85.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 7473-7485
-
-
Lin, Y.1
Cradick, T.J.2
Brown, M.T.3
Deshmukh, H.4
Ranjan, P.5
Sarode, N.6
-
30
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32:279-84.
-
(2014)
Nat Biotechnol.
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
31
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu Patrick D, Lin C-Y, Gootenberg Jonathan S, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380-9.
-
(2013)
Cell.
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu Patrick, D.2
Lin, C.-Y.3
Gootenberg Jonathan, S.4
Konermann, S.5
Trevino, A.E.6
-
32
-
-
84897954175
-
Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
-
Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Meth. 2014;11:399-402.
-
(2014)
Nat Meth.
, vol.11
, pp. 399-402
-
-
Shen, B.1
Zhang, W.2
Zhang, J.3
Zhou, J.4
Wang, J.5
Chen, L.6
-
33
-
-
84902210542
-
Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
-
Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotech. 2014;32:577-82.
-
(2014)
Nat Biotech.
, vol.32
, pp. 577-582
-
-
Guilinger, J.P.1
Thompson, D.B.2
Liu, D.R.3
-
34
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotech. 2014;32:569-76.
-
(2014)
Nat Biotech.
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
Wyvekens, N.2
Khayter, C.3
Foden, J.A.4
Thapar, V.5
Reyon, D.6
-
35
-
-
84946492178
-
Genomics as the key to unlocking the polyploid potential of wheat
-
Borrill P, Adamski N, Uauy C. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol. 2015;208:1008-22.
-
(2015)
New Phytol.
, vol.208
, pp. 1008-1022
-
-
Borrill, P.1
Adamski, N.2
Uauy, C.3
-
36
-
-
14744277777
-
Polyploidy and genome evolution in plants
-
Adams KL, Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005;8:135-41.
-
(2005)
Curr Opin Plant Biol.
, vol.8
, pp. 135-141
-
-
Adams, K.L.1
Wendel, J.F.2
-
37
-
-
84904382612
-
A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome
-
The International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788.
-
(2014)
Science
, vol.345
, pp. 1251788
-
-
-
38
-
-
77954451468
-
Brassicaceae INDEHISCENT genes specify valve margin cell fate and repress replum formation
-
Girin T, Stephenson P, Goldsack CMP, Kempin SA, Perez A, Pires N, et al. Brassicaceae INDEHISCENT genes specify valve margin cell fate and repress replum formation. Plant J. 2010;63:329-38.
-
(2010)
Plant J.
, vol.63
, pp. 329-338
-
-
Girin, T.1
Stephenson, P.2
Goldsack, C.M.P.3
Kempin, S.A.4
Perez, A.5
Pires, N.6
-
39
-
-
0029876045
-
'Pod shatter' in Arabidopsis thaliana, Brassica napus and B. juncea
-
Spence J, Vercher Y, Gates P, Harris N. 'Pod shatter' in Arabidopsis thaliana, Brassica napus and B. juncea. J Microsc. 1996;181:195-203.
-
(1996)
J Microsc
, vol.181
, pp. 195-203
-
-
Spence, J.1
Vercher, Y.2
Gates, P.3
Harris, N.4
-
40
-
-
84948824806
-
-
The Brassica Database. [ http://brassicadb.org/brad/blastPage.php ].
-
-
-
-
41
-
-
84948824807
-
-
International Barley Sequencing Consortium Database [ http://webblast.ipk-gatersleben.de/barley/ ]
-
-
-
-
42
-
-
79951997641
-
A modular cloning system for standardized assembly of multigene constructs
-
Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S. A modular cloning system for standardized assembly of multigene constructs. PLoS One. 2011;6:e16765.
-
(2011)
PLoS One.
, vol.6
, pp. e16765
-
-
Weber, E.1
Engler, C.2
Gruetzner, R.3
Werner, S.4
Marillonnet, S.5
-
43
-
-
84903299278
-
A golden gate modular cloning toolbox for plants
-
Engler C, Youles M, Gruetzner R, Ehnert T-M, Werner S, Jones JDG, et al. A golden gate modular cloning toolbox for plants. ACS Synthetic Biol. 2014;3:839-43.
-
(2014)
ACS Synthetic Biol.
, vol.3
, pp. 839-843
-
-
Engler, C.1
Youles, M.2
Gruetzner, R.3
Ehnert, T.-M.4
Werner, S.5
Jones, J.D.G.6
-
44
-
-
84899933262
-
A Protocol for High-Throughput Agrobacterium-Mediated Barley Transformation
-
In: Henry RJ, Furtado A, editors. Cereal Genomics, New York: Humana Press
-
Harwood W. A Protocol for High-Throughput Agrobacterium-Mediated Barley Transformation. In: Henry RJ, Furtado A, editors. Cereal Genomics, vol. 1099. New York: Humana Press; 2014. p. 251-60.
-
(2014)
, vol.1099
, pp. 251-260
-
-
Harwood, W.1
-
45
-
-
84948777901
-
Brassica oleracea and B. napus
-
In: Wang K, editor. New York: Springer
-
Hundleby PAC, Irwin J. Brassica oleracea and B. napus. In: Wang K, editor. Agrobacterium Protocols, vol. 1223. New York: Springer; 2015. p. 287-97.
-
(2015)
Agrobacterium Protocols
, vol.1223
, pp. 287-297
-
-
Hundleby, P.A.C.1
Irwin, J.2
-
46
-
-
84874627868
-
Plant genome engineering with sequence-specific nucleases
-
Voytas DF. Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol. 2013;64:327-50.
-
(2013)
Annu Rev Plant Biol.
, vol.64
, pp. 327-350
-
-
Voytas, D.F.1
-
47
-
-
0025978277
-
A simple and rapid method for the preparation of plant genomic DNA for PCR analysis
-
Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991;19:1349.
-
(1991)
Nucleic Acids Res.
, vol.19
, pp. 1349
-
-
Edwards, K.1
Johnstone, C.2
Thompson, C.3
-
49
-
-
33645317864
-
Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene
-
Østergaard L, Kempin SA, Bies D, Klee HJ, Yanofsky MF. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J. 2006;4:45-51.
-
(2006)
Plant Biotechnol J.
, vol.4
, pp. 45-51
-
-
Østergaard, L.1
Kempin, S.A.2
Bies, D.3
Klee, H.J.4
Yanofsky, M.F.5
-
50
-
-
13444311862
-
Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene
-
Weng H, Pan A, Yang L, Zhang C, Liu Z, Zhang D. Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene. Plant Mol Biol Rep. 2004;22:289-300.
-
(2004)
Plant Mol Biol Rep.
, vol.22
, pp. 289-300
-
-
Weng, H.1
Pan, A.2
Yang, L.3
Zhang, C.4
Liu, Z.5
Zhang, D.6
|