-
1
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
[1] Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation. Cell 144:5 (2011), 646–674.
-
(2011)
Cell
, vol.144
, Issue.5
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
2
-
-
80054012347
-
Developmental and pathological angiogenesis
-
[2] Chung, A.S., Ferrara, N., Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 27 (2011), 563–584.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 563-584
-
-
Chung, A.S.1
Ferrara, N.2
-
3
-
-
84881232071
-
Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer
-
[3] Welti, J., et al. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Invest. 123:8 (2013), 3190–3200.
-
(2013)
J. Clin. Invest.
, vol.123
, Issue.8
, pp. 3190-3200
-
-
Welti, J.1
-
4
-
-
79953244361
-
Antiangiogenic therapy: impact on invasion, disease progression, and metastasis
-
[4] Ebos, J.M., Kerbel, R.S., Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8:4 (2011), 210–221.
-
(2011)
Nat. Rev. Clin. Oncol.
, vol.8
, Issue.4
, pp. 210-221
-
-
Ebos, J.M.1
Kerbel, R.S.2
-
5
-
-
85069238583
-
Endothelial cell metabolism: parallels and divergences with cancer cell metabolism
-
[5] Verdegem, D., et al. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab., 2, 2014, 19.
-
(2014)
Cancer Metab.
, vol.2
, pp. 19
-
-
Verdegem, D.1
-
6
-
-
47949089077
-
VEGF-targeted therapy: mechanisms of anti-tumour activity
-
[6] Ellis, L.M., Hicklin, D.J., VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8:8 (2008), 579–591.
-
(2008)
Nat. Rev. Cancer
, vol.8
, Issue.8
, pp. 579-591
-
-
Ellis, L.M.1
Hicklin, D.J.2
-
7
-
-
47949099628
-
Modes of resistance to anti-angiogenic therapy
-
[7] Bergers, G., Hanahan, D., Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8:8 (2008), 592–603.
-
(2008)
Nat. Rev. Cancer
, vol.8
, Issue.8
, pp. 592-603
-
-
Bergers, G.1
Hanahan, D.2
-
8
-
-
84881119066
-
Role of PFKFB3-driven glycolysis in vessel sprouting
-
[8] De Bock, K., et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:3 (2013), 651–663.
-
(2013)
Cell
, vol.154
, Issue.3
, pp. 651-663
-
-
De Bock, K.1
-
9
-
-
84927563455
-
Fatty acid carbon is essential for dNTP synthesis in endothelial cells
-
[9] Schoors, S., et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520:7546 (2015), 192–197.
-
(2015)
Nature
, vol.520
, Issue.7546
, pp. 192-197
-
-
Schoors, S.1
-
10
-
-
84887456534
-
Role of endothelial cell metabolism in vessel sprouting
-
[10] De Bock, K., Georgiadou, M., Carmeliet, P., Role of endothelial cell metabolism in vessel sprouting. Cell Metab. 18:5 (2013), 634–647.
-
(2013)
Cell Metab.
, vol.18
, Issue.5
, pp. 634-647
-
-
De Bock, K.1
Georgiadou, M.2
Carmeliet, P.3
-
11
-
-
59649117924
-
Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization
-
[11] Mazzone, M., et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136:5 (2009), 839–851.
-
(2009)
Cell
, vol.136
, Issue.5
, pp. 839-851
-
-
Mazzone, M.1
-
12
-
-
84875729120
-
Inflammation and oxidative stress in angiogenesis and vascular disease
-
[12] Kim, Y.W., West, X.Z., Byzova, T.V., Inflammation and oxidative stress in angiogenesis and vascular disease. J. Mol. Med. (Berl.) 91:3 (2013), 323–328.
-
(2013)
J. Mol. Med. (Berl.)
, vol.91
, Issue.3
, pp. 323-328
-
-
Kim, Y.W.1
West, X.Z.2
Byzova, T.V.3
-
13
-
-
77951686244
-
Extracellular matrix, inflammation, and the angiogenic response
-
[13] Arroyo, A.G., Iruela-Arispe, M.L., Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc. Res. 86:2 (2010), 226–235.
-
(2010)
Cardiovasc. Res.
, vol.86
, Issue.2
, pp. 226-235
-
-
Arroyo, A.G.1
Iruela-Arispe, M.L.2
-
14
-
-
84990925109
-
Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia
-
[14] Weishaupt, J.H., Hyman, T., Dikic, I., Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol. Med. 22:9 (2016), 769–783.
-
(2016)
Trends Mol. Med.
, vol.22
, Issue.9
, pp. 769-783
-
-
Weishaupt, J.H.1
Hyman, T.2
Dikic, I.3
-
15
-
-
0037967272
-
Tumorigenesis and the angiogenic switch
-
[15] Bergers, G., Benjamin, L.E., Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3:6 (2003), 401–410.
-
(2003)
Nat. Rev. Cancer
, vol.3
, Issue.6
, pp. 401-410
-
-
Bergers, G.1
Benjamin, L.E.2
-
16
-
-
28744456297
-
Angiogenesis during exercise and training
-
[16] Bloor, C.M., Angiogenesis during exercise and training. Angiogenesis 8:3 (2005), 263–271.
-
(2005)
Angiogenesis
, vol.8
, Issue.3
, pp. 263-271
-
-
Bloor, C.M.1
-
17
-
-
59649112848
-
Regulation of angiogenesis by oxygen and metabolism
-
[17] Fraisl, P., et al. Regulation of angiogenesis by oxygen and metabolism. Dev. Cell 16:2 (2009), 167–179.
-
(2009)
Dev. Cell
, vol.16
, Issue.2
, pp. 167-179
-
-
Fraisl, P.1
-
18
-
-
0032100732
-
HIF-1 alpha is required for solid tumor formation and embryonic vascularization
-
[18] Ryan, H.E., Lo, J., Johnson, R.S., HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 17:11 (1998), 3005–3015.
-
(1998)
EMBO J.
, vol.17
, Issue.11
, pp. 3005-3015
-
-
Ryan, H.E.1
Lo, J.2
Johnson, R.S.3
-
19
-
-
0029761644
-
Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1
-
[19] Forsythe, J.A., et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16:9 (1996), 4604–4613.
-
(1996)
Mol. Cell. Biol.
, vol.16
, Issue.9
, pp. 4604-4613
-
-
Forsythe, J.A.1
-
20
-
-
0343920277
-
Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele
-
[20] Carmeliet, P., et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:6573 (1996), 435–439.
-
(1996)
Nature
, vol.380
, Issue.6573
, pp. 435-439
-
-
Carmeliet, P.1
-
21
-
-
79956328903
-
Molecular mechanisms and clinical applications of angiogenesis
-
[21] Carmeliet, P., Jain, R.K., Molecular mechanisms and clinical applications of angiogenesis. Nature 473:7347 (2011), 298–307.
-
(2011)
Nature
, vol.473
, Issue.7347
, pp. 298-307
-
-
Carmeliet, P.1
Jain, R.K.2
-
22
-
-
84897536435
-
The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis
-
[22] Bentley, K., et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat. Cell Biol. 16:4 (2014), 309–321.
-
(2014)
Nat. Cell Biol.
, vol.16
, Issue.4
, pp. 309-321
-
-
Bentley, K.1
-
23
-
-
59649085554
-
Angiogenesis: a team effort coordinated by notch
-
[23] Phng, L.K., Gerhardt, H., Angiogenesis: a team effort coordinated by notch. Dev. Cell 16:2 (2009), 196–208.
-
(2009)
Dev. Cell
, vol.16
, Issue.2
, pp. 196-208
-
-
Phng, L.K.1
Gerhardt, H.2
-
24
-
-
84874491536
-
VEGF and Notch in tip and stalk cell selection
-
[24] Blanco, R., Gerhardt, H., VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med., 3(1), 2013, a006569.
-
(2013)
Cold Spring Harb. Perspect. Med.
, vol.3
, Issue.1
, pp. a006569
-
-
Blanco, R.1
Gerhardt, H.2
-
25
-
-
78049252302
-
Pericytes: blood-brain barrier safeguards against neurodegeneration?
-
[25] Quaegebeur, A., Segura, I., Carmeliet, P., Pericytes: blood-brain barrier safeguards against neurodegeneration?. Neuron 68:3 (2010), 321–323.
-
(2010)
Neuron
, vol.68
, Issue.3
, pp. 321-323
-
-
Quaegebeur, A.1
Segura, I.2
Carmeliet, P.3
-
26
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
[26] Vander Heiden, M.G., Cantley, L.C., Thompson, C.B., Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:5930 (2009), 1029–1033.
-
(2009)
Science
, vol.324
, Issue.5930
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
27
-
-
0030873452
-
Energy turnover of vascular endothelial cells
-
[27] Culic, O., Gruwel, M.L., Schrader, J., Energy turnover of vascular endothelial cells. Am. J. Phys. 273:1 Pt 1 (1997), C205–C213.
-
(1997)
Am. J. Phys.
, vol.273
, Issue.1
, pp. C205-C213
-
-
Culic, O.1
Gruwel, M.L.2
Schrader, J.3
-
28
-
-
84992445091
-
Carbon monoxide shifts energetic metabolism from glycolysis to oxidative phosphorylation in endothelial cells
-
[28] Kaczara, P., et al. Carbon monoxide shifts energetic metabolism from glycolysis to oxidative phosphorylation in endothelial cells. FEBS Lett. 590:20 (2016), 3469–3480.
-
(2016)
FEBS Lett.
, vol.590
, Issue.20
, pp. 3469-3480
-
-
Kaczara, P.1
-
29
-
-
79952227187
-
2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase
-
[29] Wang, Q., et al. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS One, 6(2), 2011, e17234.
-
(2011)
PLoS One
, vol.6
, Issue.2
-
-
Wang, Q.1
-
30
-
-
84920388795
-
Review of aerobic glycolysis and its key enzymes - new targets for lung cancer therapy
-
[30] Li, X.B., Gu, J.D., Zhou, Q.H., Review of aerobic glycolysis and its key enzymes - new targets for lung cancer therapy. Thorac. Cancer 6:1 (2015), 17–24.
-
(2015)
Thorac. Cancer
, vol.6
, Issue.1
, pp. 17-24
-
-
Li, X.B.1
Gu, J.D.2
Zhou, Q.H.3
-
31
-
-
0025634463
-
Metabolism of exogenous substrates by coronary endothelial cells in culture
-
[31] Krutzfeldt, A., et al. Metabolism of exogenous substrates by coronary endothelial cells in culture. J. Mol. Cell. Cardiol. 22:12 (1990), 1393–1404.
-
(1990)
J. Mol. Cell. Cardiol.
, vol.22
, Issue.12
, pp. 1393-1404
-
-
Krutzfeldt, A.1
-
32
-
-
80053922625
-
Metabolic flux and the regulation of mammalian cell growth
-
[32] Locasale, J.W., Cantley, L.C., Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 14:4 (2011), 443–451.
-
(2011)
Cell Metab.
, vol.14
, Issue.4
, pp. 443-451
-
-
Locasale, J.W.1
Cantley, L.C.2
-
33
-
-
0025320928
-
Energetic response of coronary endothelial cells to hypoxia
-
[33] Mertens, S., et al. Energetic response of coronary endothelial cells to hypoxia. Am. J. Phys. 258:3 Pt 2 (1990), H689–H694.
-
(1990)
Am. J. Phys.
, vol.258
, Issue.3
, pp. H689-H694
-
-
Mertens, S.1
-
34
-
-
8144228566
-
Why do cancers have high aerobic glycolysis?
-
[34] Gatenby, R.A., Gillies, R.J., Why do cancers have high aerobic glycolysis?. Nat. Rev. Cancer 4:11 (2004), 891–899.
-
(2004)
Nat. Rev. Cancer
, vol.4
, Issue.11
, pp. 891-899
-
-
Gatenby, R.A.1
Gillies, R.J.2
-
35
-
-
79959281722
-
A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets
-
[35] Buchwald, P., A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets. Theor. Biol. Med. Model., 8, 2011, 20.
-
(2011)
Theor. Biol. Med. Model.
, vol.8
, pp. 20
-
-
Buchwald, P.1
-
36
-
-
84922060844
-
Mechanisms of endothelial cell migration
-
[36] Michaelis, U.R., Mechanisms of endothelial cell migration. Cell. Mol. Life Sci. 71:21 (2014), 4131–4148.
-
(2014)
Cell. Mol. Life Sci.
, vol.71
, Issue.21
, pp. 4131-4148
-
-
Michaelis, U.R.1
-
37
-
-
0036498546
-
The lamellipodium: where motility begins
-
[37] Small, J.V., et al. The lamellipodium: where motility begins. Trends Cell Biol. 12:3 (2002), 112–120.
-
(2002)
Trends Cell Biol.
, vol.12
, Issue.3
, pp. 112-120
-
-
Small, J.V.1
-
38
-
-
84872534173
-
Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force
-
[38] Polet, F., Feron, O., Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J. Intern. Med. 273:2 (2013), 156–165.
-
(2013)
J. Intern. Med.
, vol.273
, Issue.2
, pp. 156-165
-
-
Polet, F.1
Feron, O.2
-
39
-
-
0037163688
-
Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death
-
[39] Aft, R.L., Zhang, F.W., Gius, D., Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br. J. Cancer 87:7 (2002), 805–812.
-
(2002)
Br. J. Cancer
, vol.87
, Issue.7
, pp. 805-812
-
-
Aft, R.L.1
Zhang, F.W.2
Gius, D.3
-
40
-
-
84943391325
-
Glycolytic inhibitor 2-deoxyglucose simultaneously targets cancer and endothelial cells to suppress neuroblastoma growth in mice
-
[40] Huang, C.C., et al. Glycolytic inhibitor 2-deoxyglucose simultaneously targets cancer and endothelial cells to suppress neuroblastoma growth in mice. Dis. Model. Mech. 8:10 (2015), 1247–1254.
-
(2015)
Dis. Model. Mech.
, vol.8
, Issue.10
, pp. 1247-1254
-
-
Huang, C.C.1
-
41
-
-
78149450359
-
Antiangiogenic activity of 2-deoxy-D-glucose
-
[41] Merchan, J.R., et al. Antiangiogenic activity of 2-deoxy-D-glucose. PLoS One, 5(10), 2010, e13699.
-
(2010)
PLoS One
, vol.5
, Issue.10
-
-
Merchan, J.R.1
-
42
-
-
84891841003
-
Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis
-
[42] Schoors, S., et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 19:1 (2014), 37–48.
-
(2014)
Cell Metab.
, vol.19
, Issue.1
, pp. 37-48
-
-
Schoors, S.1
-
43
-
-
84892599925
-
Incomplete and transitory decrease of glycolysis: a new paradigm for anti-angiogenic therapy?
-
[43] Schoors, S., et al. Incomplete and transitory decrease of glycolysis: a new paradigm for anti-angiogenic therapy?. Cell Cycle 13:1 (2014), 16–22.
-
(2014)
Cell Cycle
, vol.13
, Issue.1
, pp. 16-22
-
-
Schoors, S.1
-
44
-
-
34547902505
-
Differential toxic mechanisms of 2-deoxy-D-glucose versus 2-fluorodeoxy-D-glucose in hypoxic and normoxic tumor cells
-
[44] Kurtoglu, M., Maher, J.C., Lampidis, T.J., Differential toxic mechanisms of 2-deoxy-D-glucose versus 2-fluorodeoxy-D-glucose in hypoxic and normoxic tumor cells. Antioxid. Redox Signal. 9:9 (2007), 1383–1390.
-
(2007)
Antioxid. Redox Signal.
, vol.9
, Issue.9
, pp. 1383-1390
-
-
Kurtoglu, M.1
Maher, J.C.2
Lampidis, T.J.3
-
45
-
-
84864402951
-
Anticancer agents that counteract tumor glycolysis
-
[45] Granchi, C., Minutolo, F., Anticancer agents that counteract tumor glycolysis. ChemMedChem 7:8 (2012), 1318–1350.
-
(2012)
ChemMedChem
, vol.7
, Issue.8
, pp. 1318-1350
-
-
Granchi, C.1
Minutolo, F.2
-
46
-
-
84888798201
-
Tumor glycolysis as a target for cancer therapy: progress and prospects
-
[46] Ganapathy-Kanniappan, S., Geschwind, J.F., Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol. Cancer, 12, 2013, 152.
-
(2013)
Mol. Cancer
, vol.12
, pp. 152
-
-
Ganapathy-Kanniappan, S.1
Geschwind, J.F.2
-
47
-
-
77949967131
-
Targeting metabolic transformation for cancer therapy
-
[47] Tennant, D.A., Duran, R.V., Gottlieb, E., Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10:4 (2010), 267–277.
-
(2010)
Nat. Rev. Cancer
, vol.10
, Issue.4
, pp. 267-277
-
-
Tennant, D.A.1
Duran, R.V.2
Gottlieb, E.3
-
48
-
-
0023655408
-
Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues
-
[48] Hue, L., Rider, M.H., Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem. J. 245:2 (1987), 313–324.
-
(1987)
Biochem. J.
, vol.245
, Issue.2
, pp. 313-324
-
-
Hue, L.1
Rider, M.H.2
-
49
-
-
67349131613
-
Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer
-
[49] Yalcin, A., et al. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp. Mol. Pathol. 86:3 (2009), 174–179.
-
(2009)
Exp. Mol. Pathol.
, vol.86
, Issue.3
, pp. 174-179
-
-
Yalcin, A.1
-
50
-
-
84878408912
-
Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3
-
[50] Bolanos, J.P., Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3. Biochem. J. 452:3 (2013), e7–e9.
-
(2013)
Biochem. J.
, vol.452
, Issue.3
, pp. e7-e9
-
-
Bolanos, J.P.1
-
51
-
-
23844517036
-
Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer
-
[51] Bando, H., et al. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin. Cancer Res. 11:16 (2005), 5784–5792.
-
(2005)
Clin. Cancer Res.
, vol.11
, Issue.16
, pp. 5784-5792
-
-
Bando, H.1
-
52
-
-
84937200012
-
Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease
-
[52] Smith, G.A., et al. Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease. J. Inherit. Metab. Dis. 38:4 (2015), 753–763.
-
(2015)
J. Inherit. Metab. Dis.
, vol.38
, Issue.4
, pp. 753-763
-
-
Smith, G.A.1
-
53
-
-
37349023393
-
Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia
-
[53] Yeh, W.L., Lin, C.J., Fu, W.M., Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol. Pharmacol. 73:1 (2008), 170–177.
-
(2008)
Mol. Pharmacol.
, vol.73
, Issue.1
, pp. 170-177
-
-
Yeh, W.L.1
Lin, C.J.2
Fu, W.M.3
-
54
-
-
84878404837
-
PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli
-
[54] Novellasdemunt, L., et al. PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochem. J. 452:3 (2013), 531–543.
-
(2013)
Biochem. J.
, vol.452
, Issue.3
, pp. 531-543
-
-
Novellasdemunt, L.1
-
55
-
-
84901482495
-
Endothelial PFKFB3 plays a critical role in angiogenesis
-
[55] Xu, Y., et al. Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 34:6 (2014), 1231–1239.
-
(2014)
Arterioscler. Thromb. Vasc. Biol.
, vol.34
, Issue.6
, pp. 1231-1239
-
-
Xu, Y.1
-
56
-
-
85004144063
-
Inhibition of the glycolytic activator PFKFB3 in endothelial cells induces tumor vessel normalization, impairs metastasis and improves chemotherapy
-
[56] Cantelmo, A.R., et al. Inhibition of the glycolytic activator PFKFB3 in endothelial cells induces tumor vessel normalization, impairs metastasis and improves chemotherapy. Cancer Cell 30:6 (2016), 968–985.
-
(2016)
Cancer Cell
, vol.30
, Issue.6
, pp. 968-985
-
-
Cantelmo, A.R.1
-
57
-
-
80052988662
-
Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect
-
[57] Seo, M., et al. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. PLoS One, 6(9), 2011, e24179.
-
(2011)
PLoS One
, vol.6
, Issue.9
-
-
Seo, M.1
-
58
-
-
38349183620
-
Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth
-
[58] Clem, B., et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol. Cancer Ther. 7:1 (2008), 110–120.
-
(2008)
Mol. Cancer Ther.
, vol.7
, Issue.1
, pp. 110-120
-
-
Clem, B.1
-
59
-
-
84882239565
-
Targeting 6-phosphofructo-2-kinase ( PFKFB3) as a therapeutic strategy against cancer
-
[59] Clem, B.F., et al. Targeting 6-phosphofructo-2-kinase ( PFKFB3) as a therapeutic strategy against cancer. Mol. Cancer Ther. 12:8 (2013), 1461–1470.
-
(2013)
Mol. Cancer Ther.
, vol.12
, Issue.8
, pp. 1461-1470
-
-
Clem, B.F.1
-
60
-
-
84961660263
-
Discovery of a PFKFB3 inhibitor for phase I trial testing that synergizes with the B-Raf inhibitor vemurafenib
-
[60] Telang, Sucheta, O'Neal, Julie, Tapolsky, Gilles, Clem, Brian, Kerr, Alan, Imbert-Ferndandez, Yoannis, Chesney, Jason, Discovery of a PFKFB3 inhibitor for phase I trial testing that synergizes with the B-Raf inhibitor vemurafenib. Cancer Metab., 2(Suppl. 1), 2014, 14.
-
(2014)
Cancer Metab.
, vol.2
, pp. 14
-
-
Telang, S.1
O'Neal, J.2
Tapolsky, G.3
Clem, B.4
Kerr, A.5
Imbert-Ferndandez, Y.6
Chesney, J.7
-
61
-
-
84916900281
-
Regulation of NADPH-dependent Nitric Oxide and reactive oxygen species signalling in endothelial and melanoma cells by a photoactive NADPH analogue
-
[61] Rouaud, F., et al. Regulation of NADPH-dependent Nitric Oxide and reactive oxygen species signalling in endothelial and melanoma cells by a photoactive NADPH analogue. Oncotarget 5:21 (2014), 10650–10664.
-
(2014)
Oncotarget
, vol.5
, Issue.21
, pp. 10650-10664
-
-
Rouaud, F.1
-
62
-
-
84902332213
-
Quantitative flux analysis reveals folate-dependent NADPH production
-
[62] Fan, J., et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:7504 (2014), 298–302.
-
(2014)
Nature
, vol.510
, Issue.7504
, pp. 298-302
-
-
Fan, J.1
-
63
-
-
0037342685
-
Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide
-
[63] Leopold, J.A., et al. Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide. Arterioscler. Thromb. Vasc. Biol. 23:3 (2003), 411–417.
-
(2003)
Arterioscler. Thromb. Vasc. Biol.
, vol.23
, Issue.3
, pp. 411-417
-
-
Leopold, J.A.1
-
64
-
-
82755166890
-
Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
-
[64] Anastasiou, D., et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:6060 (2011), 1278–1283.
-
(2011)
Science
, vol.334
, Issue.6060
, pp. 1278-1283
-
-
Anastasiou, D.1
-
65
-
-
80054046029
-
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
-
[65] Lunt, S.Y., Vander Heiden, M.G., Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27 (2011), 441–464.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
66
-
-
0020563692
-
Metabolic properties of freshly isolated bovine endothelial cells
-
[66] Dobrina, A., Rossi, F., Metabolic properties of freshly isolated bovine endothelial cells. Biochim. Biophys. Acta 762:2 (1983), 295–301.
-
(1983)
Biochim. Biophys. Acta
, vol.762
, Issue.2
, pp. 295-301
-
-
Dobrina, A.1
Rossi, F.2
-
67
-
-
84918493695
-
Angiogenesis revisited - role and therapeutic potential of targeting endothelial metabolism
-
[67] Stapor, P., et al. Angiogenesis revisited - role and therapeutic potential of targeting endothelial metabolism. J. Cell Sci. 127:Pt 20 (2014), 4331–4341.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 4331-4341
-
-
Stapor, P.1
-
68
-
-
84938740158
-
Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells
-
[68] Kuehne, A., et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol. Cell 59:3 (2015), 359–371.
-
(2015)
Mol. Cell
, vol.59
, Issue.3
, pp. 359-371
-
-
Kuehne, A.1
-
69
-
-
0034717751
-
6-Aminonicotinamide inhibition of the pentose phosphate pathway in rat neocortex
-
[69] Tyson, R.L., Perron, J., Sutherland, G.R., 6-Aminonicotinamide inhibition of the pentose phosphate pathway in rat neocortex. Neuroreport 11:9 (2000), 1845–1848.
-
(2000)
Neuroreport
, vol.11
, Issue.9
, pp. 1845-1848
-
-
Tyson, R.L.1
Perron, J.2
Sutherland, G.R.3
-
70
-
-
0031668777
-
Inhibition of NADPH supply by 6-aminonicotinamide: effect on glutathione, nitric oxide and superoxide in J774 cells
-
[70] Hothersall, J.S., Gordge, M., Noronha-Dutra, A.A., Inhibition of NADPH supply by 6-aminonicotinamide: effect on glutathione, nitric oxide and superoxide in J774 cells. FEBS Lett. 434:1–2 (1998), 97–100.
-
(1998)
FEBS Lett.
, vol.434
, Issue.1-2
, pp. 97-100
-
-
Hothersall, J.S.1
Gordge, M.2
Noronha-Dutra, A.A.3
-
71
-
-
0006678737
-
Clinical use of 6-aminonicotinamide in patients with disseminated neoplastic disease
-
[71] Perlia, C.P., et al. Clinical use of 6-aminonicotinamide in patients with disseminated neoplastic disease. Cancer 14 (1961), 644–648.
-
(1961)
Cancer
, vol.14
, pp. 644-648
-
-
Perlia, C.P.1
-
72
-
-
66749132763
-
Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets
-
[72] Vizan, P., et al. Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets. Carcinogenesis 30:6 (2009), 946–952.
-
(2009)
Carcinogenesis
, vol.30
, Issue.6
, pp. 946-952
-
-
Vizan, P.1
-
73
-
-
84973573467
-
Hijacking the hexosamine biosynthetic pathway to promote EMT-mediated neoplastic phenotypes
-
[73] Taparra, K., Tran, P.T., Zachara, N.E., Hijacking the hexosamine biosynthetic pathway to promote EMT-mediated neoplastic phenotypes. Front. Oncol., 6, 2016, 85.
-
(2016)
Front. Oncol.
, vol.6
, pp. 85
-
-
Taparra, K.1
Tran, P.T.2
Zachara, N.E.3
-
74
-
-
0025855139
-
Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance
-
[74] Marshall, S., Bacote, V., Traxinger, R.R., Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266:8 (1991), 4706–4712.
-
(1991)
J. Biol. Chem.
, vol.266
, Issue.8
, pp. 4706-4712
-
-
Marshall, S.1
Bacote, V.2
Traxinger, R.R.3
-
75
-
-
58149512746
-
Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system
-
[75] Laczy, B., et al. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 296:1 (2009), H13–H28.
-
(2009)
Am. J. Physiol. Heart Circ. Physiol.
, vol.296
, Issue.1
, pp. H13-H28
-
-
Laczy, B.1
-
76
-
-
80054777997
-
Discovery of 1-arylcarbonyl-6,7-dimethoxyisoquinoline derivatives as glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitors
-
[76] Qian, Y., et al. Discovery of 1-arylcarbonyl-6,7-dimethoxyisoquinoline derivatives as glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitors. Bioorg. Med. Chem. Lett. 21:21 (2011), 6264–6269.
-
(2011)
Bioorg. Med. Chem. Lett.
, vol.21
, Issue.21
, pp. 6264-6269
-
-
Qian, Y.1
-
77
-
-
0026496182
-
Molecular cloning, cDNA sequence, and bacterial expression of human glutamine:fructose-6-phosphate amidotransferase
-
[77] McKnight, G.L., et al. Molecular cloning, cDNA sequence, and bacterial expression of human glutamine:fructose-6-phosphate amidotransferase. J. Biol. Chem. 267:35 (1992), 25208–25212.
-
(1992)
J. Biol. Chem.
, vol.267
, Issue.35
, pp. 25208-25212
-
-
McKnight, G.L.1
-
78
-
-
3042613480
-
O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress
-
[78] Zachara, N.E., Hart, G.W., O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim. Biophys. Acta 1673:1–2 (2004), 13–28.
-
(2004)
Biochim. Biophys. Acta
, vol.1673
, Issue.1-2
, pp. 13-28
-
-
Zachara, N.E.1
Hart, G.W.2
-
79
-
-
83755162608
-
The antifungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells
-
[79] Nacev, B.A., et al. The antifungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells. J. Biol. Chem. 286:51 (2011), 44045–44056.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.51
, pp. 44045-44056
-
-
Nacev, B.A.1
-
80
-
-
71849097154
-
Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis
-
[80] Bruns, A.F., et al. Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis. Traffic 11:1 (2010), 161–174.
-
(2010)
Traffic
, vol.11
, Issue.1
, pp. 161-174
-
-
Bruns, A.F.1
-
81
-
-
42249106688
-
Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells
-
[81] Luo, B., Soesanto, Y., McClain, D.A., Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28:4 (2008), 651–657.
-
(2008)
Arterioscler. Thromb. Vasc. Biol.
, vol.28
, Issue.4
, pp. 651-657
-
-
Luo, B.1
Soesanto, Y.2
McClain, D.A.3
-
82
-
-
84867257213
-
Site-specific O-glucosylation of the epidermal growth factor-like (EGF) repeats of notch: efficiency of glycosylation is affected by proper folding and amino acid sequence of individual EGF repeats
-
[82] Takeuchi, H., et al. Site-specific O-glucosylation of the epidermal growth factor-like (EGF) repeats of notch: efficiency of glycosylation is affected by proper folding and amino acid sequence of individual EGF repeats. J. Biol. Chem. 287:41 (2012), 33934–33944.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.41
, pp. 33934-33944
-
-
Takeuchi, H.1
-
83
-
-
66449123068
-
The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis
-
[83] Benedito, R., et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:6 (2009), 1124–1135.
-
(2009)
Cell
, vol.137
, Issue.6
, pp. 1124-1135
-
-
Benedito, R.1
-
84
-
-
12944255642
-
Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1
-
[84] Yang, L.T., et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell 16:2 (2005), 927–942.
-
(2005)
Mol. Biol. Cell
, vol.16
, Issue.2
, pp. 927-942
-
-
Yang, L.T.1
-
85
-
-
64049093074
-
The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects
-
[85] Rajapakse, A.G., et al. The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects. Am. J. Physiol. Heart Circ. Physiol. 296:3 (2009), H815–H822.
-
(2009)
Am. J. Physiol. Heart Circ. Physiol.
, vol.296
, Issue.3
, pp. H815-H822
-
-
Rajapakse, A.G.1
-
86
-
-
0037162342
-
Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells
-
[87] Federici, M., et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106:4 (2002), 466–472.
-
(2002)
Circulation
, vol.106
, Issue.4
, pp. 466-472
-
-
Federici, M.1
-
87
-
-
84904645105
-
Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer
-
[86] Gross, M.I., et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13:4 (2014), 890–901.
-
(2014)
Mol. Cancer Ther.
, vol.13
, Issue.4
, pp. 890-901
-
-
Gross, M.I.1
-
88
-
-
84895544715
-
Mitochondrial dysfunction and complications associated with diabetes
-
[88] Blake, R., Trounce, I.A., Mitochondrial dysfunction and complications associated with diabetes. Biochim. Biophys. Acta 1840:4 (2014), 1404–1412.
-
(2014)
Biochim. Biophys. Acta
, vol.1840
, Issue.4
, pp. 1404-1412
-
-
Blake, R.1
Trounce, I.A.2
-
89
-
-
84901326584
-
Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease
-
[89] Nielsen, T.S., et al. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J. Mol. Endocrinol. 52:3 (2014), R199–R222.
-
(2014)
J. Mol. Endocrinol.
, vol.52
, Issue.3
, pp. R199-R222
-
-
Nielsen, T.S.1
-
90
-
-
0042166015
-
Integrative physiology of human adipose tissue
-
[90] Frayn, K.N., et al. Integrative physiology of human adipose tissue. Int. J. Obes. Relat. Metab. Disord. 27:8 (2003), 875–888.
-
(2003)
Int. J. Obes. Relat. Metab. Disord.
, vol.27
, Issue.8
, pp. 875-888
-
-
Frayn, K.N.1
-
91
-
-
77955980416
-
Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation
-
[91] Lopaschuk, G.D., Jaswal, J.S., Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 56:2 (2010), 130–140.
-
(2010)
J. Cardiovasc. Pharmacol.
, vol.56
, Issue.2
, pp. 130-140
-
-
Lopaschuk, G.D.1
Jaswal, J.S.2
-
92
-
-
22144484448
-
Skeletal muscle fat oxidation: timing and flexibility are everything
-
[92] Kelley, D.E., Skeletal muscle fat oxidation: timing and flexibility are everything. J. Clin. Invest. 115:7 (2005), 1699–1702.
-
(2005)
J. Clin. Invest.
, vol.115
, Issue.7
, pp. 1699-1702
-
-
Kelley, D.E.1
-
93
-
-
4544288672
-
Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data
-
[93] Vo, T.D., Greenberg, H.J., Palsson, B.O., Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. 279:38 (2004), 39532–39540.
-
(2004)
J. Biol. Chem.
, vol.279
, Issue.38
, pp. 39532-39540
-
-
Vo, T.D.1
Greenberg, H.J.2
Palsson, B.O.3
-
94
-
-
0038035142
-
Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function
-
[94] Wang, W., et al. Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function. J. Biol. Chem. 278:29 (2003), 27016–27023.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.29
, pp. 27016-27023
-
-
Wang, W.1
-
95
-
-
84858266319
-
The role of AMP-activated protein kinase in the functional effects of vascular endothelial growth factor-A and -B in human aortic endothelial cells
-
[95] Reihill, J.A., Ewart, M.A., Salt, I.P., The role of AMP-activated protein kinase in the functional effects of vascular endothelial growth factor-A and -B in human aortic endothelial cells. Vasc. Cell, 3, 2011, 9.
-
(2011)
Vasc. Cell
, vol.3
, pp. 9
-
-
Reihill, J.A.1
Ewart, M.A.2
Salt, I.P.3
-
96
-
-
85047689953
-
5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?
-
[96] Corton, J.M., et al. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?. Eur. J. Biochem. 229:2 (1995), 558–565.
-
(1995)
Eur. J. Biochem.
, vol.229
, Issue.2
, pp. 558-565
-
-
Corton, J.M.1
-
97
-
-
84861819258
-
Malonyl-CoA: the regulator of fatty acid synthesis and oxidation
-
[97] Foster, D.W., Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest. 122:6 (2012), 1958–1959.
-
(2012)
J. Clin. Invest.
, vol.122
, Issue.6
, pp. 1958-1959
-
-
Foster, D.W.1
-
98
-
-
84862278857
-
The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells
-
[98] Smolkova, K., Jezek, P., The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. Int. J. Cell Biol., 2012, 2012, 273947.
-
(2012)
Int. J. Cell Biol.
, vol.2012
, pp. 273947
-
-
Smolkova, K.1
Jezek, P.2
-
99
-
-
84857668167
-
Regulation and limitations to fatty acid oxidation during exercise
-
[99] Jeppesen, J., Kiens, B., Regulation and limitations to fatty acid oxidation during exercise. J. Physiol. 590:5 (2012), 1059–1068.
-
(2012)
J. Physiol.
, vol.590
, Issue.5
, pp. 1059-1068
-
-
Jeppesen, J.1
Kiens, B.2
-
100
-
-
0036228690
-
Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes
-
[100] Stahl, A., et al. Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Dev. Cell 2:4 (2002), 477–488.
-
(2002)
Dev. Cell
, vol.2
, Issue.4
, pp. 477-488
-
-
Stahl, A.1
-
101
-
-
51649099019
-
Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts)
-
[101] Ehehalt, R., et al. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts). BMC Cell Biol., 9, 2008, 45.
-
(2008)
BMC Cell Biol.
, vol.9
, pp. 45
-
-
Ehehalt, R.1
-
102
-
-
77951976294
-
Fatty acid transport across the cell membrane: regulation by fatty acid transporters
-
[102] Schwenk, R.W., et al. Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot. Essent. Fat. Acids 82:4–6 (2010), 149–154.
-
(2010)
Prostaglandins Leukot. Essent. Fat. Acids
, vol.82
, Issue.4-6
, pp. 149-154
-
-
Schwenk, R.W.1
-
103
-
-
0037424401
-
Rapid flip-flop of oleic acid across the plasma membrane of adipocytes
-
[103] Kamp, F., et al. Rapid flip-flop of oleic acid across the plasma membrane of adipocytes. J. Biol. Chem. 278:10 (2003), 7988–7995.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.10
, pp. 7988-7995
-
-
Kamp, F.1
-
104
-
-
0037047316
-
Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells
-
[104] Huang, H., et al. Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells. J. Biol. Chem. 277:32 (2002), 29139–29151.
-
(2002)
J. Biol. Chem.
, vol.277
, Issue.32
, pp. 29139-29151
-
-
Huang, H.1
-
105
-
-
0034693232
-
Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice
-
[105] Coburn, C.T., et al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem. 275:42 (2000), 32523–32529.
-
(2000)
J. Biol. Chem.
, vol.275
, Issue.42
, pp. 32523-32529
-
-
Coburn, C.T.1
-
106
-
-
0031738276
-
Myocardial CD36 expression and fatty acid accumulation in patients with type I and II CD36 deficiency
-
[106] Watanabe, K., et al. Myocardial CD36 expression and fatty acid accumulation in patients with type I and II CD36 deficiency. Ann. Nucl. Med. 12:5 (1998), 261–266.
-
(1998)
Ann. Nucl. Med.
, vol.12
, Issue.5
, pp. 261-266
-
-
Watanabe, K.1
-
107
-
-
79954988524
-
Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells
-
[107] Mitchell, R.W., et al. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J. Neurochem. 117:4 (2011), 735–746.
-
(2011)
J. Neurochem.
, vol.117
, Issue.4
, pp. 735-746
-
-
Mitchell, R.W.1
-
108
-
-
0027280397
-
CD36 is a receptor for oxidized low density lipoprotein
-
[108] Endemann, G., et al. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 268:16 (1993), 11811–11816.
-
(1993)
J. Biol. Chem.
, vol.268
, Issue.16
, pp. 11811-11816
-
-
Endemann, G.1
-
109
-
-
69949101473
-
Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment
-
[109] Schafer, Z.T., et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461:7260 (2009), 109–113.
-
(2009)
Nature
, vol.461
, Issue.7260
, pp. 109-113
-
-
Schafer, Z.T.1
-
110
-
-
0035933369
-
Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells
-
[110] Dagher, Z., et al. Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. Circ. Res. 88:12 (2001), 1276–1282.
-
(2001)
Circ. Res.
, vol.88
, Issue.12
, pp. 1276-1282
-
-
Dagher, Z.1
-
111
-
-
0023910290
-
Aspects of fatty acid metabolism in vascular endothelial cells
-
[111] Hulsmann, W.C., Dubelaar, M.L., Aspects of fatty acid metabolism in vascular endothelial cells. Biochimie 70:5 (1988), 681–686.
-
(1988)
Biochimie
, vol.70
, Issue.5
, pp. 681-686
-
-
Hulsmann, W.C.1
Dubelaar, M.L.2
-
112
-
-
84922468705
-
Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport
-
[112] Yang, C., et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell. 56:3 (2012), 414–424.
-
(2012)
Mol Cell.
, vol.56
, Issue.3
, pp. 414-424
-
-
Yang, C.1
-
113
-
-
79957774646
-
Pyruvate carboxylase is required for glutamine-independent growth of tumor cells
-
[113] Cheng, T., et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc. Natl. Acad. Sci. U. S. A. 108:21 (2011), 8674–8679.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, Issue.21
, pp. 8674-8679
-
-
Cheng, T.1
-
114
-
-
79955601028
-
Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells
-
[114] Pike, L.S., et al. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim. Biophys. Acta 1807:6 (2011), 726–734.
-
(2011)
Biochim. Biophys. Acta
, vol.1807
, Issue.6
, pp. 726-734
-
-
Pike, L.S.1
-
115
-
-
84866976187
-
Inhibition of fatty acid metabolism reduces human myeloma cells proliferation
-
[115] Tirado-Velez, J.M., et al. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation. PLoS One, 7(9), 2012, e46484.
-
(2012)
PLoS One
, vol.7
, Issue.9
-
-
Tirado-Velez, J.M.1
-
116
-
-
84926618078
-
Lipid catabolism via CPT1 as a therapeutic target for prostate cancer
-
[116] Schlaepfer, I.R., et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther. 13:10 (2014), 2361–2371.
-
(2014)
Mol. Cancer Ther.
, vol.13
, Issue.10
, pp. 2361-2371
-
-
Schlaepfer, I.R.1
-
117
-
-
84924287407
-
Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability
-
[117] Patella, F., et al. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability. Mol. Cell. Proteomics 14:3 (2015), 621–634.
-
(2015)
Mol. Cell. Proteomics
, vol.14
, Issue.3
, pp. 621-634
-
-
Patella, F.1
-
118
-
-
85014805386
-
Compositions of UCP inhibitors, Fas antibody, a fatty acid metabolism inhibitor and/or a glucose metabolism inhibitor
-
[118] Newell, M.K., Newell, E., Villobos-Menvey, E., Compositions of UCP inhibitors, Fas antibody, a fatty acid metabolism inhibitor and/or a glucose metabolism inhibitor. Google Patents (Patent number: US7510710 B2), 2009.
-
(2009)
Google Patents (B2)
-
-
Newell, M.K.1
Newell, E.2
Villobos-Menvey, E.3
-
119
-
-
34547800233
-
A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study
-
[119] Holubarsch, C.J., et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin. Sci. (Lond.) 113:4 (2007), 205–212.
-
(2007)
Clin. Sci. (Lond.)
, vol.113
, Issue.4
, pp. 205-212
-
-
Holubarsch, C.J.1
-
120
-
-
84864480525
-
Effect of chronic CPT-1 inhibition on myocardial ischemia-reperfusion injury (I/R) in a model of diet-induced obesity
-
[120] Maarman, G., et al. Effect of chronic CPT-1 inhibition on myocardial ischemia-reperfusion injury (I/R) in a model of diet-induced obesity. Cardiovasc. Drugs Ther. 26:3 (2012), 205–216.
-
(2012)
Cardiovasc. Drugs Ther.
, vol.26
, Issue.3
, pp. 205-216
-
-
Maarman, G.1
-
121
-
-
0021141393
-
Changes in myocardial substrate utilisation and protection of ischemic stressed myocardium by oxfenicine [(S)-4-hydroxyphenylglycine]
-
[121] Korb, H., et al. Changes in myocardial substrate utilisation and protection of ischemic stressed myocardium by oxfenicine [(S)-4-hydroxyphenylglycine]. Naunyn Schmiedeberg's Arch. Pharmacol. 327:1 (1984), 70–74.
-
(1984)
Naunyn Schmiedeberg's Arch. Pharmacol.
, vol.327
, Issue.1
, pp. 70-74
-
-
Korb, H.1
-
122
-
-
0033653158
-
Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart
-
[122] Kennedy, J.A., et al. Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart. J. Cardiovasc. Pharmacol. 36:6 (2000), 794–801.
-
(2000)
J. Cardiovasc. Pharmacol.
, vol.36
, Issue.6
, pp. 794-801
-
-
Kennedy, J.A.1
-
123
-
-
0030602865
-
Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone
-
[123] Kennedy, J.A., Unger, S.A., Horowitz, J.D., Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem. Pharmacol. 52:2 (1996), 273–280.
-
(1996)
Biochem. Pharmacol.
, vol.52
, Issue.2
, pp. 273-280
-
-
Kennedy, J.A.1
Unger, S.A.2
Horowitz, J.D.3
-
124
-
-
0034927508
-
Inhibition of mitochondrial carnitine palmitoyltransferase-1 by a trimetazidine derivative, S-15176
-
[124] Hamdan, M., et al. Inhibition of mitochondrial carnitine palmitoyltransferase-1 by a trimetazidine derivative, S-15176. Pharmacol. Res. 44:2 (2001), 99–104.
-
(2001)
Pharmacol. Res.
, vol.44
, Issue.2
, pp. 99-104
-
-
Hamdan, M.1
-
125
-
-
84919819995
-
Randomized double-blind placebo-controlled trial of perhexiline in heart failure with preserved ejection fraction syndrome
-
[125] Singh, S., et al. Randomized double-blind placebo-controlled trial of perhexiline in heart failure with preserved ejection fraction syndrome. Futur. Cardiol. 10:6 (2014), 693–698.
-
(2014)
Futur. Cardiol.
, vol.10
, Issue.6
, pp. 693-698
-
-
Singh, S.1
-
126
-
-
84924984745
-
Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy
-
[126] Beadle, R.M., et al. Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy. JACC Heart Fail. 3:3 (2015), 202–211.
-
(2015)
JACC Heart Fail.
, vol.3
, Issue.3
, pp. 202-211
-
-
Beadle, R.M.1
-
127
-
-
32044448471
-
Effect of the anti-anginal agent, perhexiline, on neutrophil, valvular and vascular superoxide formation
-
[127] Kennedy, J.A., et al. Effect of the anti-anginal agent, perhexiline, on neutrophil, valvular and vascular superoxide formation. Eur. J. Pharmacol. 531:1–3 (2006), 13–19.
-
(2006)
Eur. J. Pharmacol.
, vol.531
, Issue.1-3
, pp. 13-19
-
-
Kennedy, J.A.1
-
128
-
-
84944351826
-
Comparative effectiveness of ranolazine versus traditional therapies in chronic stable angina pectoris and concomitant diabetes mellitus and impact on health care resource utilization and cardiac interventions
-
[128] Page, R.L. 2nd, et al. Comparative effectiveness of ranolazine versus traditional therapies in chronic stable angina pectoris and concomitant diabetes mellitus and impact on health care resource utilization and cardiac interventions. Am. J. Cardiol. 116:9 (2015), 1321–1328.
-
(2015)
Am. J. Cardiol.
, vol.116
, Issue.9
, pp. 1321-1328
-
-
Page, R.L.1
-
129
-
-
84930065939
-
Effects of ranolazine on left ventricular diastolic and systolic function in patients with chronic coronary disease and stable angina
-
[129] Babalis, D., et al. Effects of ranolazine on left ventricular diastolic and systolic function in patients with chronic coronary disease and stable angina. Hell. J. Cardiol. 56:3 (2015), 237–241.
-
(2015)
Hell. J. Cardiol.
, vol.56
, Issue.3
, pp. 237-241
-
-
Babalis, D.1
-
130
-
-
0019122736
-
Beneficial effect of enhanced myocardial carbohydrate utilisation after oxfenicine (L-hydroxyphenylglycine) in angina pectoris
-
[130] Bergman, G., et al. Beneficial effect of enhanced myocardial carbohydrate utilisation after oxfenicine (L-hydroxyphenylglycine) in angina pectoris. Eur. Heart J. 1:4 (1980), 247–253.
-
(1980)
Eur. Heart J.
, vol.1
, Issue.4
, pp. 247-253
-
-
Bergman, G.1
-
131
-
-
84929336905
-
Ranolazine for the treatment of atrial fibrillation
-
[131] Rosa, G.M., et al. Ranolazine for the treatment of atrial fibrillation. Expert Opin. Investig. Drugs 24:6 (2015), 825–836.
-
(2015)
Expert Opin. Investig. Drugs
, vol.24
, Issue.6
, pp. 825-836
-
-
Rosa, G.M.1
-
132
-
-
84928619211
-
Ranolazine in the treatment of atrial fibrillation: results of the dose-ranging RAFFAELLO (Ranolazine in Atrial Fibrillation Following An ELectricaL CardiOversion) study
-
[132] De Ferrari, G.M., et al. Ranolazine in the treatment of atrial fibrillation: results of the dose-ranging RAFFAELLO (Ranolazine in Atrial Fibrillation Following An ELectricaL CardiOversion) study. Heart Rhythm. 12:5 (2015), 872–878.
-
(2015)
Heart Rhythm.
, vol.12
, Issue.5
, pp. 872-878
-
-
De Ferrari, G.M.1
-
133
-
-
0028855519
-
Physiological and molecular mechanisms involved in nutritional regulation of fatty-acid synthesis
-
[133] Hillgartner, F., Salati, L.M., Goodridge, A.G., Physiological and molecular mechanisms involved in nutritional regulation of fatty-acid synthesis. Physiol. Rev. 75:1 (1995), 47–76.
-
(1995)
Physiol. Rev.
, vol.75
, Issue.1
, pp. 47-76
-
-
Hillgartner, F.1
Salati, L.M.2
Goodridge, A.G.3
-
134
-
-
77950605484
-
Fatty acid synthase as a potential therapeutic target in cancer
-
[134] Flavin, R., et al. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 6:4 (2010), 551–562.
-
(2010)
Future Oncol.
, vol.6
, Issue.4
, pp. 551-562
-
-
Flavin, R.1
-
135
-
-
84883706496
-
Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids
-
[135] Zaidi, N., et al. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 52:4 (2013), 585–589.
-
(2013)
Prog. Lipid Res.
, vol.52
, Issue.4
, pp. 585-589
-
-
Zaidi, N.1
-
136
-
-
84881372774
-
Cellular fatty acid metabolism and cancer
-
[136] Currie, E., et al. Cellular fatty acid metabolism and cancer. Cell Metab. 18:2 (2013), 153–161.
-
(2013)
Cell Metab.
, vol.18
, Issue.2
, pp. 153-161
-
-
Currie, E.1
-
137
-
-
57449112521
-
Cohort study of fatty acid synthase expression and patient survival in colon cancer
-
[137] Ogino, S., et al. Cohort study of fatty acid synthase expression and patient survival in colon cancer. J. Clin. Oncol. 26:35 (2008), 5713–5720.
-
(2008)
J. Clin. Oncol.
, vol.26
, Issue.35
, pp. 5713-5720
-
-
Ogino, S.1
-
138
-
-
0029829119
-
Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer
-
[138] Shurbaji, M.S., Kalbfleisch, J.H., Thurmond, T.S., Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Hum. Pathol. 27:9 (1996), 917–921.
-
(1996)
Hum. Pathol.
, vol.27
, Issue.9
, pp. 917-921
-
-
Shurbaji, M.S.1
Kalbfleisch, J.H.2
Thurmond, T.S.3
-
139
-
-
20144389083
-
Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma
-
[139] Visca, P., et al. Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticancer Res. 24:6 (2004), 4169–4173.
-
(2004)
Anticancer Res.
, vol.24
, Issue.6
, pp. 4169-4173
-
-
Visca, P.1
-
140
-
-
84934922887
-
Fatty acid synthase inhibition engages a novel caspase-2 regulatory mechanism to induce ovarian cancer cell death
-
[140] Yang, C.S., et al. Fatty acid synthase inhibition engages a novel caspase-2 regulatory mechanism to induce ovarian cancer cell death. Oncogene 34:25 (2015), 3264–3272.
-
(2015)
Oncogene
, vol.34
, Issue.25
, pp. 3264-3272
-
-
Yang, C.S.1
-
141
-
-
84982949213
-
Lipid desaturation - the next step in targeting lipogenesis in cancer?
-
[141] Peck, B., Schulze, A., Lipid desaturation - the next step in targeting lipogenesis in cancer?. FEBS J. 283:15 (2016), 2767–2778.
-
(2016)
FEBS J.
, vol.283
, Issue.15
, pp. 2767-2778
-
-
Peck, B.1
Schulze, A.2
-
142
-
-
78951483920
-
De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation
-
[142] Wei, X., et al. De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. J. Biol. Chem. 286:4 (2011), 2933–2945.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.4
, pp. 2933-2945
-
-
Wei, X.1
-
143
-
-
33750129055
-
Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor
-
[143] Browne, C.D., Hindmarsh, E.J., Smith, J.W., Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB J. 20:12 (2006), 2027–2035.
-
(2006)
FASEB J.
, vol.20
, Issue.12
, pp. 2027-2035
-
-
Browne, C.D.1
Hindmarsh, E.J.2
Smith, J.W.3
-
144
-
-
84865861802
-
The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas
-
[144] Seguin, F., et al. The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas. Br. J. Cancer 107:6 (2012), 977–987.
-
(2012)
Br. J. Cancer
, vol.107
, Issue.6
, pp. 977-987
-
-
Seguin, F.1
-
145
-
-
84905380433
-
Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer
-
[145] Zaytseva, Y.Y., et al. Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer. Carcinogenesis 35:6 (2014), 1341–1351.
-
(2014)
Carcinogenesis
, vol.35
, Issue.6
, pp. 1341-1351
-
-
Zaytseva, Y.Y.1
-
146
-
-
84948172078
-
Vascular nitric oxide: beyond eNOS
-
[146] Zhao, Y., Vanhoutte, P.M., Leung, S.W., Vascular nitric oxide: beyond eNOS. J. Pharmacol. Sci. 129:2 (2015), 83–94.
-
(2015)
J. Pharmacol. Sci.
, vol.129
, Issue.2
, pp. 83-94
-
-
Zhao, Y.1
Vanhoutte, P.M.2
Leung, S.W.3
-
147
-
-
12344308106
-
Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology
-
[147] Tuteja, N., et al. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J. Biomed. Biotechnol. 2004:4 (2004), 227–237.
-
(2004)
J. Biomed. Biotechnol.
, vol.2004
, Issue.4
, pp. 227-237
-
-
Tuteja, N.1
-
148
-
-
0029049330
-
Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury
-
[148] Guo, J.P., et al. Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury. Am. J. Phys. 269:3 Pt 2 (1995), H1122–H1131.
-
(1995)
Am. J. Phys.
, vol.269
, Issue.3
, pp. H1122-H1131
-
-
Guo, J.P.1
-
149
-
-
75149148563
-
Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer
-
[149] DeBerardinis, R.J., Cheng, T., Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:3 (2010), 313–324.
-
(2010)
Oncogene
, vol.29
, Issue.3
, pp. 313-324
-
-
DeBerardinis, R.J.1
Cheng, T.2
-
150
-
-
0032896832
-
Rat liver endothelial cell glutamine transporter and glutaminase expression contrast with parenchymal cells
-
[150] Lohmann, R., Souba, W.W., Bode, B.P., Rat liver endothelial cell glutamine transporter and glutaminase expression contrast with parenchymal cells. Am. J. Phys. 276:3 Pt 1 (1999), G743–G750.
-
(1999)
Am. J. Phys.
, vol.276
, Issue.3
, pp. G743-G750
-
-
Lohmann, R.1
Souba, W.W.2
Bode, B.P.3
-
151
-
-
46749104479
-
Premature senescence of human endothelial cells induced by inhibition of glutaminase
-
[151] Unterluggauer, H., et al. Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 9:4 (2008), 247–259.
-
(2008)
Biogerontology
, vol.9
, Issue.4
, pp. 247-259
-
-
Unterluggauer, H.1
-
152
-
-
0035131450
-
Presence of glutamine:fructose-6-phosphate amidotransferase for glucosamine-6-phosphate synthesis in endothelial cells: effects of hyperglycaemia and glutamine
-
[152] Wu, G., et al. Presence of glutamine:fructose-6-phosphate amidotransferase for glucosamine-6-phosphate synthesis in endothelial cells: effects of hyperglycaemia and glutamine. Diabetologia 44:2 (2001), 196–202.
-
(2001)
Diabetologia
, vol.44
, Issue.2
, pp. 196-202
-
-
Wu, G.1
-
153
-
-
64749116346
-
c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
[153] Gao, P., et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:7239 (2009), 762–765.
-
(2009)
Nature
, vol.458
, Issue.7239
, pp. 762-765
-
-
Gao, P.1
-
154
-
-
77952212178
-
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
-
[154] Hu, W., et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. U. S. A. 107:16 (2010), 7455–7460.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, Issue.16
, pp. 7455-7460
-
-
Hu, W.1
-
155
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
[155] Wise, D.R., et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. U. S. A. 105:48 (2008), 18782–18787.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, Issue.48
, pp. 18782-18787
-
-
Wise, D.R.1
-
156
-
-
64949158435
-
A novel glutaminase isoform in mammalian tissues
-
[156] de la Rosa, V., et al. A novel glutaminase isoform in mammalian tissues. Neurochem. Int. 55:1–3 (2009), 76–84.
-
(2009)
Neurochem. Int.
, vol.55
, Issue.1-3
, pp. 76-84
-
-
de la Rosa, V.1
-
157
-
-
0029113227
-
Interstitial fluid concentrations of glycerol, glucose, and amino acids in human quadricep muscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle
-
[157] Maggs, D.G., et al. Interstitial fluid concentrations of glycerol, glucose, and amino acids in human quadricep muscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle. J. Clin. Invest. 96:1 (1995), 370–377.
-
(1995)
J. Clin. Invest.
, vol.96
, Issue.1
, pp. 370-377
-
-
Maggs, D.G.1
-
158
-
-
0027145124
-
Glutamine and cancer
-
[158] Souba, W.W., Glutamine and cancer. Ann. Surg. 218:6 (1993), 715–728.
-
(1993)
Ann. Surg.
, vol.218
, Issue.6
, pp. 715-728
-
-
Souba, W.W.1
-
159
-
-
0029126636
-
Molecular regulation of lung endothelial glutamine synthetase expression
-
(discussion 335)
-
[159] Abcouwer, S.F., et al. Molecular regulation of lung endothelial glutamine synthetase expression. Surgery 118:2 (1995), 325–334 (discussion 335).
-
(1995)
Surgery
, vol.118
, Issue.2
, pp. 325-334
-
-
Abcouwer, S.F.1
-
160
-
-
30944464435
-
Changes in aortic endothelial gene expressions and relaxation responses following chronic short-term insulin treatment in diabetic rats
-
[160] Kobayashi, T., et al. Changes in aortic endothelial gene expressions and relaxation responses following chronic short-term insulin treatment in diabetic rats. Atherosclerosis 185:1 (2006), 47–57.
-
(2006)
Atherosclerosis
, vol.185
, Issue.1
, pp. 47-57
-
-
Kobayashi, T.1
-
161
-
-
84883117997
-
Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes
-
[161] Qi, L., et al. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA 310:8 (2013), 821–828.
-
(2013)
JAMA
, vol.310
, Issue.8
, pp. 821-828
-
-
Qi, L.1
-
162
-
-
0037372730
-
Glutamine and glutamate—their central role in cell metabolism and function
-
[162] Newsholme, P., et al. Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem. Funct. 21:1 (2003), 1–9.
-
(2003)
Cell Biochem. Funct.
, vol.21
, Issue.1
, pp. 1-9
-
-
Newsholme, P.1
-
163
-
-
84897392385
-
Serine and glycine metabolism in cancer
-
[163] Amelio, I., et al. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39:4 (2014), 191–198.
-
(2014)
Trends Biochem. Sci.
, vol.39
, Issue.4
, pp. 191-198
-
-
Amelio, I.1
-
164
-
-
84877593365
-
Genomic approach to identify factors that drive the formation of three-dimensional structures by EA.hy926 endothelial cells
-
[164] Ma, X., et al. Genomic approach to identify factors that drive the formation of three-dimensional structures by EA.hy926 endothelial cells. PLoS One, 8(5), 2013, e64402.
-
(2013)
PLoS One
, vol.8
, Issue.5
, pp. e64402
-
-
Ma, X.1
-
165
-
-
39749175013
-
Nitric oxide synthase inhibition promotes endothelium-dependent vasodilatation and the antihypertensive effect of L-serine
-
[165] Mishra, R.C., et al. Nitric oxide synthase inhibition promotes endothelium-dependent vasodilatation and the antihypertensive effect of L-serine. Hypertension 51:3 (2008), 791–796.
-
(2008)
Hypertension
, vol.51
, Issue.3
, pp. 791-796
-
-
Mishra, R.C.1
-
166
-
-
59849123922
-
L-Serine lowers while glycine increases blood pressure in chronic L-NAME-treated and spontaneously hypertensive rats
-
[166] Mishra, R.C., et al. L-Serine lowers while glycine increases blood pressure in chronic L-NAME-treated and spontaneously hypertensive rats. J. Hypertens. 26:12 (2008), 2339–2348.
-
(2008)
J. Hypertens.
, vol.26
, Issue.12
, pp. 2339-2348
-
-
Mishra, R.C.1
-
167
-
-
84960172990
-
A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance
-
[167] Jang, C., et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22:4 (2016), 421–426.
-
(2016)
Nat. Med.
, vol.22
, Issue.4
, pp. 421-426
-
-
Jang, C.1
-
168
-
-
84925491295
-
L-Leucine and NO-mediated cardiovascular function
-
[168] Yang, Y., et al. L-Leucine and NO-mediated cardiovascular function. Amino Acids 47:3 (2015), 435–447.
-
(2015)
Amino Acids
, vol.47
, Issue.3
, pp. 435-447
-
-
Yang, Y.1
-
169
-
-
0035863102
-
Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis
-
[169] Wu, G., et al. Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem. J. 353:Pt 2 (2001), 245–252.
-
(2001)
Biochem. J.
, vol.353
, pp. 245-252
-
-
Wu, G.1
-
170
-
-
85014847653
-
Glutaminase stimulates the proliferation of human endothelial cells
-
(no. 1 Supplement 957.3)
-
[170] Durante, W., et al. Glutaminase stimulates the proliferation of human endothelial cells. FASEB J., 30, 2016 (no. 1 Supplement 957.3).
-
(2016)
FASEB J.
, vol.30
-
-
Durante, W.1
-
171
-
-
84857116578
-
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
-
[171] Ray, P.D., Huang, B.W., Tsuji, Y., Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24:5 (2012), 981–990.
-
(2012)
Cell. Signal.
, vol.24
, Issue.5
, pp. 981-990
-
-
Ray, P.D.1
Huang, B.W.2
Tsuji, Y.3
-
172
-
-
0016681098
-
Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration
-
[172] Boveris, A., Cadenas, E., Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 54:3 (1975), 311–314.
-
(1975)
FEBS Lett.
, vol.54
, Issue.3
, pp. 311-314
-
-
Boveris, A.1
Cadenas, E.2
-
173
-
-
0036319021
-
Generation of reactive oxygen species by the mitochondrial electron transport chain
-
[173] Liu, Y., Fiskum, G., Schubert, D., Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80:5 (2002), 780–787.
-
(2002)
J. Neurochem.
, vol.80
, Issue.5
, pp. 780-787
-
-
Liu, Y.1
Fiskum, G.2
Schubert, D.3
-
174
-
-
34250825264
-
Mitochondrial reactive oxygen species-mediated signaling in endothelial cells
-
[174] Zhang, D.X., Gutterman, D.D., Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 292:5 (2007), H2023–H2031.
-
(2007)
Am. J. Physiol. Heart Circ. Physiol.
, vol.292
, Issue.5
, pp. H2023-H2031
-
-
Zhang, D.X.1
Gutterman, D.D.2
-
175
-
-
77952480033
-
Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis
-
[175] Kaneto, H., et al. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat. Inflamm., 2010, 2010, 453892.
-
(2010)
Mediat. Inflamm.
, vol.2010
, pp. 453892
-
-
Kaneto, H.1
-
176
-
-
33748310586
-
Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway
-
[176] Ouedraogo, R., et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes 55:6 (2006), 1840–1846.
-
(2006)
Diabetes
, vol.55
, Issue.6
, pp. 1840-1846
-
-
Ouedraogo, R.1
-
177
-
-
77955509429
-
Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes
-
[177] Makino, A., Scott, B.T., Dillmann, W.H., Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia 53:8 (2010), 1783–1794.
-
(2010)
Diabetologia
, vol.53
, Issue.8
, pp. 1783-1794
-
-
Makino, A.1
Scott, B.T.2
Dillmann, W.H.3
-
178
-
-
77249126523
-
Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species
-
[178] Dranka, B.P., Hill, B.G., Darley-Usmar, V.M., Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. Free Radic. Biol. Med. 48:7 (2010), 905–914.
-
(2010)
Free Radic. Biol. Med.
, vol.48
, Issue.7
, pp. 905-914
-
-
Dranka, B.P.1
Hill, B.G.2
Darley-Usmar, V.M.3
|