메뉴 건너뛰기




Volumn 42, Issue 9, 2017, Pages 712-725

Cytosolic Proteostasis Networks of the Mitochondrial Stress Response

Author keywords

cytosol; mitochondrial stress; proteasome; proteostasis; translation; UPRmt

Indexed keywords

ANTIOXIDANT; CHAPERONE; CYCLOHEXIMIDE; ELAMIPRETIDE; HEAT SHOCK PROTEIN; PROTEASOME; RAPAMYCIN; UBIQUITIN; PROTEIN;

EID: 85020100185     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2017.05.002     Document Type: Review
Times cited : (96)

References (97)
  • 1
    • 84892600839 scopus 로고    scopus 로고
    • Mitochondrial form and function
    • Friedman, J.R., Nunnari, J., Mitochondrial form and function. Nature 505 (2014), 335–343.
    • (2014) Nature , vol.505 , pp. 335-343
    • Friedman, J.R.1    Nunnari, J.2
  • 2
    • 77954415435 scopus 로고    scopus 로고
    • Metabolic networks of longevity
    • Houtkooper, R.H., et al. Metabolic networks of longevity. Cell 142 (2010), 9–14.
    • (2010) Cell , vol.142 , pp. 9-14
    • Houtkooper, R.H.1
  • 3
    • 46349103594 scopus 로고    scopus 로고
    • A mitochondrial protein compendium elucidates complex I disease biology
    • Pagliarini, D.J., et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134 (2008), 112–123.
    • (2008) Cell , vol.134 , pp. 112-123
    • Pagliarini, D.J.1
  • 4
    • 80052007901 scopus 로고    scopus 로고
    • The human mitochondrial transcriptome
    • Mercer, T.R., et al. The human mitochondrial transcriptome. Cell 146 (2011), 645–658.
    • (2011) Cell , vol.146 , pp. 645-658
    • Mercer, T.R.1
  • 5
    • 84880673845 scopus 로고    scopus 로고
    • Pharmacological approaches to restore mitochondrial function
    • Andreux, P.A., et al. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov. 12 (2013), 465–483.
    • (2013) Nat. Rev. Drug Discov. , vol.12 , pp. 465-483
    • Andreux, P.A.1
  • 6
    • 84893855759 scopus 로고    scopus 로고
    • Mitochondrial stress signaling promotes cellular adaptations
    • Barbour, J.A., Turner, N., Mitochondrial stress signaling promotes cellular adaptations. Int. J. Cell Biol., 2014, 2014, 156020.
    • (2014) Int. J. Cell Biol. , vol.2014 , pp. 156020
    • Barbour, J.A.1    Turner, N.2
  • 7
    • 84960171872 scopus 로고    scopus 로고
    • Mitonuclear communication in homeostasis and stress
    • Quirós, P.M., et al. Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell Biol. 17 (2016), 213–226.
    • (2016) Nat. Rev. Mol. Cell Biol. , vol.17 , pp. 213-226
    • Quirós, P.M.1
  • 8
    • 84919775416 scopus 로고    scopus 로고
    • The mitochondrial unfolded protein response – synchronizing genomes
    • Jovaisaite, V., Auwerx, J., The mitochondrial unfolded protein response – synchronizing genomes. Curr. Opin. Cell Biol. 33 (2015), 74–81.
    • (2015) Curr. Opin. Cell Biol. , vol.33 , pp. 74-81
    • Jovaisaite, V.1    Auwerx, J.2
  • 9
    • 84913554278 scopus 로고    scopus 로고
    • Mitochondrial dynamics and mitochondrial quality control
    • Ni, H.-M., et al. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 4 (2015), 6–13.
    • (2015) Redox Biol. , vol.4 , pp. 6-13
    • Ni, H.-M.1
  • 11
    • 84958850926 scopus 로고    scopus 로고
    • Mitochondrial dynamics and metabolic regulation
    • Wai, T., Langer, T., Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27 (2016), 105–117.
    • (2016) Trends Endocrinol. Metab. , vol.27 , pp. 105-117
    • Wai, T.1    Langer, T.2
  • 12
    • 84986257777 scopus 로고    scopus 로고
    • Lipid biosynthesis coordinates a mitochondrial-to-cytosolic stress response
    • 1539–1552.e16
    • Kim, H.-E., et al. Lipid biosynthesis coordinates a mitochondrial-to-cytosolic stress response. Cell, 166, 2016 1539–1552.e16.
    • (2016) Cell , vol.166
    • Kim, H.-E.1
  • 13
    • 84940517301 scopus 로고    scopus 로고
    • A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death
    • Wang, X., Chen, X.J., A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 524 (2015), 481–484.
    • (2015) Nature , vol.524 , pp. 481-484
    • Wang, X.1    Chen, X.J.2
  • 14
    • 84940556804 scopus 로고    scopus 로고
    • Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol
    • Wrobel, L., et al. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524 (2015), 485–488.
    • (2015) Nature , vol.524 , pp. 485-488
    • Wrobel, L.1
  • 15
    • 84988044805 scopus 로고    scopus 로고
    • The energetics of genome complexity
    • Lane, N., Martin, W., The energetics of genome complexity. Nature 467 (2010), 929–934.
    • (2010) Nature , vol.467 , pp. 929-934
    • Lane, N.1    Martin, W.2
  • 16
    • 75149196287 scopus 로고    scopus 로고
    • The mechanism of eukaryotic translation initiation and principles of its regulation
    • Jackson, R.J., et al. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11 (2010), 113–127.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 113-127
    • Jackson, R.J.1
  • 17
    • 17144424622 scopus 로고    scopus 로고
    • Translational control in stress and apoptosis
    • Holcik, M., Sonenberg, N., Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 6 (2005), 318–327.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 318-327
    • Holcik, M.1    Sonenberg, N.2
  • 18
    • 80052865292 scopus 로고    scopus 로고
    • Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated
    • Castelli, L.M., et al. Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated. Mol. Biol. Cell 22 (2011), 3379–3393.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 3379-3393
    • Castelli, L.M.1
  • 19
    • 32444433450 scopus 로고    scopus 로고
    • Hypoxia-induced energy stress regulates mRNA translation and cell growth
    • Liu, L., et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell 21 (2006), 521–531.
    • (2006) Mol. Cell , vol.21 , pp. 521-531
    • Liu, L.1
  • 20
    • 84894212463 scopus 로고    scopus 로고
    • Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
    • Demetriades, C., et al. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156 (2014), 786–799.
    • (2014) Cell , vol.156 , pp. 786-799
    • Demetriades, C.1
  • 21
    • 19544369483 scopus 로고    scopus 로고
    • Human mitochondrial complex I assembles through the combination of evolutionary conserved modules: a framework to interpret complex I deficiencies
    • Ugalde, C., et al. Human mitochondrial complex I assembles through the combination of evolutionary conserved modules: a framework to interpret complex I deficiencies. Hum. Mol. Genet. 13 (2004), 2461–2472.
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 2461-2472
    • Ugalde, C.1
  • 22
    • 84925152196 scopus 로고    scopus 로고
    • Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research
    • Moullan, N., et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. 10 (2015), 1681–1691.
    • (2015) Cell Rep. , vol.10 , pp. 1681-1691
    • Moullan, N.1
  • 23
    • 84878138385 scopus 로고    scopus 로고
    • Mitonuclear protein imbalance as a conserved longevity mechanism
    • Houtkooper, R.H., et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497 (2013), 451–457.
    • (2013) Nature , vol.497 , pp. 451-457
    • Houtkooper, R.H.1
  • 24
    • 84890860646 scopus 로고    scopus 로고
    • Tetracyclines cause cell stress-dependent ATF4 activation and mTOR inhibition
    • Brüning, A., et al. Tetracyclines cause cell stress-dependent ATF4 activation and mTOR inhibition. Exp. Cell Res. 320 (2014), 281–289.
    • (2014) Exp. Cell Res. , vol.320 , pp. 281-289
    • Brüning, A.1
  • 25
    • 84875254650 scopus 로고    scopus 로고
    • A mitochondrial ribosomal and RNA decay pathway blocks cell proliferation
    • Richter, U., et al. A mitochondrial ribosomal and RNA decay pathway blocks cell proliferation. Curr. Biol. 23 (2013), 535–541.
    • (2013) Curr. Biol. , vol.23 , pp. 535-541
    • Richter, U.1
  • 26
    • 84897422120 scopus 로고    scopus 로고
    • Inhibition of human mitochondrial peptide deformylase causes apoptosis in c-myc-overexpressing hematopoietic cancers
    • Sheth, A., et al. Inhibition of human mitochondrial peptide deformylase causes apoptosis in c-myc-overexpressing hematopoietic cancers. Cell Death Dis., 5, 2014, e1152.
    • (2014) Cell Death Dis. , vol.5 , pp. e1152
    • Sheth, A.1
  • 27
    • 33847397874 scopus 로고    scopus 로고
    • Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
    • Haar, E.V., et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9 (2007), 316–323.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 316-323
    • Haar, E.V.1
  • 28
    • 84904430677 scopus 로고    scopus 로고
    • Parkin ubiquitinates mTOR to regulate mTORC1 activity under mitochondrial stress
    • Park, D., et al. Parkin ubiquitinates mTOR to regulate mTORC1 activity under mitochondrial stress. Cell. Signal. 26 (2014), 2122–2130.
    • (2014) Cell. Signal. , vol.26 , pp. 2122-2130
    • Park, D.1
  • 29
    • 0035831082 scopus 로고    scopus 로고
    • Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) induces initiation factor 2α phosphorylation and translation inhibition in PC12 cells
    • Muñoz, F., et al. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) induces initiation factor 2α phosphorylation and translation inhibition in PC12 cells. FEBS Lett. 492 (2001), 156–159.
    • (2001) FEBS Lett. , vol.492 , pp. 156-159
    • Muñoz, F.1
  • 30
    • 85017301895 scopus 로고    scopus 로고
    • Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis
    • Zhou, Q., et al. Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol. Sci. 143 (2015), 81–96.
    • (2015) Toxicol. Sci. , vol.143 , pp. 81-96
    • Zhou, Q.1
  • 31
    • 84941907491 scopus 로고    scopus 로고
    • Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease
    • Peng, M., et al. Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease. Hum. Mol. Genet. 24 (2015), 4829–4847.
    • (2015) Hum. Mol. Genet. , vol.24 , pp. 4829-4847
    • Peng, M.1
  • 32
    • 84890850876 scopus 로고    scopus 로고
    • mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome
    • Johnson, S.C., et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342 (2013), 1524–1528.
    • (2013) Science , vol.342 , pp. 1524-1528
    • Johnson, S.C.1
  • 33
    • 84969199737 scopus 로고    scopus 로고
    • Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration
    • Zheng, X., et al. Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. eLife, 5, 2016, e13378.
    • (2016) eLife , vol.5 , pp. e13378
    • Zheng, X.1
  • 34
    • 84941272088 scopus 로고    scopus 로고
    • Aberrant mTOR activation in senescence and aging: a mitochondrial stress response?
    • Nacarelli, T., et al. Aberrant mTOR activation in senescence and aging: a mitochondrial stress response?. Exp. Gerontol. 68 (2015), 66–70.
    • (2015) Exp. Gerontol. , vol.68 , pp. 66-70
    • Nacarelli, T.1
  • 35
    • 84975474399 scopus 로고    scopus 로고
    • A ribosomal perspective on proteostasis and aging
    • Steffen, K.K., Dillin, A., A ribosomal perspective on proteostasis and aging. Cell Metab. 23 (2016), 1004–1012.
    • (2016) Cell Metab. , vol.23 , pp. 1004-1012
    • Steffen, K.K.1    Dillin, A.2
  • 36
    • 84929162796 scopus 로고    scopus 로고
    • Activation of mTOR: a culprit of Alzheimer's disease?
    • Cai, Z., et al. Activation of mTOR: a culprit of Alzheimer's disease?. Neuropsychiatr. Dis. Treat. 11 (2015), 1015–1030.
    • (2015) Neuropsychiatr. Dis. Treat. , vol.11 , pp. 1015-1030
    • Cai, Z.1
  • 37
    • 84864065342 scopus 로고    scopus 로고
    • Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2
    • Baker, B.M., et al. Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet., 8, 2012, e1002760.
    • (2012) PLoS Genet. , vol.8 , pp. e1002760
    • Baker, B.M.1
  • 38
    • 84990040254 scopus 로고    scopus 로고
    • Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation
    • Münch, C., Harper, J.W., Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534 (2016), 710–713.
    • (2016) Nature , vol.534 , pp. 710-713
    • Münch, C.1    Harper, J.W.2
  • 39
    • 85021857064 scopus 로고    scopus 로고
    • Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol.
    • Quiros, P.M. et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. (http://dx.doi.org/10.1083/jcb.201702058).
    • Quiros, P.M.1
  • 40
    • 84964694840 scopus 로고    scopus 로고
    • The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly
    • Sidrauski, C., et al. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. eLife, 4, 2015, 05033.
    • (2015) eLife , vol.4 , pp. 05033
    • Sidrauski, C.1
  • 41
    • 79551554217 scopus 로고    scopus 로고
    • Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states
    • Komar, A.A., Hatzoglou, M., Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle Georget. Tex 10 (2011), 229–240.
    • (2011) Cell Cycle Georget. Tex , vol.10 , pp. 229-240
    • Komar, A.A.1    Hatzoglou, M.2
  • 42
    • 84946228509 scopus 로고    scopus 로고
    • 5’ UTR m6A promotes cap-Independent translation
    • Meyer, K.D., et al. 5’ UTR m6A promotes cap-Independent translation. Cell 163 (2015), 999–1010.
    • (2015) Cell , vol.163 , pp. 999-1010
    • Meyer, K.D.1
  • 43
    • 79952184068 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Gis2 interacts with the translation machinery and is orthogonal to myotonic dystrophy type 2 protein ZNF9
    • Sammons, M.A., et al. Saccharomyces cerevisiae Gis2 interacts with the translation machinery and is orthogonal to myotonic dystrophy type 2 protein ZNF9. Biochem. Biophys. Res. Commun. 406 (2011), 13–19.
    • (2011) Biochem. Biophys. Res. Commun. , vol.406 , pp. 13-19
    • Sammons, M.A.1
  • 44
    • 84945252145 scopus 로고    scopus 로고
    • Non-canonical hedgehog/AMPK-mediated control of polyamine metabolism supports neuronal and medulloblastoma cell growth
    • D'Amico, D., et al. Non-canonical hedgehog/AMPK-mediated control of polyamine metabolism supports neuronal and medulloblastoma cell growth. Dev. Cell 35 (2015), 21–35.
    • (2015) Dev. Cell , vol.35 , pp. 21-35
    • D'Amico, D.1
  • 45
    • 84909606778 scopus 로고    scopus 로고
    • Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling
    • Williams, C.C., et al. Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346 (2014), 748–751.
    • (2014) Science , vol.346 , pp. 748-751
    • Williams, C.C.1
  • 46
    • 84920575121 scopus 로고    scopus 로고
    • PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane
    • Gehrke, S., et al. PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab. 21 (2015), 95–108.
    • (2015) Cell Metab. , vol.21 , pp. 95-108
    • Gehrke, S.1
  • 47
    • 70350367745 scopus 로고    scopus 로고
    • Unravelling the ultrastructure of stress granules and associated P-bodies in human cells
    • Souquere, S., et al. Unravelling the ultrastructure of stress granules and associated P-bodies in human cells. J. Cell Sci. 122 (2009), 3619–3626.
    • (2009) J. Cell Sci. , vol.122 , pp. 3619-3626
    • Souquere, S.1
  • 48
    • 0036154218 scopus 로고    scopus 로고
    • Met)-deficient preinitiation complexes are core constituents of mammalian stress granules
    • Met)-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol. Biol. Cell 13 (2002), 195–210.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 195-210
    • Kedersha, N.1
  • 49
    • 0021099710 scopus 로고
    • Components of ubiquitin-protein ligase system Resolution, affinity purification, and role in protein breakdown
    • Hershko, A., et al. Components of ubiquitin-protein ligase system Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258 (1983), 8206–8214.
    • (1983) J. Biol. Chem. , vol.258 , pp. 8206-8214
    • Hershko, A.1
  • 50
    • 85010619186 scopus 로고    scopus 로고
    • Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy
    • Chen, Z., et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep. 18 (2017), 495–509.
    • (2017) EMBO Rep. , vol.18 , pp. 495-509
    • Chen, Z.1
  • 51
    • 84962010094 scopus 로고    scopus 로고
    • Mitochondrial E3 ubiquitin ligase 1: a key enzyme in regulation of mitochondrial dynamics and functions
    • Peng, J., et al. Mitochondrial E3 ubiquitin ligase 1: a key enzyme in regulation of mitochondrial dynamics and functions. Mitochondrion 28 (2016), 49–53.
    • (2016) Mitochondrion , vol.28 , pp. 49-53
    • Peng, J.1
  • 52
    • 78149429951 scopus 로고    scopus 로고
    • A stress-responsive system for mitochondrial protein degradation
    • Heo, J.-M., et al. A stress-responsive system for mitochondrial protein degradation. Mol. Cell 40 (2010), 465–480.
    • (2010) Mol. Cell , vol.40 , pp. 465-480
    • Heo, J.-M.1
  • 53
    • 78649527772 scopus 로고    scopus 로고
    • Stressed-out mitochondria get MAD
    • Chatenay-Lapointe, M., Shadel, G.S., Stressed-out mitochondria get MAD. Cell Metab. 12 (2010), 559–560.
    • (2010) Cell Metab. , vol.12 , pp. 559-560
    • Chatenay-Lapointe, M.1    Shadel, G.S.2
  • 54
    • 84924614087 scopus 로고    scopus 로고
    • Synthetic quantitative array technology identifies the Ubp3–Bre5 deubiquitinase complex as a negative regulator of mitophagy
    • Müller, M., et al. Synthetic quantitative array technology identifies the Ubp3–Bre5 deubiquitinase complex as a negative regulator of mitophagy. Cell Rep. 10 (2015), 1215–1225.
    • (2015) Cell Rep. , vol.10 , pp. 1215-1225
    • Müller, M.1
  • 55
    • 84929582993 scopus 로고    scopus 로고
    • The three ‘P's of mitophagy: PARKIN, PINK1, and post-translational modifications
    • Durcan, T.M., Fon, E.A., The three ‘P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 29 (2015), 989–999.
    • (2015) Genes Dev. , vol.29 , pp. 989-999
    • Durcan, T.M.1    Fon, E.A.2
  • 56
    • 84903179483 scopus 로고    scopus 로고
    • The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
    • Bingol, B., et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510 (2014), 370–375.
    • (2014) Nature , vol.510 , pp. 370-375
    • Bingol, B.1
  • 57
    • 84902330507 scopus 로고    scopus 로고
    • Reversible 26S proteasome disassembly upon mitochondrial stress
    • Livnat-Levanon, N., et al. Reversible 26S proteasome disassembly upon mitochondrial stress. Cell Rep. 7 (2014), 1371–1380.
    • (2014) Cell Rep. , vol.7 , pp. 1371-1380
    • Livnat-Levanon, N.1
  • 58
    • 84897528338 scopus 로고    scopus 로고
    • Pathogenesis of human mitochondrial diseases is modulated by reduced activity of the ubiquitin/proteasome system
    • Segref, A., et al. Pathogenesis of human mitochondrial diseases is modulated by reduced activity of the ubiquitin/proteasome system. Cell Metab. 19 (2014), 642–652.
    • (2014) Cell Metab. , vol.19 , pp. 642-652
    • Segref, A.1
  • 59
    • 84876903554 scopus 로고    scopus 로고
    • Negative regulation of 26S proteasome stability via calpain-mediated cleavage of Rpn10 subunit upon mitochondrial dysfunction in neurons
    • Huang, Q., et al. Negative regulation of 26S proteasome stability via calpain-mediated cleavage of Rpn10 subunit upon mitochondrial dysfunction in neurons. J. Biol. Chem. 288 (2013), 12161–12174.
    • (2013) J. Biol. Chem. , vol.288 , pp. 12161-12174
    • Huang, Q.1
  • 60
    • 77953540654 scopus 로고    scopus 로고
    • Mechanisms of rotenone-induced proteasome inhibition
    • Chou, A.P., et al. Mechanisms of rotenone-induced proteasome inhibition. Neurotoxicology 31 (2010), 367–372.
    • (2010) Neurotoxicology , vol.31 , pp. 367-372
    • Chou, A.P.1
  • 61
    • 33645052713 scopus 로고    scopus 로고
    • Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders
    • Smeitink, J.A., et al. Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab. 3 (2006), 9–13.
    • (2006) Cell Metab. , vol.3 , pp. 9-13
    • Smeitink, J.A.1
  • 62
    • 0024413057 scopus 로고
    • ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin
    • Eytan, E., et al. ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc. Natl. Acad. Sci. U. S. A. 86 (1989), 7751–7755.
    • (1989) Proc. Natl. Acad. Sci. U. S. A. , vol.86 , pp. 7751-7755
    • Eytan, E.1
  • 63
    • 0029039632 scopus 로고
    • Studies on the activation by ATP of the 26 S proteasome complex from rat skeletal muscle
    • Dahlmann, B., et al. Studies on the activation by ATP of the 26 S proteasome complex from rat skeletal muscle. Biochem. J. 309 (1995), 195–202.
    • (1995) Biochem. J. , vol.309 , pp. 195-202
    • Dahlmann, B.1
  • 64
    • 0041430614 scopus 로고    scopus 로고
    • Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease
    • Höglinger, G.U., et al. Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease. J. Neurochem. 86 (2003), 1297–1307.
    • (2003) J. Neurochem. , vol.86 , pp. 1297-1307
    • Höglinger, G.U.1
  • 65
    • 78649894468 scopus 로고    scopus 로고
    • Physiological levels of ATP negatively regulate proteasome function
    • Huang, H., et al. Physiological levels of ATP negatively regulate proteasome function. Cell Res. 20 (2010), 1372–1385.
    • (2010) Cell Res. , vol.20 , pp. 1372-1385
    • Huang, H.1
  • 66
    • 84975247161 scopus 로고    scopus 로고
    • Mitochondrial dysfunction remodels one-carbon metabolism in human cells
    • Bao, X.R., et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife, 5, 2016, e10575.
    • (2016) eLife , vol.5 , pp. e10575
    • Bao, X.R.1
  • 67
    • 84928994228 scopus 로고    scopus 로고
    • Drosophila melanogaster activating transcription factor 4 regulates glycolysis during endoplasmic reticulum stress
    • Lee, J.E., et al. Drosophila melanogaster activating transcription factor 4 regulates glycolysis during endoplasmic reticulum stress. G3 5 (2015), 667–675.
    • (2015) G3 , vol.5 , pp. 667-675
    • Lee, J.E.1
  • 68
    • 43049090872 scopus 로고    scopus 로고
    • Proteasome inhibition enhances the induction and impairs the maintenance of late-phase long-term potentiation
    • Dong, C., et al. Proteasome inhibition enhances the induction and impairs the maintenance of late-phase long-term potentiation. Learn. Mem. 15 (2008), 335–347.
    • (2008) Learn. Mem. , vol.15 , pp. 335-347
    • Dong, C.1
  • 69
    • 0342467925 scopus 로고    scopus 로고
    • ATF4 degradation relies on a phosphorylation-dependent interaction with the SCFβTrCP ubiquitin ligase
    • Lassot, I., et al. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCFβTrCP ubiquitin ligase. Mol. Cell. Biol. 21 (2001), 2192–2202.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 2192-2202
    • Lassot, I.1
  • 70
    • 77955467319 scopus 로고    scopus 로고
    • Regulation of autophagy by ATF4 in response to severe hypoxia
    • Rzymski, T., et al. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29 (2010), 4424–4435.
    • (2010) Oncogene , vol.29 , pp. 4424-4435
    • Rzymski, T.1
  • 71
    • 84885455062 scopus 로고    scopus 로고
    • The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression
    • B'chir, W., et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41 (2013), 7683–7699.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 7683-7699
    • B'chir, W.1
  • 72
    • 84978821914 scopus 로고    scopus 로고
    • The transcription factor ATF5 mediates a mammalian mitochondrial UPR
    • Fiorese, C.J., et al. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr. Biol. 26 (2016), 2037–2043.
    • (2016) Curr. Biol. , vol.26 , pp. 2037-2043
    • Fiorese, C.J.1
  • 73
    • 84881076550 scopus 로고    scopus 로고
    • CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis
    • Teske, B.F., et al. CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis. Mol. Biol. Cell 24 (2013), 2477–2490.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 2477-2490
    • Teske, B.F.1
  • 74
    • 84940102312 scopus 로고    scopus 로고
    • Dose-dependent effects of mTOR inhibition on weight and mitochondrial disease in mice
    • Johnson, S.C., et al. Dose-dependent effects of mTOR inhibition on weight and mitochondrial disease in mice. Front. Genet., 6, 2015, 247.
    • (2015) Front. Genet. , vol.6 , pp. 247
    • Johnson, S.C.1
  • 75
    • 84875271208 scopus 로고    scopus 로고
    • Rapamycin protects the mitochondria against oxidative stress and apoptosis in a rat model of Parkinson's disease
    • Jiang, J., et al. Rapamycin protects the mitochondria against oxidative stress and apoptosis in a rat model of Parkinson's disease. Int. J. Mol. Med. 31 (2013), 825–832.
    • (2013) Int. J. Mol. Med. , vol.31 , pp. 825-832
    • Jiang, J.1
  • 76
    • 78650694150 scopus 로고    scopus 로고
    • Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster
    • Liu, S., Lu, B., Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster. PLoS Genet., 6, 2010.
    • (2010) PLoS Genet. , vol.6
    • Liu, S.1    Lu, B.2
  • 77
    • 51049094187 scopus 로고    scopus 로고
    • Reduced cytosolic protein synthesis suppresses mitochondrial degeneration
    • Wang, X., et al. Reduced cytosolic protein synthesis suppresses mitochondrial degeneration. Nat. Cell Biol. 10 (2008), 1090–1097.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1090-1097
    • Wang, X.1
  • 78
    • 84890203542 scopus 로고    scopus 로고
    • Regulation of proteasome activity in health and disease
    • Schmidt, M., Finley, D., Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 1843 (2014), 13–25.
    • (2014) Biochim. Biophys. Acta Mol. Cell Res. , vol.1843 , pp. 13-25
    • Schmidt, M.1    Finley, D.2
  • 79
    • 77956527159 scopus 로고    scopus 로고
    • Enhancement of proteasome activity by a small-molecule inhibitor of Usp14
    • Lee, B.-H., et al. Enhancement of proteasome activity by a small-molecule inhibitor of Usp14. Nature 467 (2010), 179–184.
    • (2010) Nature , vol.467 , pp. 179-184
    • Lee, B.-H.1
  • 80
    • 33750347347 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
    • Lin, M.T., Beal, M.F., Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443 (2006), 787–795.
    • (2006) Nature , vol.443 , pp. 787-795
    • Lin, M.T.1    Beal, M.F.2
  • 81
    • 84889860617 scopus 로고    scopus 로고
    • Oxidative stress, mitochondrial damage and neurodegenerative diseases
    • Guo, C., et al. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 8 (2013), 2003–2014.
    • (2013) Neural Regen. Res. , vol.8 , pp. 2003-2014
    • Guo, C.1
  • 82
    • 84923914528 scopus 로고    scopus 로고
    • Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications
    • Apostolova, N., Victor, V.M., Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid. Redox Signal. 22 (2015), 686–729.
    • (2015) Antioxid. Redox Signal. , vol.22 , pp. 686-729
    • Apostolova, N.1    Victor, V.M.2
  • 83
    • 84901848946 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species production and elimination
    • Nickel, A., et al. Mitochondrial reactive oxygen species production and elimination. J. Mol. Cell. Cardiol. 73 (2014), 26–33.
    • (2014) J. Mol. Cell. Cardiol. , vol.73 , pp. 26-33
    • Nickel, A.1
  • 84
    • 84856228755 scopus 로고    scopus 로고
    • Novel therapies targeting inner mitochondrial membrane – from discovery to clinical development
    • Szeto, H.H., Schiller, P.W., Novel therapies targeting inner mitochondrial membrane – from discovery to clinical development. Pharm. Res. 28 (2011), 2669–2679.
    • (2011) Pharm. Res. , vol.28 , pp. 2669-2679
    • Szeto, H.H.1    Schiller, P.W.2
  • 85
    • 84864744900 scopus 로고    scopus 로고
    • Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation
    • Nargund, A.M., et al. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337 (2012), 587–590.
    • (2012) Science , vol.337 , pp. 587-590
    • Nargund, A.M.1
  • 86
    • 79960652801 scopus 로고    scopus 로고
    • Molecular chaperones in protein folding and proteostasis
    • Hartl, F.U., et al. Molecular chaperones in protein folding and proteostasis. Nature 475 (2011), 324–332.
    • (2011) Nature , vol.475 , pp. 324-332
    • Hartl, F.U.1
  • 87
    • 0029825891 scopus 로고    scopus 로고
    • Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome
    • Martinus, R.D., et al. Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur. J. Biochem. 240 (1996), 98–103.
    • (1996) Eur. J. Biochem. , vol.240 , pp. 98-103
    • Martinus, R.D.1
  • 88
    • 0037009521 scopus 로고    scopus 로고
    • A mitochondrial specific stress response in mammalian cells
    • Zhao, Q., et al. A mitochondrial specific stress response in mammalian cells. EMBO J. 21 (2002), 4411–4419.
    • (2002) EMBO J. , vol.21 , pp. 4411-4419
    • Zhao, Q.1
  • 89
    • 76849100919 scopus 로고    scopus 로고
    • The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans
    • Haynes, C.M., et al. The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol. Cell 37 (2010), 529–540.
    • (2010) Mol. Cell , vol.37 , pp. 529-540
    • Haynes, C.M.1
  • 90
    • 84898975844 scopus 로고    scopus 로고
    • Caenorhabditis elegans pathways that surveil and defend mitochondria
    • Liu, Y., et al. Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature 508 (2014), 406–410.
    • (2014) Nature , vol.508 , pp. 406-410
    • Liu, Y.1
  • 91
    • 78650944949 scopus 로고    scopus 로고
    • The cell-non-autonomous nature of electron transport chain-mediated longevity
    • Durieux, J., et al. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144 (2011), 79–91.
    • (2011) Cell , vol.144 , pp. 79-91
    • Durieux, J.1
  • 92
    • 84908077262 scopus 로고    scopus 로고
    • Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population
    • Wu, Y., et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158 (2014), 1415–1430.
    • (2014) Cell , vol.158 , pp. 1415-1430
    • Wu, Y.1
  • 93
    • 84901848955 scopus 로고    scopus 로고
    • Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3
    • Khan, N.A., et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol. Med. 6 (2014), 721–731.
    • (2014) EMBO Mol. Med. , vol.6 , pp. 721-731
    • Khan, N.A.1
  • 94
    • 84964570084 scopus 로고    scopus 로고
    • Two conserved histone demethylases regulate mitochondrial stress-induced longevity
    • Merkwirth, C., et al. Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell 165 (2016), 1209–1223.
    • (2016) Cell , vol.165 , pp. 1209-1223
    • Merkwirth, C.1
  • 95
    • 84902193122 scopus 로고    scopus 로고
    • The scanning mechanism of eukaryotic translation initiation
    • Hinnebusch, A.G., The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83 (2014), 779–812.
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 779-812
    • Hinnebusch, A.G.1
  • 96
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante, M., Sabatini, D.M., mTOR signaling in growth control and disease. Cell 149 (2012), 274–293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 97
    • 79959463520 scopus 로고    scopus 로고
    • Regulation of HSF1 function in the heat stress response: implications in aging and disease
    • Anckar, J., Sistonen, L., Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80 (2011), 1089–1111.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 1089-1111
    • Anckar, J.1    Sistonen, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.