-
1
-
-
0029946668
-
Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination
-
1 Puchta, H., Dujon, B., Hohn, B., Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A 93 (1996), 5055–5060.
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, pp. 5055-5060
-
-
Puchta, H.1
Dujon, B.2
Hohn, B.3
-
2
-
-
0032531757
-
Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells
-
2 Salomon, S., Puchta, H., Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17 (1998), 6086–6095, 10.1093/emboj/17.20.6086.
-
(1998)
EMBO J
, vol.17
, pp. 6086-6095
-
-
Salomon, S.1
Puchta, H.2
-
3
-
-
11444267813
-
The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution
-
3 Puchta, H., The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56 (2005), 1–14, 10.1093/jxb/eri025.
-
(2005)
J Exp Bot
, vol.56
, pp. 1-14
-
-
Puchta, H.1
-
4
-
-
0034675997
-
Species-specific double-strand break repair and genome evolution in plants
-
4 Kirik, A., Salomon, S., Puchta, H., Species-specific double-strand break repair and genome evolution in plants. EMBO J 19 (2000), 5562–5566, 10.1093/emboj/19.20.5562.
-
(2000)
EMBO J
, vol.19
, pp. 5562-5566
-
-
Kirik, A.1
Salomon, S.2
Puchta, H.3
-
5
-
-
0036016441
-
Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome
-
5 Siebert, R., Puchta, H., Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14 (2002), 1121–1131.
-
(2002)
Plant Cell
, vol.14
, pp. 1121-1131
-
-
Siebert, R.1
Puchta, H.2
-
6
-
-
84960832490
-
Origins of programmable nucleases for genome engineering
-
6 Chandrasegaran, S., Carroll, D., Origins of programmable nucleases for genome engineering. J Mol Biol 428:Pt B (2016), 963–989, 10.1016/j.jmb.2015.10.014.
-
(2016)
J Mol Biol
, vol.428
, pp. 963-989
-
-
Chandrasegaran, S.1
Carroll, D.2
-
7
-
-
84874627868
-
Plant genome engineering with sequence-specific nucleases
-
7 Voytas, D.F., Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64 (2013), 327–350, 10.1146/annurev-arplant-042811-105552.
-
(2013)
Annu Rev Plant Biol
, vol.64
, pp. 327-350
-
-
Voytas, D.F.1
-
8
-
-
84901386271
-
Synthetic nucleases for genome engineering in plants: prospects for a bright future
-
8 Puchta, H., Fauser, F., Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J Cell Mol Biol 78 (2014), 727–741, 10.1111/tpj.12338.
-
(2014)
Plant J Cell Mol Biol
, vol.78
, pp. 727-741
-
-
Puchta, H.1
Fauser, F.2
-
9
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Till now the most important article of molecular biology in the 21st century.
-
9•• Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY) 337 (2012), 816–821, 10.1126/science.1225829 Till now the most important article of molecular biology in the 21st century.
-
(2012)
Science (New York, NY)
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
10
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
10 Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.-L., et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31 (2013), 686–688, 10.1038/nbt.2650.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 686-688
-
-
Shan, Q.1
Wang, Y.2
Li, J.3
Zhang, Y.4
Chen, K.5
Liang, Z.6
Zhang, K.7
Liu, J.8
Xi, J.J.9
Qiu, J.-L.10
-
11
-
-
84883828590
-
Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease
-
11 Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D.G., Kamoun, S., Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31 (2013), 691–693, 10.1038/nbt.2655.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 691-693
-
-
Nekrasov, V.1
Staskawicz, B.2
Weigel, D.3
Jones, J.D.G.4
Kamoun, S.5
-
12
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
12 Li, J.-F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M., Sheen, J., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31 (2013), 688–691, 10.1038/nbt.2654.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 688-691
-
-
Li, J.-F.1
Norville, J.E.2
Aach, J.3
McCormack, M.4
Zhang, D.5
Bush, J.6
Church, G.M.7
Sheen, J.8
-
13
-
-
84921934205
-
Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
-
The first impressive example of the power of genome engineering for breeding: the production of wheat that is resistant to powdery mildew.
-
13•• Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.-L., Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32 (2014), 947–951, 10.1038/nbt.2969 The first impressive example of the power of genome engineering for breeding: the production of wheat that is resistant to powdery mildew.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 947-951
-
-
Wang, Y.1
Cheng, X.2
Shan, Q.3
Zhang, Y.4
Liu, J.5
Gao, C.6
Qiu, J.-L.7
-
14
-
-
84975179107
-
Targeted gene manipulation in plants using the CRISPR/Cas technology
-
Yi chuan xue bao
-
14 Zhang, D., Li, Z., Li, J.-F., Targeted gene manipulation in plants using the CRISPR/Cas technology. J Genet Genomics (Trans.) Yi chuan xue bao, 43, 2016, 251–262, 10.1016/j.jgg.2016.03.001.
-
(2016)
J Genet Genomics
, vol.43
, pp. 251-262
-
-
Zhang, D.1
Li, Z.2
Li, J.-F.3
-
15
-
-
84964999936
-
Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants
-
15 Luo, M., Gilbert, B., Ayliffe, M., Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants. Plant Cell Rep 35 (2016), 1439–1450, 10.1007/s00299-016-1989-8.
-
(2016)
Plant Cell Rep
, vol.35
, pp. 1439-1450
-
-
Luo, M.1
Gilbert, B.2
Ayliffe, M.3
-
16
-
-
85009143841
-
CRISPR/Cas9 platforms for genome editing in plants: developments and applications
-
16 Ma, X., Zhu, Q., Chen, Y., Liu, Y.-G., CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9 (2016), 961–974, 10.1016/j.molp.2016.04.009.
-
(2016)
Mol Plant
, vol.9
, pp. 961-974
-
-
Ma, X.1
Zhu, Q.2
Chen, Y.3
Liu, Y.-G.4
-
17
-
-
84957837698
-
Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas
-
17 Schiml, S., Puchta, H., Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods, 12, 2016, 8, 10.1186/s13007-016-0103-0.
-
(2016)
Plant Methods
, vol.12
, pp. 8
-
-
Schiml, S.1
Puchta, H.2
-
18
-
-
84958241188
-
Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research
-
18 Liu, D., Hu, R., Palla, K.J., Tuskan, G.A., Yang, X., Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. Curr Opin Plant Biol 30 (2016), 70–77, 10.1016/j.pbi.2016.01.007.
-
(2016)
Curr Opin Plant Biol
, vol.30
, pp. 70-77
-
-
Liu, D.1
Hu, R.2
Palla, K.J.3
Tuskan, G.A.4
Yang, X.5
-
19
-
-
84904068340
-
Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana
-
19 Fauser, F., Schiml, S., Puchta, H., Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J Cell Mol Biol 79 (2014), 348–359, 10.1111/tpj.12554.
-
(2014)
Plant J Cell Mol Biol
, vol.79
, pp. 348-359
-
-
Fauser, F.1
Schiml, S.2
Puchta, H.3
-
20
-
-
84965013564
-
Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts
-
20 Sprink, T., Eriksson, D., Schiemann, J., Hartung, F., Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep 35 (2016), 1493–1506, 10.1007/s00299-016-1990-2.
-
(2016)
Plant Cell Rep
, vol.35
, pp. 1493-1506
-
-
Sprink, T.1
Eriksson, D.2
Schiemann, J.3
Hartung, F.4
-
21
-
-
78249245697
-
Nontransgenic genome modification in plant cells
-
First demonstration that viral synthetic nucleases can be delivered by viral RNA to produce plant mutants without recombinant DNA.
-
21• Marton, I., Zuker, A., Shklarman, E., Zeevi, V., Tovkach, A., Roffe, S., Ovadis, M., Tzfira, T., Vainstein, A., Nontransgenic genome modification in plant cells. Plant Physiol 154 (2010), 1079–1087, 10.1104/pp.110.164806 First demonstration that viral synthetic nucleases can be delivered by viral RNA to produce plant mutants without recombinant DNA.
-
(2010)
Plant Physiol
, vol.154
, pp. 1079-1087
-
-
Marton, I.1
Zuker, A.2
Shklarman, E.3
Zeevi, V.4
Tovkach, A.5
Roffe, S.6
Ovadis, M.7
Tzfira, T.8
Vainstein, A.9
-
22
-
-
84938746255
-
Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system
-
22 Ali, Z., Abul-faraj, A., Li, L., Ghosh, N., Piatek, M., Mahjoub, A., Aouida, M., Piatek, A., Baltes, N.J., Voytas, D.F., et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8 (2015), 1288–1291, 10.1016/j.molp.2015.02.011.
-
(2015)
Mol Plant
, vol.8
, pp. 1288-1291
-
-
Ali, Z.1
Abul-faraj, A.2
Li, L.3
Ghosh, N.4
Piatek, M.5
Mahjoub, A.6
Aouida, M.7
Piatek, A.8
Baltes, N.J.9
Voytas, D.F.10
-
23
-
-
84941166811
-
Non-transgenic plant genome editing using purified sequence-specific nucleases
-
23 Luo, S., Li, J., Stoddard, T.J., Baltes, N.J., Demorest, Z.L., Clasen, B.M., Coffman, A., Retterath, A., Mathis, L., Voytas, D.F., et al. Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant 8 (2015), 1425–1427, 10.1016/j.molp.2016.04.009.
-
(2015)
Mol Plant
, vol.8
, pp. 1425-1427
-
-
Luo, S.1
Li, J.2
Stoddard, T.J.3
Baltes, N.J.4
Demorest, Z.L.5
Clasen, B.M.6
Coffman, A.7
Retterath, A.8
Mathis, L.9
Voytas, D.F.10
-
24
-
-
84969834753
-
Targeted mutagenesis in plant cells through transformation of sequence-specific nuclease mRNA
-
24 Stoddard, T.J., Clasen, B.M., Baltes, N.J., Demorest, Z.L., Voytas, D.F., Zhang, F., Luo, S., Targeted mutagenesis in plant cells through transformation of sequence-specific nuclease mRNA. PLOS ONE, 11, 2016, e0154634, 10.1371/journal.pone.0154634.
-
(2016)
PLOS ONE
, vol.11
, pp. e0154634
-
-
Stoddard, T.J.1
Clasen, B.M.2
Baltes, N.J.3
Demorest, Z.L.4
Voytas, D.F.5
Zhang, F.6
Luo, S.7
-
25
-
-
84947255513
-
DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
-
First demonstration that Cas9 can be applied as protein DNA complex for mutation induction in plants.
-
25• Woo, J.W., Kim, J., Kwon, S.I., Corvalan, C., Cho, S.W., Kim, H., Kim, S.-G., Kim, S.-T., Choe, S., Kim, J.-S., DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33 (2015), 1162–1164, 10.1038/nbt.3389 First demonstration that Cas9 can be applied as protein DNA complex for mutation induction in plants.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1162-1164
-
-
Woo, J.W.1
Kim, J.2
Kwon, S.I.3
Corvalan, C.4
Cho, S.W.5
Kim, H.6
Kim, S.-G.7
Kim, S.-T.8
Choe, S.9
Kim, J.-S.10
-
26
-
-
84922664019
-
Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice
-
26 Endo, M., Mikami, M., Toki, S., Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56 (2015), 41–47, 10.1093/pcp/pcu154.
-
(2015)
Plant Cell Physiol
, vol.56
, pp. 41-47
-
-
Endo, M.1
Mikami, M.2
Toki, S.3
-
27
-
-
84896924524
-
Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis
-
27 Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.-L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111 (2014), 4632–4637, 10.1073/pnas.1400822111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 4632-4637
-
-
Feng, Z.1
Mao, Y.2
Xu, N.3
Zhang, B.4
Wei, P.5
Yang, D.-L.6
Wang, Z.7
Zhang, Z.8
Zheng, R.9
Yang, L.10
-
28
-
-
84971507156
-
Precision targeted mutagenesis via Cas9 paired nickases in rice
-
28 Mikami, M., Toki, S., Endo, M., Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol 57 (2016), 1058–1068, 10.1093/pcp/pcw049.
-
(2016)
Plant Cell Physiol
, vol.57
, pp. 1058-1068
-
-
Mikami, M.1
Toki, S.2
Endo, M.3
-
29
-
-
84960392032
-
Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq
-
29 Kim, D., Kim, S., Kim, S., Park, J., Kim, J.-S., Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res 26 (2016), 406–415, 10.1101/gr.199588.115.
-
(2016)
Genome Res
, vol.26
, pp. 406-415
-
-
Kim, D.1
Kim, S.2
Kim, S.3
Park, J.4
Kim, J.-S.5
-
30
-
-
84963941043
-
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
-
30 Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., Joung, J.K., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529 (2016), 490–495, 10.1038/nature16526.
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
Pattanayak, V.2
Prew, M.S.3
Tsai, S.Q.4
Nguyen, N.T.5
Zheng, Z.6
Joung, J.K.7
-
31
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
31 Ran, F.A., Hsu, P.D., Lin, C.-Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154 (2013), 1380–1389, 10.1016/j.cell.2013.08.021.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.-Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
-
32
-
-
84916624400
-
The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny
-
32 Schiml, S., Fauser, F., Puchta, H., The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J Cell Mol Biol 80 (2014), 1139–1150, 10.1111/tpj.12704.
-
(2014)
Plant J Cell Mol Biol
, vol.80
, pp. 1139-1150
-
-
Schiml, S.1
Fauser, F.2
Puchta, H.3
-
33
-
-
84976505796
-
Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes
-
Shows that by the paired nickase approach mutations can be induced efficiently in genetic, intergenic and heterochromatic region of the plant genome.
-
33• Schiml, S., Fauser, F., Puchta, H., Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes. Proc Natl Acad Sci U S A 113 (2016), 7266–7271, 10.1073/pnas.1603823113 Shows that by the paired nickase approach mutations can be induced efficiently in genetic, intergenic and heterochromatic region of the plant genome.
-
(2016)
Proc Natl Acad Sci U S A
, vol.113
, pp. 7266-7271
-
-
Schiml, S.1
Fauser, F.2
Puchta, H.3
-
34
-
-
84957669261
-
Lessons from domestication: targeting Cis-regulatory elements for crop improvement
-
34 Swinnen, G., Goossens, A., Pauwels, L., Lessons from domestication: targeting Cis-regulatory elements for crop improvement. Trends Plant Sci 21 (2016), 506–515, 10.1016/j.tplants.2016.01.014.
-
(2016)
Trends Plant Sci
, vol.21
, pp. 506-515
-
-
Swinnen, G.1
Goossens, A.2
Pauwels, L.3
-
35
-
-
84964409193
-
Efficient multiplex mutagenesis by RNA-guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene
-
35 Yan, W., Chen, D., Kaufmann, K., Efficient multiplex mutagenesis by RNA-guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene. Plant Methods, 12, 2016, 23, 10.1186/s13007-016-0125-7.
-
(2016)
Plant Methods
, vol.12
, pp. 23
-
-
Yan, W.1
Chen, D.2
Kaufmann, K.3
-
36
-
-
84957602988
-
High-throughput mapping of regulatory DNA
-
36 Rajagopal, N., Srinivasan, S., Kooshesh, K., Guo, Y., Edwards, M.D., Banerjee, B., Syed, T., Emons, B.J.M., Gifford, D.K., Sherwood, R.I., High-throughput mapping of regulatory DNA. Nat Biotechnol 34 (2016), 167–174, 10.1038/nbt.3468.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 167-174
-
-
Rajagopal, N.1
Srinivasan, S.2
Kooshesh, K.3
Guo, Y.4
Edwards, M.D.5
Banerjee, B.6
Syed, T.7
Emons, B.J.M.8
Gifford, D.K.9
Sherwood, R.I.10
-
37
-
-
84957590341
-
Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9
-
37 Korkmaz, G., Lopes, R., Ugalde, A.P., Nevedomskaya, E., Han, R., Myacheva, K., Zwart, W., Elkon, R., Agami, R., Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol 34 (2016), 192–198, 10.1038/nbt.3450.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 192-198
-
-
Korkmaz, G.1
Lopes, R.2
Ugalde, A.P.3
Nevedomskaya, E.4
Han, R.5
Myacheva, K.6
Zwart, W.7
Elkon, R.8
Agami, R.9
-
38
-
-
84921549293
-
Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice
-
38 Zhou, H., Liu, B., Weeks, D.P., Spalding, M.H., Yang, B., Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42 (2014), 10903–10914, 10.1093/nar/gku806.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 10903-10914
-
-
Zhou, H.1
Liu, B.2
Weeks, D.P.3
Spalding, M.H.4
Yang, B.5
-
39
-
-
85003676665
-
Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit
-
39 Ordon, J., Gantner, J., Kemna, J., Schwalgun, L., Reschke, M., Streubel, J., Boch, J., Stuttmann, J., Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit. Plant J Cell Mol Biol, 2016, 10.1111/tpj.13319.
-
(2016)
Plant J Cell Mol Biol
-
-
Ordon, J.1
Gantner, J.2
Kemna, J.3
Schwalgun, L.4
Reschke, M.5
Streubel, J.6
Boch, J.7
Stuttmann, J.8
-
40
-
-
84978319071
-
Genome editing of structural variations: modeling and gene correction
-
40 Park, C.-Y., Sung, J.J., Kim, D.-W., Genome editing of structural variations: modeling and gene correction. Trends Biotechnol 34 (2016), 548–561, 10.1016/j.tibtech.2016.02.011.
-
(2016)
Trends Biotechnol
, vol.34
, pp. 548-561
-
-
Park, C.-Y.1
Sung, J.J.2
Kim, D.-W.3
-
41
-
-
84885831885
-
Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases
-
41 Qi, Y., Li, X., Zhang, Y., Starker, C.G., Baltes, N.J., Zhang, F., Sander, J.D., Reyon, D., Joung, J.K., Voytas, D.F., Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 (Bethesda, Md) 3 (2013), 1707–1715, 10.1534/g3.113.006270.
-
(2013)
G3 (Bethesda, Md)
, vol.3
, pp. 1707-1715
-
-
Qi, Y.1
Li, X.2
Zhang, Y.3
Starker, C.G.4
Baltes, N.J.5
Zhang, F.6
Sander, J.D.7
Reyon, D.8
Joung, J.K.9
Voytas, D.F.10
-
42
-
-
34047128282
-
Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining
-
42 Pacher, M., Schmidt-Puchta, W., Puchta, H., Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175 (2007), 21–29, 10.1534/genetics.106.065185.
-
(2007)
Genetics
, vol.175
, pp. 21-29
-
-
Pacher, M.1
Schmidt-Puchta, W.2
Puchta, H.3
-
43
-
-
84932193560
-
Meiotic recombination hotspots – a comparative view
-
43 Choi, K., Henderson, I.R., Meiotic recombination hotspots – a comparative view. Plant J Cell Mol Biol 83 (2015), 52–61, 10.1111/tpj.12870.
-
(2015)
Plant J Cell Mol Biol
, vol.83
, pp. 52-61
-
-
Choi, K.1
Henderson, I.R.2
-
44
-
-
0037131525
-
Targeted stimulation of meiotic recombination
-
Demonstrated that at least in yeast, mitotic recombination can be controlled by fusion of a DNA binding domain with DSB inducing proteins.
-
44•• Pecina, A., Smith, K.N., Mezard, C., Murakami, H., Ohta, K., Nicolas, A., Targeted stimulation of meiotic recombination. Cell 111 (2002), 173–184 Demonstrated that at least in yeast, mitotic recombination can be controlled by fusion of a DNA binding domain with DSB inducing proteins.
-
(2002)
Cell
, vol.111
, pp. 173-184
-
-
Pecina, A.1
Smith, K.N.2
Mezard, C.3
Murakami, H.4
Ohta, K.5
Nicolas, A.6
-
45
-
-
84966293747
-
CRISPR-directed mitotic recombination enables genetic mapping without crosses
-
45 Sadhu, M.J., Bloom, J.S., Day, L., Kruglyak, L., CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science (New York, NY) 352 (2016), 1113–1116, 10.1126/science.aaf5124.
-
(2016)
Science (New York, NY)
, vol.352
, pp. 1113-1116
-
-
Sadhu, M.J.1
Bloom, J.S.2
Day, L.3
Kruglyak, L.4
-
46
-
-
84963769440
-
Homology-based double-strand break-induced genome engineering in plants
-
46 Steinert, J., Schiml, S., Puchta, H., Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep, 2016, 10.1007/s00299-016-1981-3.
-
(2016)
Plant Cell Rep
-
-
Steinert, J.1
Schiml, S.2
Puchta, H.3
-
47
-
-
84905123594
-
DNA recombination in somatic plant cells: mechanisms and evolutionary consequences
-
47 Knoll, A., Fauser, F., Puchta, H., DNA recombination in somatic plant cells: mechanisms and evolutionary consequences. Chromosome Res 22 (2014), 191–201, 10.1007/s10577-014-9415-y.
-
(2014)
Chromosome Res
, vol.22
, pp. 191-201
-
-
Knoll, A.1
Fauser, F.2
Puchta, H.3
-
48
-
-
84860788027
-
In planta gene targeting
-
Shows that DSB induced gene targeting in plants can be improved by activation of the targeting vector by cutting it out of the plant genome.
-
48• Fauser, F., Roth, N., Pacher, M., Ilg, G., Sánchez-Fernández, R., Biesgen, C., Puchta, H., In planta gene targeting. Proc Natl Acad Sci U S A 109 (2012), 7535–7540, 10.1073/pnas.1202191109 Shows that DSB induced gene targeting in plants can be improved by activation of the targeting vector by cutting it out of the plant genome.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 7535-7540
-
-
Fauser, F.1
Roth, N.2
Pacher, M.3
Ilg, G.4
Sánchez-Fernández, R.5
Biesgen, C.6
Puchta, H.7
-
49
-
-
84962909415
-
An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design
-
49 Zhao, Y., Zhang, C., Liu, W., Gao, W., Liu, C., Song, G., Li, W.-X., Mao, L., Chen, B., Xu, Y., et al. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep, 6, 2016, 23890, 10.1038/srep23890.
-
(2016)
Sci Rep
, vol.6
, pp. 23890
-
-
Zhao, Y.1
Zhang, C.2
Liu, W.3
Gao, W.4
Liu, C.5
Song, G.6
Li, W.-X.7
Mao, L.8
Chen, B.9
Xu, Y.10
-
50
-
-
84896882685
-
DNA replicons for plant genome engineering
-
Shows that DSB induced gene targeting in plants can be enhanced by activation of the targeting vector by a viral replicon.
-
50• Baltes, N.J., Gil-Humanes, J., Cermak, T., Atkins, P.A., Voytas, D.F., DNA replicons for plant genome engineering. Plant Cell 26 (2014), 151–163, 10.1105/tpc.113.119792 Shows that DSB induced gene targeting in plants can be enhanced by activation of the targeting vector by a viral replicon.
-
(2014)
Plant Cell
, vol.26
, pp. 151-163
-
-
Baltes, N.J.1
Gil-Humanes, J.2
Cermak, T.3
Atkins, P.A.4
Voytas, D.F.5
-
51
-
-
84946416320
-
High-frequency, precise modification of the tomato genome
-
51 Cermak, T., Baltes, N.J., Cegan, R., Zhang, Y., Voytas, D.F., High-frequency, precise modification of the tomato genome. Genome Biol, 16, 2015, 232, 10.1186/s13059-015-0796-9.
-
(2015)
Genome Biol
, vol.16
, pp. 232
-
-
Cermak, T.1
Baltes, N.J.2
Cegan, R.3
Zhang, Y.4
Voytas, D.F.5
-
52
-
-
84956831321
-
A defect in DNA Ligase4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice
-
52 Nishizawa-Yokoi, A., Cermak, T., Hoshino, T., Sugimoto, K., Saika, H., Mori, A., Osakabe, K., Hamada, M., Katayose, Y., Starker, C., et al. A defect in DNA Ligase4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice. Plant Physiol 170 (2016), 653–666, 10.1104/pp.15.01542.
-
(2016)
Plant Physiol
, vol.170
, pp. 653-666
-
-
Nishizawa-Yokoi, A.1
Cermak, T.2
Hoshino, T.3
Sugimoto, K.4
Saika, H.5
Mori, A.6
Osakabe, K.7
Hamada, M.8
Katayose, Y.9
Starker, C.10
-
53
-
-
84962091068
-
Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants
-
53 Sauer, N.J., Narvaez-Vasquez, J., Mozoruk, J., Miller, R.B., Warburg, Z.J., Woodward, M.J., Mihiret, Y.A., Lincoln, T.A., Segami, R.E., Sanders, S.L., et al. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170 (2016), 1917–1928, 10.1104/pp.15.01696.
-
(2016)
Plant Physiol
, vol.170
, pp. 1917-1928
-
-
Sauer, N.J.1
Narvaez-Vasquez, J.2
Mozoruk, J.3
Miller, R.B.4
Warburg, Z.J.5
Woodward, M.J.6
Mihiret, Y.A.7
Lincoln, T.A.8
Segami, R.E.9
Sanders, S.L.10
-
54
-
-
84942901283
-
Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA
-
54 Svitashev, S., Young, J.K., Schwartz, C., Gao, H., Falco, S.C., Cigan, A.M., Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169 (2015), 931–945, 10.1104/pp.15.00793.
-
(2015)
Plant Physiol
, vol.169
, pp. 931-945
-
-
Svitashev, S.1
Young, J.K.2
Schwartz, C.3
Gao, H.4
Falco, S.C.5
Cigan, A.M.6
-
55
-
-
84990199472
-
Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9
-
Shows that site-specific gene insertion can be achieved by Ca9-induced NHEJ in plants.
-
55• Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., Li, J., Gao, C., Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants, 2, 2016, 16139, 10.1038/nplants.2016.139 Shows that site-specific gene insertion can be achieved by Ca9-induced NHEJ in plants.
-
(2016)
Nat Plants
, vol.2
, pp. 16139
-
-
Li, J.1
Meng, X.2
Zong, Y.3
Chen, K.4
Zhang, H.5
Liu, J.6
Li, J.7
Gao, C.8
-
56
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
56 Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154 (2013), 442–451, 10.1016/j.cell.2013.06.044.
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
Liu, Z.4
Brar, G.A.5
Torres, S.E.6
Stern-Ginossar, N.7
Brandman, O.8
Whitehead, E.H.9
Doudna, J.A.10
-
57
-
-
84923096541
-
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
-
57 Konermann, S., Brigham, M.D., Trevino, A.E., Joung, J., Abudayyeh, O.O., Barcena, C., Hsu, P.D., Habib, N., Gootenberg, J.S., Nishimasu, H., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517 (2015), 583–588, 10.1038/nature14136.
-
(2015)
Nature
, vol.517
, pp. 583-588
-
-
Konermann, S.1
Brigham, M.D.2
Trevino, A.E.3
Joung, J.4
Abudayyeh, O.O.5
Barcena, C.6
Hsu, P.D.7
Habib, N.8
Gootenberg, J.S.9
Nishimasu, H.10
-
58
-
-
84961290066
-
Editing the epigenome: technologies for programmable transcription and epigenetic modulation
-
58 Thakore, P.I., Black, J.B., Hilton, I.B., Gersbach, C.A., Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13 (2016), 127–137, 10.1038/nmeth.3733.
-
(2016)
Nat Methods
, vol.13
, pp. 127-137
-
-
Thakore, P.I.1
Black, J.B.2
Hilton, I.B.3
Gersbach, C.A.4
-
59
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
59 Hilton, I.B., D'Ippolito, A.M., Vockley, C.M., Thakore, P.I., Crawford, G.E., Reddy, T.E., Gersbach, C.A., Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33 (2015), 510–517, 10.1038/nbt.3199.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 510-517
-
-
Hilton, I.B.1
D'Ippolito, A.M.2
Vockley, C.M.3
Thakore, P.I.4
Crawford, G.E.5
Reddy, T.E.6
Gersbach, C.A.7
-
60
-
-
84949100864
-
Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements
-
60 Thakore, P.I., D'Ippolito, A.M., Song, L., Safi, A., Shivakumar, N.K., Kabadi, A.M., Reddy, T.E., Crawford, G.E., Gersbach, C.A., Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12 (2015), 1143–1149, 10.1038/nmeth.3630.
-
(2015)
Nat Methods
, vol.12
, pp. 1143-1149
-
-
Thakore, P.I.1
D'Ippolito, A.M.2
Song, L.3
Safi, A.4
Shivakumar, N.K.5
Kabadi, A.M.6
Reddy, T.E.7
Crawford, G.E.8
Gersbach, C.A.9
-
61
-
-
84979911627
-
CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter
-
61 Choudhury, S.R., Cui, Y., Lubecka, K., Stefanska, B., Irudayaraj, J., CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget, 2016, 10.18632/oncotarget.10234.
-
(2016)
Oncotarget
-
-
Choudhury, S.R.1
Cui, Y.2
Lubecka, K.3
Stefanska, B.4
Irudayaraj, J.5
-
62
-
-
33746807366
-
Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation
-
62 Agius, F., Kapoor, A., Zhu, J.-K., Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci U S A 103 (2006), 11796–11801, 10.1073/pnas.0603563103.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 11796-11801
-
-
Agius, F.1
Kapoor, A.2
Zhu, J.-K.3
-
63
-
-
84979034770
-
Repurposing the CRISPR-Cas9 system for targeted DNA methylation
-
63 Vojta, A., Dobrinic, P., Tadic, V., Bockor, L., Korac, P., Julg, B., Klasic, M., Zoldos, V., Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44 (2016), 5615–5628, 10.1093/nar/gkw159.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 5615-5628
-
-
Vojta, A.1
Dobrinic, P.2
Tadic, V.3
Bockor, L.4
Korac, P.5
Julg, B.6
Klasic, M.7
Zoldos, V.8
-
64
-
-
84928212884
-
RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors
-
The first report that dCas9 for transcriptional regulation in plants.
-
64• Piatek, A., Ali, Z., Baazim, H., Li, L., Abulfaraj, A., Al-Shareef, S., Aouida, M., Mahfouz, M.M., RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13 (2015), 578–589, 10.1111/pbi.12284 The first report that dCas9 for transcriptional regulation in plants.
-
(2015)
Plant Biotechnol J
, vol.13
, pp. 578-589
-
-
Piatek, A.1
Ali, Z.2
Baazim, H.3
Li, L.4
Abulfaraj, A.5
Al-Shareef, S.6
Aouida, M.7
Mahfouz, M.M.8
-
65
-
-
84942931752
-
A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
-
65 Lowder, L.G., Zhang, D., Baltes, N.J., Paul, J.W., Tang, X., Zheng, X., Voytas, D.F., Hsieh, T.-F., Zhang, Y., Qi, Y., A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169 (2015), 971–985, 10.1104/pp.15.00636.
-
(2015)
Plant Physiol
, vol.169
, pp. 971-985
-
-
Lowder, L.G.1
Zhang, D.2
Baltes, N.J.3
Paul, J.W.4
Tang, X.5
Zheng, X.6
Voytas, D.F.7
Hsieh, T.-F.8
Zhang, Y.9
Qi, Y.10
-
66
-
-
84961226910
-
Programmable RNA tracking in live cells with CRISPR/Cas9
-
66 Nelles, D.A., Fang, M.Y., O'Connell, M.R., Xu, J.L., Markmiller, S.J., Doudna, J.A., Yeo, G.W., Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165 (2016), 488–496, 10.1016/j.cell.2016.02.054.
-
(2016)
Cell
, vol.165
, pp. 488-496
-
-
Nelles, D.A.1
Fang, M.Y.2
O'Connell, M.R.3
Xu, J.L.4
Markmiller, S.J.5
Doudna, J.A.6
Yeo, G.W.7
-
67
-
-
84966908028
-
Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow
-
67 Ma, H., Tu, L.-C., Naseri, A., Huisman, M., Zhang, S., Grunwald, D., Pederson, T., Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34 (2016), 528–530, 10.1038/nbt.3526.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 528-530
-
-
Ma, H.1
Tu, L.-C.2
Naseri, A.3
Huisman, M.4
Zhang, S.5
Grunwald, D.6
Pederson, T.7
-
68
-
-
84971006562
-
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
-
68 Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533 (2016), 420–424, 10.1038/nature17946.
-
(2016)
Nature
, vol.533
, pp. 420-424
-
-
Komor, A.C.1
Kim, Y.B.2
Packer, M.S.3
Zuris, J.A.4
Liu, D.R.5
-
69
-
-
84981516964
-
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
-
69 Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., Mochizuki, M., Miyabe, A., Araki, M., Hara, K.Y., et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science (New York, NY), 2016, 10.1126/science.aaf8729.
-
(2016)
Science (New York, NY)
-
-
Nishida, K.1
Arazoe, T.2
Yachie, N.3
Banno, S.4
Kakimoto, M.5
Tabata, M.6
Mochizuki, M.7
Miyabe, A.8
Araki, M.9
Hara, K.Y.10
-
70
-
-
84896279030
-
The role of CRISPR-Cas systems in virulence of pathogenic bacteria
-
70 Louwen, R., Staals, R.H.J., Endtz, H.P., van Baarlen, P., van der Oost, J., The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev MMBR 78 (2014), 74–88, 10.1128/MMBR.00039-13.
-
(2014)
Microbiol Mol Biol Rev MMBR
, vol.78
, pp. 74-88
-
-
Louwen, R.1
Staals, R.H.J.2
Endtz, H.P.3
van Baarlen, P.4
van der Oost, J.5
-
71
-
-
84961350912
-
Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus
-
71 Steinert, J., Schiml, S., Fauser, F., Puchta, H., Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J Cell Mol Biol 84 (2015), 1295–1305, 10.1111/tpj.13078.
-
(2015)
Plant J Cell Mol Biol
, vol.84
, pp. 1295-1305
-
-
Steinert, J.1
Schiml, S.2
Fauser, F.3
Puchta, H.4
-
72
-
-
84971254394
-
Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9
-
72 Kaya, H., Mikami, M., Endo, A., Endo, M., Toki, S., Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci Rep, 6, 2016, 26871, 10.1038/srep26871.
-
(2016)
Sci Rep
, vol.6
, pp. 26871
-
-
Kaya, H.1
Mikami, M.2
Endo, A.3
Endo, M.4
Toki, S.5
-
73
-
-
84947730555
-
Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements
-
73 Karvelis, T., Gasiunas, G., Young, J., Bigelyte, G., Silanskas, A., Cigan, M., Siksnys, V., Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol, 16, 2015, 253, 10.1186/s13059-015-0818-7.
-
(2015)
Genome Biol
, vol.16
, pp. 253
-
-
Karvelis, T.1
Gasiunas, G.2
Young, J.3
Bigelyte, G.4
Silanskas, A.5
Cigan, M.6
Siksnys, V.7
-
74
-
-
85027953332
-
Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes
-
74 Puchta, H., Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J Cell Mol Biol 87 (2016), 5–15, 10.1111/tpj.13100.
-
(2016)
Plant J Cell Mol Biol
, vol.87
, pp. 5-15
-
-
Puchta, H.1
-
75
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Fist characterization of Cpf1 which will become one of the main tools for genome engineering.
-
75•• Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 (2015), 759–771, 10.1016/j.cell.2015.09.038 Fist characterization of Cpf1 which will become one of the main tools for genome engineering.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
Volz, S.E.7
Joung, J.8
van der Oost, J.9
Regev, A.10
-
76
-
-
84964862130
-
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
-
76 Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A., Charpentier, E., The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532 (2016), 517–521, 10.1038/nature17945.
-
(2016)
Nature
, vol.532
, pp. 517-521
-
-
Fonfara, I.1
Richter, H.2
Bratovic, M.3
Le Rhun, A.4
Charpentier, E.5
-
77
-
-
84981318543
-
Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells
-
77 Kim, D., Kim, J., Hur, J.K., Been, K.W., Yoon, S.-H., Kim, J.-S., Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34 (2016), 863–868, 10.1038/nbt.3609.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 863-868
-
-
Kim, D.1
Kim, J.2
Hur, J.K.3
Been, K.W.4
Yoon, S.-H.5
Kim, J.-S.6
-
78
-
-
84981347695
-
Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
-
78 Kleinstiver, B.P., Tsai, S.Q., Prew, M.S., Nguyen, N.T., Welch, M.M., Lopez, J.M., McCaw, Z.R., Aryee, M.J., Joung, J.K., Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34 (2016), 869–874, 10.1038/nbt.3620.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 869-874
-
-
Kleinstiver, B.P.1
Tsai, S.Q.2
Prew, M.S.3
Nguyen, N.T.4
Welch, M.M.5
Lopez, J.M.6
McCaw, Z.R.7
Aryee, M.J.8
Joung, J.K.9
-
79
-
-
84974606818
-
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
-
79 Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B.T., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science (New York, NY), 353, 2016, aaf5573, 10.1126/science.aaf5573.
-
(2016)
Science (New York, NY)
, vol.353
, pp. aaf5573
-
-
Abudayyeh, O.O.1
Gootenberg, J.S.2
Konermann, S.3
Joung, J.4
Slaymaker, I.M.5
Cox, D.B.T.6
Shmakov, S.7
Makarova, K.S.8
Semenova, E.9
Minakhin, L.10
|