-
1
-
-
0021891869
-
The mitochondrial electron transport and oxidative phosphorylation system
-
Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54: 1015–1069
-
(1985)
Annu Rev Biochem
, vol.54
, pp. 1015-1069
-
-
Hatefi, Y.1
-
2
-
-
0035349906
-
The genetics and pathology of oxidative phosphorylation
-
Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2: 342–352
-
(2001)
Nat Rev Genet
, vol.2
, pp. 342-352
-
-
Smeitink, J.1
van den Heuvel, L.2
DiMauro, S.3
-
3
-
-
84945892907
-
Recent advances in the theory and molecular simulation of biological electron transfer reactions
-
Blumberger J (2015) Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem Rev 115: 11191–11238
-
(2015)
Chem Rev
, vol.115
, pp. 11191-11238
-
-
Blumberger, J.1
-
4
-
-
84938739650
-
Evolution of mitochondria as signaling organelles
-
Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22: 204–206
-
(2015)
Cell Metab
, vol.22
, pp. 204-206
-
-
Chandel, N.S.1
-
5
-
-
0033607504
-
Molecular architecture of the rotary motor in ATP synthase
-
Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286: 1700–1705
-
(1999)
Science
, vol.286
, pp. 1700-1705
-
-
Stock, D.1
Leslie, A.G.2
Walker, J.E.3
-
6
-
-
0032575752
-
Mitochondria and apoptosis
-
Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312
-
(1998)
Science
, vol.281
, pp. 1309-1312
-
-
Green, D.R.1
Reed, J.C.2
-
7
-
-
0030581151
-
Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c
-
Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157
-
(1996)
Cell
, vol.86
, pp. 147-157
-
-
Liu, X.1
Kim, C.N.2
Yang, J.3
Jemmerson, R.4
Wang, X.5
-
8
-
-
0035890085
-
The expanding role of mitochondria in apoptosis
-
Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15: 2922–2933
-
(2001)
Genes Dev
, vol.15
, pp. 2922-2933
-
-
Wang, X.1
-
9
-
-
84975217589
-
MSX1 modulates RLR-mediated innate antiviral signaling by facilitating assembly of TBK1-associated complexes
-
Chen LT, Hu MM, Xu ZS, Liu Y, Shu HB (2016) MSX1 modulates RLR-mediated innate antiviral signaling by facilitating assembly of TBK1-associated complexes. J Immunol 197: 199–207
-
(2016)
J Immunol
, vol.197
, pp. 199-207
-
-
Chen, L.T.1
Hu, M.M.2
Xu, Z.S.3
Liu, Y.4
Shu, H.B.5
-
10
-
-
62049084519
-
The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA
-
Zhong B, Zhang L, Lei C, Li Y, Mao AP, Yang Y, Wang YY, Zhang XL, Shu HB (2009) The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30: 397–407
-
(2009)
Immunity
, vol.30
, pp. 397-407
-
-
Zhong, B.1
Zhang, L.2
Lei, C.3
Li, Y.4
Mao, A.P.5
Yang, Y.6
Wang, Y.Y.7
Zhang, X.L.8
Shu, H.B.9
-
11
-
-
84948679316
-
Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress
-
Picard M, McManus MJ, Gray JD, Nasca C, Moffat C, Kopinski PK, Seifert EL, McEwen BS, Wallace DC (2015) Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci USA 112: E6614–E6623
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. E6614-E6623
-
-
Picard, M.1
McManus, M.J.2
Gray, J.D.3
Nasca, C.4
Moffat, C.5
Kopinski, P.K.6
Seifert, E.L.7
McEwen, B.S.8
Wallace, D.C.9
-
12
-
-
84905820762
-
Mitochondrial proteostasis in the control of aging and longevity
-
Jensen MB, Jasper H (2014) Mitochondrial proteostasis in the control of aging and longevity. Cell Metab 20: 214–225
-
(2014)
Cell Metab
, vol.20
, pp. 214-225
-
-
Jensen, M.B.1
Jasper, H.2
-
13
-
-
84949550661
-
The metabolic regulation of aging
-
Finkel T (2015) The metabolic regulation of aging. Nat Med 21: 1416–1423
-
(2015)
Nat Med
, vol.21
, pp. 1416-1423
-
-
Finkel, T.1
-
14
-
-
84903649897
-
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release
-
Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94: 909–950
-
(2014)
Physiol Rev
, vol.94
, pp. 909-950
-
-
Zorov, D.B.1
Juhaszova, M.2
Sollott, S.J.3
-
15
-
-
84975755192
-
Mitochondrial ROS signaling in organismal homeostasis
-
Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163: 560–569
-
(2015)
Cell
, vol.163
, pp. 560-569
-
-
Shadel, G.S.1
Horvath, T.L.2
-
16
-
-
33750445482
-
Mitochondrial fusion and fission in mammals
-
Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22: 79–99
-
(2006)
Annu Rev Cell Dev Biol
, vol.22
, pp. 79-99
-
-
Chan, D.C.1
-
17
-
-
78649413837
-
Mitochondrial fusion and fission in cell life and death
-
Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11: 872–884
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 872-884
-
-
Westermann, B.1
-
18
-
-
84869030015
-
Fusion and fission: interlinked processes critical for mitochondrial health
-
Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46: 265–287
-
(2012)
Annu Rev Genet
, vol.46
, pp. 265-287
-
-
Chan, D.C.1
-
19
-
-
0036143156
-
Systematic identification of novel protein domain families associated with nuclear functions
-
Doerks T, Copley RR, Schultz J, Ponting CP, Bork P (2002) Systematic identification of novel protein domain families associated with nuclear functions. Genome Res 12: 47–56
-
(2002)
Genome Res
, vol.12
, pp. 47-56
-
-
Doerks, T.1
Copley, R.R.2
Schultz, J.3
Ponting, C.P.4
Bork, P.5
-
20
-
-
34250811284
-
Mitochondrial-nuclear communications
-
Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76: 701–722
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 701-722
-
-
Ryan, M.T.1
Hoogenraad, N.J.2
-
21
-
-
42049114034
-
Transcriptional paradigms in mammalian mitochondrial biogenesis and function
-
Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88: 611–638
-
(2008)
Physiol Rev
, vol.88
, pp. 611-638
-
-
Scarpulla, R.C.1
-
23
-
-
84903817207
-
Receptor-mediated mitophagy in yeast and mammalian systems
-
Liu L, Sakakibara K, Chen Q, Okamoto K (2014) Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 24: 787–795
-
(2014)
Cell Res
, vol.24
, pp. 787-795
-
-
Liu, L.1
Sakakibara, K.2
Chen, Q.3
Okamoto, K.4
-
24
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524: 309–314
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
Burman, J.L.6
Sideris, D.P.7
Fogel, A.I.8
Youle, R.J.9
-
25
-
-
84929582993
-
The three ‘P's of mitophagy: PARKIN, PINK1, and post-translational modifications
-
Durcan TM, Fon EA (2015) The three ‘P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev 29: 989–999
-
(2015)
Genes Dev
, vol.29
, pp. 989-999
-
-
Durcan, T.M.1
Fon, E.A.2
-
26
-
-
84898619521
-
MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX
-
Li W, Zhang X, Zhuang H, Chen HG, Chen Y, Tian W, Wu W, Li Y, Wang S, Zhang L et al (2014) MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J Biol Chem 289: 10691–10701
-
(2014)
J Biol Chem
, vol.289
, pp. 10691-10701
-
-
Li, W.1
Zhang, X.2
Zhuang, H.3
Chen, H.G.4
Chen, Y.5
Tian, W.6
Wu, W.7
Li, Y.8
Wang, S.9
Zhang, L.10
-
27
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T et al (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510: 162–166
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
-
28
-
-
84899912073
-
A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
-
Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C et al (2014) A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell 54: 362–377
-
(2014)
Mol Cell
, vol.54
, pp. 362-377
-
-
Chen, G.1
Han, Z.2
Feng, D.3
Chen, Y.4
Chen, L.5
Wu, H.6
Huang, L.7
Zhou, C.8
Cai, X.9
Fu, C.10
-
29
-
-
84878597289
-
SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia
-
Guo C, Hildick KL, Luo J, Dearden L, Wilkinson KA, Henley JM (2013) SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J 32: 1514–1528
-
(2013)
EMBO J
, vol.32
, pp. 1514-1528
-
-
Guo, C.1
Hildick, K.L.2
Luo, J.3
Dearden, L.4
Wilkinson, K.A.5
Henley, J.M.6
-
30
-
-
0035856942
-
Mitochondrial function in normal and diabetic beta-cells
-
Maechler P, Wollheim CB (2001) Mitochondrial function in normal and diabetic beta-cells. Nature 414: 807–812
-
(2001)
Nature
, vol.414
, pp. 807-812
-
-
Maechler, P.1
Wollheim, C.B.2
-
31
-
-
77954859197
-
The role of mitochondria in the pathogenesis of type 2 diabetes
-
Patti ME, Corvera S (2010) The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 31: 364–395
-
(2010)
Endocr Rev
, vol.31
, pp. 364-395
-
-
Patti, M.E.1
Corvera, S.2
-
32
-
-
79959305691
-
Mitochondria: the next (neurode)generation
-
Schon EA, Przedborski S (2011) Mitochondria: the next (neurode)generation. Neuron 70: 1033–1053
-
(2011)
Neuron
, vol.70
, pp. 1033-1053
-
-
Schon, E.A.1
Przedborski, S.2
-
33
-
-
84930040430
-
New roles for mitochondrial proteases in health, ageing and disease
-
Quiros PM, Langer T, Lopez-Otin C (2015) New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 16: 345–359
-
(2015)
Nat Rev Mol Cell Biol
, vol.16
, pp. 345-359
-
-
Quiros, P.M.1
Langer, T.2
Lopez-Otin, C.3
-
36
-
-
0036775488
-
Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy
-
Lemasters JJ, Qian T, He L, Kim JS, Elmore SP, Cascio WE, Brenner DA (2002) Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 4: 769–781
-
(2002)
Antioxid Redox Signal
, vol.4
, pp. 769-781
-
-
Lemasters, J.J.1
Qian, T.2
He, L.3
Kim, J.S.4
Elmore, S.P.5
Cascio, W.E.6
Brenner, D.A.7
-
37
-
-
84861674629
-
Mitochondria as a central sensor for axonal degenerative stimuli
-
Court FA, Coleman MP (2012) Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci 35: 364–372
-
(2012)
Trends Neurosci
, vol.35
, pp. 364-372
-
-
Court, F.A.1
Coleman, M.P.2
-
38
-
-
80054787664
-
What genetics tells us about the causes and mechanisms of Parkinson's disease
-
Corti O, Lesage S, Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 91: 1161–1218
-
(2011)
Physiol Rev
, vol.91
, pp. 1161-1218
-
-
Corti, O.1
Lesage, S.2
Brice, A.3
-
39
-
-
84921369563
-
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
-
Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85: 257–273
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
40
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191: 1367–1380
-
(2010)
J Cell Biol
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
Suen, D.F.5
Karbowski, M.6
Youle, R.J.7
-
41
-
-
79957472437
-
Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
-
Yoshii SR, Kishi C, Ishihara N, Mizushima N (2011) Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 286: 19630–19640
-
(2011)
J Biol Chem
, vol.286
, pp. 19630-19640
-
-
Yoshii, S.R.1
Kishi, C.2
Ishihara, N.3
Mizushima, N.4
-
42
-
-
80052197610
-
Phosphorylation of serine 114 on Atg32 mediates mitophagy
-
Aoki Y, Kanki T, Hirota Y, Kurihara Y, Saigusa T, Uchiumi T, Kang D (2011) Phosphorylation of serine 114 on Atg32 mediates mitophagy. Mol Biol Cell 22: 3206–3217
-
(2011)
Mol Biol Cell
, vol.22
, pp. 3206-3217
-
-
Aoki, Y.1
Kanki, T.2
Hirota, Y.3
Kurihara, Y.4
Saigusa, T.5
Uchiumi, T.6
Kang, D.7
-
43
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17: 98–109
-
(2009)
Dev Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
44
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17: 87–97
-
(2009)
Dev Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
45
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovic D, Occhipinti A et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11: 45–51
-
(2010)
EMBO Rep
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
Rogov, V.7
Lohr, F.8
Popovic, D.9
Occhipinti, A.10
-
46
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells
-
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454: 232–235
-
(2008)
Nature
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
Thiagarajan, P.2
Dasgupta, S.K.3
Schumacher, A.4
Prchal, J.T.5
Chen, M.6
Wang, J.7
-
47
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W et al (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14: 177–185
-
(2012)
Nat Cell Biol
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
Ma, Q.7
Zhu, C.8
Wang, R.9
Qi, W.10
-
48
-
-
33747613595
-
A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics
-
Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Matsuki Y, Ohmura-Hoshino M, Sada K, Hotta H, Yamamura H et al (2006) A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25: 3618–3626
-
(2006)
EMBO J
, vol.25
, pp. 3618-3626
-
-
Yonashiro, R.1
Ishido, S.2
Kyo, S.3
Fukuda, T.4
Goto, E.5
Matsuki, Y.6
Ohmura-Hoshino, M.7
Sada, K.8
Hotta, H.9
Yamamura, H.10
-
49
-
-
84901036269
-
MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival
-
Park YY, Nguyen OT, Kang H, Cho H (2014) MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival. Cell Death Dis 5: e1172
-
(2014)
Cell Death Dis
, vol.5
-
-
Park, Y.Y.1
Nguyen, O.T.2
Kang, H.3
Cho, H.4
-
50
-
-
84891685535
-
MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2
-
Sugiura A, Nagashima S, Tokuyama T, Amo T, Matsuki Y, Ishido S, Kudo Y, McBride HM, Fukuda T, Matsushita N et al (2013) MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol Cell 51: 20–34
-
(2013)
Mol Cell
, vol.51
, pp. 20-34
-
-
Sugiura, A.1
Nagashima, S.2
Tokuyama, T.3
Amo, T.4
Matsuki, Y.5
Ishido, S.6
Kudo, Y.7
McBride, H.M.8
Fukuda, T.9
Matsushita, N.10
-
51
-
-
84954527661
-
Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein
-
Xu S, Cherok E, Das S, Li S, Roelofs BA, Ge SX, Polster BM, Boyman L, Lederer WJ, Wang C et al (2016) Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol Biol Cell 27: 349–359
-
(2016)
Mol Biol Cell
, vol.27
, pp. 349-359
-
-
Xu, S.1
Cherok, E.2
Das, S.3
Li, S.4
Roelofs, B.A.5
Ge, S.X.6
Polster, B.M.7
Boyman, L.8
Lederer, W.J.9
Wang, C.10
-
52
-
-
84931291926
-
Mitochondrial E3 ligase March5 maintains stemness of mouse ES cells via suppression of ERK signalling
-
Gu H, Li Q, Huang S, Lu W, Cheng F, Gao P, Wang C, Miao L, Mei Y, Wu M (2015) Mitochondrial E3 ligase March5 maintains stemness of mouse ES cells via suppression of ERK signalling. Nat Commun 6: 7112
-
(2015)
Nat Commun
, vol.6
, pp. 7112
-
-
Gu, H.1
Li, Q.2
Huang, S.3
Lu, W.4
Cheng, F.5
Gao, P.6
Wang, C.7
Miao, L.8
Mei, Y.9
Wu, M.10
-
53
-
-
84957429960
-
Self-clearance mechanism of mitochondrial E3 ligase MARCH5 contributes to mitochondria quality control
-
Kim SH, Park YY, Yoo YS, Cho H (2016) Self-clearance mechanism of mitochondrial E3 ligase MARCH5 contributes to mitochondria quality control. FEBS J 283: 294–304
-
(2016)
FEBS J
, vol.283
, pp. 294-304
-
-
Kim, S.H.1
Park, Y.Y.2
Yoo, Y.S.3
Cho, H.4
-
54
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496: 372–376
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
Sowa, M.E.4
Huttlin, E.L.5
Gygi, S.P.6
Harper, J.W.7
-
55
-
-
84940722108
-
Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses
-
Wei H, Liu L, Chen Q (2015) Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim Biophys Acta 1853: 2784–2790
-
(2015)
Biochim Biophys Acta
, vol.1853
, pp. 2784-2790
-
-
Wei, H.1
Liu, L.2
Chen, Q.3
-
56
-
-
84958115349
-
O2 sensing, mitochondria and ROS signaling: the fog is lifting
-
Waypa GB, Smith KA, Schumacker PT (2016) O2 sensing, mitochondria and ROS signaling: the fog is lifting. Mol Aspects Med 47–48: 76–89
-
(2016)
Mol Aspects Med
, vol.47-48
, pp. 76-89
-
-
Waypa, G.B.1
Smith, K.A.2
Schumacker, P.T.3
-
57
-
-
84964533976
-
Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy
-
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L et al (2016) Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 12: 689–702
-
(2016)
Autophagy
, vol.12
, pp. 689-702
-
-
Chen, M.1
Chen, Z.2
Wang, Y.3
Tan, Z.4
Zhu, C.5
Li, Y.6
Han, Z.7
Chen, L.8
Gao, R.9
Liu, L.10
|