메뉴 건너뛰기




Volumn 90, Issue , 2017, Pages 8-18

Targeting endothelial metabolism for anti-angiogenesis therapy: A pharmacological perspective

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; CARNITINE PALMITOYLTRANSFERASE INHIBITOR; FATTY ACID; FATTY ACID BETA; HEXOSAMINE; OXFENICINE; PENTOSE PHOSPHATE; PERHEXILINE; RANOLAZINE; TETRAHYDROLIPSTATIN; UNCLASSIFIED DRUG; VASCULOTROPIN INHIBITOR; ANGIOGENESIS INHIBITOR; SIGNAL PEPTIDE;

EID: 85010190253     PISSN: 15371891     EISSN: 18793649     Source Type: Journal    
DOI: 10.1016/j.vph.2017.01.001     Document Type: Review
Times cited : (39)

References (178)
  • 1
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • [1] Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation. Cell 144:5 (2011), 646–674.
    • (2011) Cell , vol.144 , Issue.5 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 2
    • 80054012347 scopus 로고    scopus 로고
    • Developmental and pathological angiogenesis
    • [2] Chung, A.S., Ferrara, N., Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 27 (2011), 563–584.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 563-584
    • Chung, A.S.1    Ferrara, N.2
  • 3
    • 84881232071 scopus 로고    scopus 로고
    • Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer
    • [3] Welti, J., et al. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Invest. 123:8 (2013), 3190–3200.
    • (2013) J. Clin. Invest. , vol.123 , Issue.8 , pp. 3190-3200
    • Welti, J.1
  • 4
    • 79953244361 scopus 로고    scopus 로고
    • Antiangiogenic therapy: impact on invasion, disease progression, and metastasis
    • [4] Ebos, J.M., Kerbel, R.S., Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8:4 (2011), 210–221.
    • (2011) Nat. Rev. Clin. Oncol. , vol.8 , Issue.4 , pp. 210-221
    • Ebos, J.M.1    Kerbel, R.S.2
  • 5
    • 85069238583 scopus 로고    scopus 로고
    • Endothelial cell metabolism: parallels and divergences with cancer cell metabolism
    • [5] Verdegem, D., et al. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab., 2, 2014, 19.
    • (2014) Cancer Metab. , vol.2 , pp. 19
    • Verdegem, D.1
  • 6
    • 47949089077 scopus 로고    scopus 로고
    • VEGF-targeted therapy: mechanisms of anti-tumour activity
    • [6] Ellis, L.M., Hicklin, D.J., VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8:8 (2008), 579–591.
    • (2008) Nat. Rev. Cancer , vol.8 , Issue.8 , pp. 579-591
    • Ellis, L.M.1    Hicklin, D.J.2
  • 7
    • 47949099628 scopus 로고    scopus 로고
    • Modes of resistance to anti-angiogenic therapy
    • [7] Bergers, G., Hanahan, D., Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8:8 (2008), 592–603.
    • (2008) Nat. Rev. Cancer , vol.8 , Issue.8 , pp. 592-603
    • Bergers, G.1    Hanahan, D.2
  • 8
    • 84881119066 scopus 로고    scopus 로고
    • Role of PFKFB3-driven glycolysis in vessel sprouting
    • [8] De Bock, K., et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:3 (2013), 651–663.
    • (2013) Cell , vol.154 , Issue.3 , pp. 651-663
    • De Bock, K.1
  • 9
    • 84927563455 scopus 로고    scopus 로고
    • Fatty acid carbon is essential for dNTP synthesis in endothelial cells
    • [9] Schoors, S., et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520:7546 (2015), 192–197.
    • (2015) Nature , vol.520 , Issue.7546 , pp. 192-197
    • Schoors, S.1
  • 10
    • 84887456534 scopus 로고    scopus 로고
    • Role of endothelial cell metabolism in vessel sprouting
    • [10] De Bock, K., Georgiadou, M., Carmeliet, P., Role of endothelial cell metabolism in vessel sprouting. Cell Metab. 18:5 (2013), 634–647.
    • (2013) Cell Metab. , vol.18 , Issue.5 , pp. 634-647
    • De Bock, K.1    Georgiadou, M.2    Carmeliet, P.3
  • 11
    • 59649117924 scopus 로고    scopus 로고
    • Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization
    • [11] Mazzone, M., et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136:5 (2009), 839–851.
    • (2009) Cell , vol.136 , Issue.5 , pp. 839-851
    • Mazzone, M.1
  • 12
    • 84875729120 scopus 로고    scopus 로고
    • Inflammation and oxidative stress in angiogenesis and vascular disease
    • [12] Kim, Y.W., West, X.Z., Byzova, T.V., Inflammation and oxidative stress in angiogenesis and vascular disease. J. Mol. Med. (Berl.) 91:3 (2013), 323–328.
    • (2013) J. Mol. Med. (Berl.) , vol.91 , Issue.3 , pp. 323-328
    • Kim, Y.W.1    West, X.Z.2    Byzova, T.V.3
  • 13
    • 77951686244 scopus 로고    scopus 로고
    • Extracellular matrix, inflammation, and the angiogenic response
    • [13] Arroyo, A.G., Iruela-Arispe, M.L., Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc. Res. 86:2 (2010), 226–235.
    • (2010) Cardiovasc. Res. , vol.86 , Issue.2 , pp. 226-235
    • Arroyo, A.G.1    Iruela-Arispe, M.L.2
  • 14
    • 84990925109 scopus 로고    scopus 로고
    • Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia
    • [14] Weishaupt, J.H., Hyman, T., Dikic, I., Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol. Med. 22:9 (2016), 769–783.
    • (2016) Trends Mol. Med. , vol.22 , Issue.9 , pp. 769-783
    • Weishaupt, J.H.1    Hyman, T.2    Dikic, I.3
  • 15
    • 0037967272 scopus 로고    scopus 로고
    • Tumorigenesis and the angiogenic switch
    • [15] Bergers, G., Benjamin, L.E., Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3:6 (2003), 401–410.
    • (2003) Nat. Rev. Cancer , vol.3 , Issue.6 , pp. 401-410
    • Bergers, G.1    Benjamin, L.E.2
  • 16
    • 28744456297 scopus 로고    scopus 로고
    • Angiogenesis during exercise and training
    • [16] Bloor, C.M., Angiogenesis during exercise and training. Angiogenesis 8:3 (2005), 263–271.
    • (2005) Angiogenesis , vol.8 , Issue.3 , pp. 263-271
    • Bloor, C.M.1
  • 17
    • 59649112848 scopus 로고    scopus 로고
    • Regulation of angiogenesis by oxygen and metabolism
    • [17] Fraisl, P., et al. Regulation of angiogenesis by oxygen and metabolism. Dev. Cell 16:2 (2009), 167–179.
    • (2009) Dev. Cell , vol.16 , Issue.2 , pp. 167-179
    • Fraisl, P.1
  • 18
    • 0032100732 scopus 로고    scopus 로고
    • HIF-1 alpha is required for solid tumor formation and embryonic vascularization
    • [18] Ryan, H.E., Lo, J., Johnson, R.S., HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 17:11 (1998), 3005–3015.
    • (1998) EMBO J. , vol.17 , Issue.11 , pp. 3005-3015
    • Ryan, H.E.1    Lo, J.2    Johnson, R.S.3
  • 19
    • 0029761644 scopus 로고    scopus 로고
    • Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1
    • [19] Forsythe, J.A., et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16:9 (1996), 4604–4613.
    • (1996) Mol. Cell. Biol. , vol.16 , Issue.9 , pp. 4604-4613
    • Forsythe, J.A.1
  • 20
    • 0343920277 scopus 로고    scopus 로고
    • Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele
    • [20] Carmeliet, P., et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:6573 (1996), 435–439.
    • (1996) Nature , vol.380 , Issue.6573 , pp. 435-439
    • Carmeliet, P.1
  • 21
    • 79956328903 scopus 로고    scopus 로고
    • Molecular mechanisms and clinical applications of angiogenesis
    • [21] Carmeliet, P., Jain, R.K., Molecular mechanisms and clinical applications of angiogenesis. Nature 473:7347 (2011), 298–307.
    • (2011) Nature , vol.473 , Issue.7347 , pp. 298-307
    • Carmeliet, P.1    Jain, R.K.2
  • 22
    • 84897536435 scopus 로고    scopus 로고
    • The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis
    • [22] Bentley, K., et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat. Cell Biol. 16:4 (2014), 309–321.
    • (2014) Nat. Cell Biol. , vol.16 , Issue.4 , pp. 309-321
    • Bentley, K.1
  • 23
    • 59649085554 scopus 로고    scopus 로고
    • Angiogenesis: a team effort coordinated by notch
    • [23] Phng, L.K., Gerhardt, H., Angiogenesis: a team effort coordinated by notch. Dev. Cell 16:2 (2009), 196–208.
    • (2009) Dev. Cell , vol.16 , Issue.2 , pp. 196-208
    • Phng, L.K.1    Gerhardt, H.2
  • 24
    • 84874491536 scopus 로고    scopus 로고
    • VEGF and Notch in tip and stalk cell selection
    • [24] Blanco, R., Gerhardt, H., VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med., 3(1), 2013, a006569.
    • (2013) Cold Spring Harb. Perspect. Med. , vol.3 , Issue.1 , pp. a006569
    • Blanco, R.1    Gerhardt, H.2
  • 25
    • 78049252302 scopus 로고    scopus 로고
    • Pericytes: blood-brain barrier safeguards against neurodegeneration?
    • [25] Quaegebeur, A., Segura, I., Carmeliet, P., Pericytes: blood-brain barrier safeguards against neurodegeneration?. Neuron 68:3 (2010), 321–323.
    • (2010) Neuron , vol.68 , Issue.3 , pp. 321-323
    • Quaegebeur, A.1    Segura, I.2    Carmeliet, P.3
  • 26
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • [26] Vander Heiden, M.G., Cantley, L.C., Thompson, C.B., Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:5930 (2009), 1029–1033.
    • (2009) Science , vol.324 , Issue.5930 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 27
    • 0030873452 scopus 로고    scopus 로고
    • Energy turnover of vascular endothelial cells
    • [27] Culic, O., Gruwel, M.L., Schrader, J., Energy turnover of vascular endothelial cells. Am. J. Phys. 273:1 Pt 1 (1997), C205–C213.
    • (1997) Am. J. Phys. , vol.273 , Issue.1 , pp. C205-C213
    • Culic, O.1    Gruwel, M.L.2    Schrader, J.3
  • 28
    • 84992445091 scopus 로고    scopus 로고
    • Carbon monoxide shifts energetic metabolism from glycolysis to oxidative phosphorylation in endothelial cells
    • [28] Kaczara, P., et al. Carbon monoxide shifts energetic metabolism from glycolysis to oxidative phosphorylation in endothelial cells. FEBS Lett. 590:20 (2016), 3469–3480.
    • (2016) FEBS Lett. , vol.590 , Issue.20 , pp. 3469-3480
    • Kaczara, P.1
  • 29
    • 79952227187 scopus 로고    scopus 로고
    • 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase
    • [29] Wang, Q., et al. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS One, 6(2), 2011, e17234.
    • (2011) PLoS One , vol.6 , Issue.2
    • Wang, Q.1
  • 30
    • 84920388795 scopus 로고    scopus 로고
    • Review of aerobic glycolysis and its key enzymes - new targets for lung cancer therapy
    • [30] Li, X.B., Gu, J.D., Zhou, Q.H., Review of aerobic glycolysis and its key enzymes - new targets for lung cancer therapy. Thorac. Cancer 6:1 (2015), 17–24.
    • (2015) Thorac. Cancer , vol.6 , Issue.1 , pp. 17-24
    • Li, X.B.1    Gu, J.D.2    Zhou, Q.H.3
  • 31
    • 0025634463 scopus 로고
    • Metabolism of exogenous substrates by coronary endothelial cells in culture
    • [31] Krutzfeldt, A., et al. Metabolism of exogenous substrates by coronary endothelial cells in culture. J. Mol. Cell. Cardiol. 22:12 (1990), 1393–1404.
    • (1990) J. Mol. Cell. Cardiol. , vol.22 , Issue.12 , pp. 1393-1404
    • Krutzfeldt, A.1
  • 32
    • 80053922625 scopus 로고    scopus 로고
    • Metabolic flux and the regulation of mammalian cell growth
    • [32] Locasale, J.W., Cantley, L.C., Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 14:4 (2011), 443–451.
    • (2011) Cell Metab. , vol.14 , Issue.4 , pp. 443-451
    • Locasale, J.W.1    Cantley, L.C.2
  • 33
    • 0025320928 scopus 로고
    • Energetic response of coronary endothelial cells to hypoxia
    • [33] Mertens, S., et al. Energetic response of coronary endothelial cells to hypoxia. Am. J. Phys. 258:3 Pt 2 (1990), H689–H694.
    • (1990) Am. J. Phys. , vol.258 , Issue.3 , pp. H689-H694
    • Mertens, S.1
  • 34
    • 8144228566 scopus 로고    scopus 로고
    • Why do cancers have high aerobic glycolysis?
    • [34] Gatenby, R.A., Gillies, R.J., Why do cancers have high aerobic glycolysis?. Nat. Rev. Cancer 4:11 (2004), 891–899.
    • (2004) Nat. Rev. Cancer , vol.4 , Issue.11 , pp. 891-899
    • Gatenby, R.A.1    Gillies, R.J.2
  • 35
    • 79959281722 scopus 로고    scopus 로고
    • A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets
    • [35] Buchwald, P., A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets. Theor. Biol. Med. Model., 8, 2011, 20.
    • (2011) Theor. Biol. Med. Model. , vol.8 , pp. 20
    • Buchwald, P.1
  • 36
    • 84922060844 scopus 로고    scopus 로고
    • Mechanisms of endothelial cell migration
    • [36] Michaelis, U.R., Mechanisms of endothelial cell migration. Cell. Mol. Life Sci. 71:21 (2014), 4131–4148.
    • (2014) Cell. Mol. Life Sci. , vol.71 , Issue.21 , pp. 4131-4148
    • Michaelis, U.R.1
  • 37
    • 0036498546 scopus 로고    scopus 로고
    • The lamellipodium: where motility begins
    • [37] Small, J.V., et al. The lamellipodium: where motility begins. Trends Cell Biol. 12:3 (2002), 112–120.
    • (2002) Trends Cell Biol. , vol.12 , Issue.3 , pp. 112-120
    • Small, J.V.1
  • 38
    • 84872534173 scopus 로고    scopus 로고
    • Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force
    • [38] Polet, F., Feron, O., Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J. Intern. Med. 273:2 (2013), 156–165.
    • (2013) J. Intern. Med. , vol.273 , Issue.2 , pp. 156-165
    • Polet, F.1    Feron, O.2
  • 39
    • 0037163688 scopus 로고    scopus 로고
    • Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death
    • [39] Aft, R.L., Zhang, F.W., Gius, D., Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br. J. Cancer 87:7 (2002), 805–812.
    • (2002) Br. J. Cancer , vol.87 , Issue.7 , pp. 805-812
    • Aft, R.L.1    Zhang, F.W.2    Gius, D.3
  • 40
    • 84943391325 scopus 로고    scopus 로고
    • Glycolytic inhibitor 2-deoxyglucose simultaneously targets cancer and endothelial cells to suppress neuroblastoma growth in mice
    • [40] Huang, C.C., et al. Glycolytic inhibitor 2-deoxyglucose simultaneously targets cancer and endothelial cells to suppress neuroblastoma growth in mice. Dis. Model. Mech. 8:10 (2015), 1247–1254.
    • (2015) Dis. Model. Mech. , vol.8 , Issue.10 , pp. 1247-1254
    • Huang, C.C.1
  • 41
    • 78149450359 scopus 로고    scopus 로고
    • Antiangiogenic activity of 2-deoxy-D-glucose
    • [41] Merchan, J.R., et al. Antiangiogenic activity of 2-deoxy-D-glucose. PLoS One, 5(10), 2010, e13699.
    • (2010) PLoS One , vol.5 , Issue.10
    • Merchan, J.R.1
  • 42
    • 84891841003 scopus 로고    scopus 로고
    • Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis
    • [42] Schoors, S., et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 19:1 (2014), 37–48.
    • (2014) Cell Metab. , vol.19 , Issue.1 , pp. 37-48
    • Schoors, S.1
  • 43
    • 84892599925 scopus 로고    scopus 로고
    • Incomplete and transitory decrease of glycolysis: a new paradigm for anti-angiogenic therapy?
    • [43] Schoors, S., et al. Incomplete and transitory decrease of glycolysis: a new paradigm for anti-angiogenic therapy?. Cell Cycle 13:1 (2014), 16–22.
    • (2014) Cell Cycle , vol.13 , Issue.1 , pp. 16-22
    • Schoors, S.1
  • 44
    • 34547902505 scopus 로고    scopus 로고
    • Differential toxic mechanisms of 2-deoxy-D-glucose versus 2-fluorodeoxy-D-glucose in hypoxic and normoxic tumor cells
    • [44] Kurtoglu, M., Maher, J.C., Lampidis, T.J., Differential toxic mechanisms of 2-deoxy-D-glucose versus 2-fluorodeoxy-D-glucose in hypoxic and normoxic tumor cells. Antioxid. Redox Signal. 9:9 (2007), 1383–1390.
    • (2007) Antioxid. Redox Signal. , vol.9 , Issue.9 , pp. 1383-1390
    • Kurtoglu, M.1    Maher, J.C.2    Lampidis, T.J.3
  • 45
    • 84864402951 scopus 로고    scopus 로고
    • Anticancer agents that counteract tumor glycolysis
    • [45] Granchi, C., Minutolo, F., Anticancer agents that counteract tumor glycolysis. ChemMedChem 7:8 (2012), 1318–1350.
    • (2012) ChemMedChem , vol.7 , Issue.8 , pp. 1318-1350
    • Granchi, C.1    Minutolo, F.2
  • 46
    • 84888798201 scopus 로고    scopus 로고
    • Tumor glycolysis as a target for cancer therapy: progress and prospects
    • [46] Ganapathy-Kanniappan, S., Geschwind, J.F., Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol. Cancer, 12, 2013, 152.
    • (2013) Mol. Cancer , vol.12 , pp. 152
    • Ganapathy-Kanniappan, S.1    Geschwind, J.F.2
  • 47
    • 77949967131 scopus 로고    scopus 로고
    • Targeting metabolic transformation for cancer therapy
    • [47] Tennant, D.A., Duran, R.V., Gottlieb, E., Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10:4 (2010), 267–277.
    • (2010) Nat. Rev. Cancer , vol.10 , Issue.4 , pp. 267-277
    • Tennant, D.A.1    Duran, R.V.2    Gottlieb, E.3
  • 48
    • 0023655408 scopus 로고
    • Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues
    • [48] Hue, L., Rider, M.H., Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem. J. 245:2 (1987), 313–324.
    • (1987) Biochem. J. , vol.245 , Issue.2 , pp. 313-324
    • Hue, L.1    Rider, M.H.2
  • 49
    • 67349131613 scopus 로고    scopus 로고
    • Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer
    • [49] Yalcin, A., et al. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp. Mol. Pathol. 86:3 (2009), 174–179.
    • (2009) Exp. Mol. Pathol. , vol.86 , Issue.3 , pp. 174-179
    • Yalcin, A.1
  • 50
    • 84878408912 scopus 로고    scopus 로고
    • Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3
    • [50] Bolanos, J.P., Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3. Biochem. J. 452:3 (2013), e7–e9.
    • (2013) Biochem. J. , vol.452 , Issue.3 , pp. e7-e9
    • Bolanos, J.P.1
  • 51
    • 23844517036 scopus 로고    scopus 로고
    • Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer
    • [51] Bando, H., et al. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin. Cancer Res. 11:16 (2005), 5784–5792.
    • (2005) Clin. Cancer Res. , vol.11 , Issue.16 , pp. 5784-5792
    • Bando, H.1
  • 52
    • 84937200012 scopus 로고    scopus 로고
    • Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease
    • [52] Smith, G.A., et al. Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease. J. Inherit. Metab. Dis. 38:4 (2015), 753–763.
    • (2015) J. Inherit. Metab. Dis. , vol.38 , Issue.4 , pp. 753-763
    • Smith, G.A.1
  • 53
    • 37349023393 scopus 로고    scopus 로고
    • Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia
    • [53] Yeh, W.L., Lin, C.J., Fu, W.M., Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol. Pharmacol. 73:1 (2008), 170–177.
    • (2008) Mol. Pharmacol. , vol.73 , Issue.1 , pp. 170-177
    • Yeh, W.L.1    Lin, C.J.2    Fu, W.M.3
  • 54
    • 84878404837 scopus 로고    scopus 로고
    • PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli
    • [54] Novellasdemunt, L., et al. PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochem. J. 452:3 (2013), 531–543.
    • (2013) Biochem. J. , vol.452 , Issue.3 , pp. 531-543
    • Novellasdemunt, L.1
  • 55
    • 84901482495 scopus 로고    scopus 로고
    • Endothelial PFKFB3 plays a critical role in angiogenesis
    • [55] Xu, Y., et al. Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 34:6 (2014), 1231–1239.
    • (2014) Arterioscler. Thromb. Vasc. Biol. , vol.34 , Issue.6 , pp. 1231-1239
    • Xu, Y.1
  • 56
    • 85004144063 scopus 로고    scopus 로고
    • Inhibition of the glycolytic activator PFKFB3 in endothelial cells induces tumor vessel normalization, impairs metastasis and improves chemotherapy
    • [56] Cantelmo, A.R., et al. Inhibition of the glycolytic activator PFKFB3 in endothelial cells induces tumor vessel normalization, impairs metastasis and improves chemotherapy. Cancer Cell 30:6 (2016), 968–985.
    • (2016) Cancer Cell , vol.30 , Issue.6 , pp. 968-985
    • Cantelmo, A.R.1
  • 57
    • 80052988662 scopus 로고    scopus 로고
    • Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect
    • [57] Seo, M., et al. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. PLoS One, 6(9), 2011, e24179.
    • (2011) PLoS One , vol.6 , Issue.9
    • Seo, M.1
  • 58
    • 38349183620 scopus 로고    scopus 로고
    • Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth
    • [58] Clem, B., et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol. Cancer Ther. 7:1 (2008), 110–120.
    • (2008) Mol. Cancer Ther. , vol.7 , Issue.1 , pp. 110-120
    • Clem, B.1
  • 59
    • 84882239565 scopus 로고    scopus 로고
    • Targeting 6-phosphofructo-2-kinase ( PFKFB3) as a therapeutic strategy against cancer
    • [59] Clem, B.F., et al. Targeting 6-phosphofructo-2-kinase ( PFKFB3) as a therapeutic strategy against cancer. Mol. Cancer Ther. 12:8 (2013), 1461–1470.
    • (2013) Mol. Cancer Ther. , vol.12 , Issue.8 , pp. 1461-1470
    • Clem, B.F.1
  • 60
    • 84961660263 scopus 로고    scopus 로고
    • Discovery of a PFKFB3 inhibitor for phase I trial testing that synergizes with the B-Raf inhibitor vemurafenib
    • [60] Telang, Sucheta, O'Neal, Julie, Tapolsky, Gilles, Clem, Brian, Kerr, Alan, Imbert-Ferndandez, Yoannis, Chesney, Jason, Discovery of a PFKFB3 inhibitor for phase I trial testing that synergizes with the B-Raf inhibitor vemurafenib. Cancer Metab., 2(Suppl. 1), 2014, 14.
    • (2014) Cancer Metab. , vol.2 , pp. 14
    • Telang, S.1    O'Neal, J.2    Tapolsky, G.3    Clem, B.4    Kerr, A.5    Imbert-Ferndandez, Y.6    Chesney, J.7
  • 61
    • 84916900281 scopus 로고    scopus 로고
    • Regulation of NADPH-dependent Nitric Oxide and reactive oxygen species signalling in endothelial and melanoma cells by a photoactive NADPH analogue
    • [61] Rouaud, F., et al. Regulation of NADPH-dependent Nitric Oxide and reactive oxygen species signalling in endothelial and melanoma cells by a photoactive NADPH analogue. Oncotarget 5:21 (2014), 10650–10664.
    • (2014) Oncotarget , vol.5 , Issue.21 , pp. 10650-10664
    • Rouaud, F.1
  • 62
    • 84902332213 scopus 로고    scopus 로고
    • Quantitative flux analysis reveals folate-dependent NADPH production
    • [62] Fan, J., et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:7504 (2014), 298–302.
    • (2014) Nature , vol.510 , Issue.7504 , pp. 298-302
    • Fan, J.1
  • 63
    • 0037342685 scopus 로고    scopus 로고
    • Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide
    • [63] Leopold, J.A., et al. Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide. Arterioscler. Thromb. Vasc. Biol. 23:3 (2003), 411–417.
    • (2003) Arterioscler. Thromb. Vasc. Biol. , vol.23 , Issue.3 , pp. 411-417
    • Leopold, J.A.1
  • 64
    • 82755166890 scopus 로고    scopus 로고
    • Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
    • [64] Anastasiou, D., et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:6060 (2011), 1278–1283.
    • (2011) Science , vol.334 , Issue.6060 , pp. 1278-1283
    • Anastasiou, D.1
  • 65
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • [65] Lunt, S.Y., Vander Heiden, M.G., Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27 (2011), 441–464.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 66
    • 0020563692 scopus 로고
    • Metabolic properties of freshly isolated bovine endothelial cells
    • [66] Dobrina, A., Rossi, F., Metabolic properties of freshly isolated bovine endothelial cells. Biochim. Biophys. Acta 762:2 (1983), 295–301.
    • (1983) Biochim. Biophys. Acta , vol.762 , Issue.2 , pp. 295-301
    • Dobrina, A.1    Rossi, F.2
  • 67
    • 84918493695 scopus 로고    scopus 로고
    • Angiogenesis revisited - role and therapeutic potential of targeting endothelial metabolism
    • [67] Stapor, P., et al. Angiogenesis revisited - role and therapeutic potential of targeting endothelial metabolism. J. Cell Sci. 127:Pt 20 (2014), 4331–4341.
    • (2014) J. Cell Sci. , vol.127 , pp. 4331-4341
    • Stapor, P.1
  • 68
    • 84938740158 scopus 로고    scopus 로고
    • Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells
    • [68] Kuehne, A., et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol. Cell 59:3 (2015), 359–371.
    • (2015) Mol. Cell , vol.59 , Issue.3 , pp. 359-371
    • Kuehne, A.1
  • 69
    • 0034717751 scopus 로고    scopus 로고
    • 6-Aminonicotinamide inhibition of the pentose phosphate pathway in rat neocortex
    • [69] Tyson, R.L., Perron, J., Sutherland, G.R., 6-Aminonicotinamide inhibition of the pentose phosphate pathway in rat neocortex. Neuroreport 11:9 (2000), 1845–1848.
    • (2000) Neuroreport , vol.11 , Issue.9 , pp. 1845-1848
    • Tyson, R.L.1    Perron, J.2    Sutherland, G.R.3
  • 70
    • 0031668777 scopus 로고    scopus 로고
    • Inhibition of NADPH supply by 6-aminonicotinamide: effect on glutathione, nitric oxide and superoxide in J774 cells
    • [70] Hothersall, J.S., Gordge, M., Noronha-Dutra, A.A., Inhibition of NADPH supply by 6-aminonicotinamide: effect on glutathione, nitric oxide and superoxide in J774 cells. FEBS Lett. 434:1–2 (1998), 97–100.
    • (1998) FEBS Lett. , vol.434 , Issue.1-2 , pp. 97-100
    • Hothersall, J.S.1    Gordge, M.2    Noronha-Dutra, A.A.3
  • 71
    • 0006678737 scopus 로고
    • Clinical use of 6-aminonicotinamide in patients with disseminated neoplastic disease
    • [71] Perlia, C.P., et al. Clinical use of 6-aminonicotinamide in patients with disseminated neoplastic disease. Cancer 14 (1961), 644–648.
    • (1961) Cancer , vol.14 , pp. 644-648
    • Perlia, C.P.1
  • 72
    • 66749132763 scopus 로고    scopus 로고
    • Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets
    • [72] Vizan, P., et al. Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets. Carcinogenesis 30:6 (2009), 946–952.
    • (2009) Carcinogenesis , vol.30 , Issue.6 , pp. 946-952
    • Vizan, P.1
  • 73
    • 84973573467 scopus 로고    scopus 로고
    • Hijacking the hexosamine biosynthetic pathway to promote EMT-mediated neoplastic phenotypes
    • [73] Taparra, K., Tran, P.T., Zachara, N.E., Hijacking the hexosamine biosynthetic pathway to promote EMT-mediated neoplastic phenotypes. Front. Oncol., 6, 2016, 85.
    • (2016) Front. Oncol. , vol.6 , pp. 85
    • Taparra, K.1    Tran, P.T.2    Zachara, N.E.3
  • 74
    • 0025855139 scopus 로고
    • Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance
    • [74] Marshall, S., Bacote, V., Traxinger, R.R., Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266:8 (1991), 4706–4712.
    • (1991) J. Biol. Chem. , vol.266 , Issue.8 , pp. 4706-4712
    • Marshall, S.1    Bacote, V.2    Traxinger, R.R.3
  • 75
    • 58149512746 scopus 로고    scopus 로고
    • Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system
    • [75] Laczy, B., et al. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 296:1 (2009), H13–H28.
    • (2009) Am. J. Physiol. Heart Circ. Physiol. , vol.296 , Issue.1 , pp. H13-H28
    • Laczy, B.1
  • 76
    • 80054777997 scopus 로고    scopus 로고
    • Discovery of 1-arylcarbonyl-6,7-dimethoxyisoquinoline derivatives as glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitors
    • [76] Qian, Y., et al. Discovery of 1-arylcarbonyl-6,7-dimethoxyisoquinoline derivatives as glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitors. Bioorg. Med. Chem. Lett. 21:21 (2011), 6264–6269.
    • (2011) Bioorg. Med. Chem. Lett. , vol.21 , Issue.21 , pp. 6264-6269
    • Qian, Y.1
  • 77
    • 0026496182 scopus 로고
    • Molecular cloning, cDNA sequence, and bacterial expression of human glutamine:fructose-6-phosphate amidotransferase
    • [77] McKnight, G.L., et al. Molecular cloning, cDNA sequence, and bacterial expression of human glutamine:fructose-6-phosphate amidotransferase. J. Biol. Chem. 267:35 (1992), 25208–25212.
    • (1992) J. Biol. Chem. , vol.267 , Issue.35 , pp. 25208-25212
    • McKnight, G.L.1
  • 78
    • 3042613480 scopus 로고    scopus 로고
    • O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress
    • [78] Zachara, N.E., Hart, G.W., O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim. Biophys. Acta 1673:1–2 (2004), 13–28.
    • (2004) Biochim. Biophys. Acta , vol.1673 , Issue.1-2 , pp. 13-28
    • Zachara, N.E.1    Hart, G.W.2
  • 79
    • 83755162608 scopus 로고    scopus 로고
    • The antifungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells
    • [79] Nacev, B.A., et al. The antifungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells. J. Biol. Chem. 286:51 (2011), 44045–44056.
    • (2011) J. Biol. Chem. , vol.286 , Issue.51 , pp. 44045-44056
    • Nacev, B.A.1
  • 80
    • 71849097154 scopus 로고    scopus 로고
    • Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis
    • [80] Bruns, A.F., et al. Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis. Traffic 11:1 (2010), 161–174.
    • (2010) Traffic , vol.11 , Issue.1 , pp. 161-174
    • Bruns, A.F.1
  • 81
    • 42249106688 scopus 로고    scopus 로고
    • Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells
    • [81] Luo, B., Soesanto, Y., McClain, D.A., Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28:4 (2008), 651–657.
    • (2008) Arterioscler. Thromb. Vasc. Biol. , vol.28 , Issue.4 , pp. 651-657
    • Luo, B.1    Soesanto, Y.2    McClain, D.A.3
  • 82
    • 84867257213 scopus 로고    scopus 로고
    • Site-specific O-glucosylation of the epidermal growth factor-like (EGF) repeats of notch: efficiency of glycosylation is affected by proper folding and amino acid sequence of individual EGF repeats
    • [82] Takeuchi, H., et al. Site-specific O-glucosylation of the epidermal growth factor-like (EGF) repeats of notch: efficiency of glycosylation is affected by proper folding and amino acid sequence of individual EGF repeats. J. Biol. Chem. 287:41 (2012), 33934–33944.
    • (2012) J. Biol. Chem. , vol.287 , Issue.41 , pp. 33934-33944
    • Takeuchi, H.1
  • 83
    • 66449123068 scopus 로고    scopus 로고
    • The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis
    • [83] Benedito, R., et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:6 (2009), 1124–1135.
    • (2009) Cell , vol.137 , Issue.6 , pp. 1124-1135
    • Benedito, R.1
  • 84
    • 12944255642 scopus 로고    scopus 로고
    • Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1
    • [84] Yang, L.T., et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell 16:2 (2005), 927–942.
    • (2005) Mol. Biol. Cell , vol.16 , Issue.2 , pp. 927-942
    • Yang, L.T.1
  • 85
    • 64049093074 scopus 로고    scopus 로고
    • The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects
    • [85] Rajapakse, A.G., et al. The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects. Am. J. Physiol. Heart Circ. Physiol. 296:3 (2009), H815–H822.
    • (2009) Am. J. Physiol. Heart Circ. Physiol. , vol.296 , Issue.3 , pp. H815-H822
    • Rajapakse, A.G.1
  • 86
    • 0037162342 scopus 로고    scopus 로고
    • Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells
    • [87] Federici, M., et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106:4 (2002), 466–472.
    • (2002) Circulation , vol.106 , Issue.4 , pp. 466-472
    • Federici, M.1
  • 87
    • 84904645105 scopus 로고    scopus 로고
    • Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer
    • [86] Gross, M.I., et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13:4 (2014), 890–901.
    • (2014) Mol. Cancer Ther. , vol.13 , Issue.4 , pp. 890-901
    • Gross, M.I.1
  • 88
    • 84895544715 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and complications associated with diabetes
    • [88] Blake, R., Trounce, I.A., Mitochondrial dysfunction and complications associated with diabetes. Biochim. Biophys. Acta 1840:4 (2014), 1404–1412.
    • (2014) Biochim. Biophys. Acta , vol.1840 , Issue.4 , pp. 1404-1412
    • Blake, R.1    Trounce, I.A.2
  • 89
    • 84901326584 scopus 로고    scopus 로고
    • Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease
    • [89] Nielsen, T.S., et al. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J. Mol. Endocrinol. 52:3 (2014), R199–R222.
    • (2014) J. Mol. Endocrinol. , vol.52 , Issue.3 , pp. R199-R222
    • Nielsen, T.S.1
  • 90
    • 0042166015 scopus 로고    scopus 로고
    • Integrative physiology of human adipose tissue
    • [90] Frayn, K.N., et al. Integrative physiology of human adipose tissue. Int. J. Obes. Relat. Metab. Disord. 27:8 (2003), 875–888.
    • (2003) Int. J. Obes. Relat. Metab. Disord. , vol.27 , Issue.8 , pp. 875-888
    • Frayn, K.N.1
  • 91
    • 77955980416 scopus 로고    scopus 로고
    • Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation
    • [91] Lopaschuk, G.D., Jaswal, J.S., Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 56:2 (2010), 130–140.
    • (2010) J. Cardiovasc. Pharmacol. , vol.56 , Issue.2 , pp. 130-140
    • Lopaschuk, G.D.1    Jaswal, J.S.2
  • 92
    • 22144484448 scopus 로고    scopus 로고
    • Skeletal muscle fat oxidation: timing and flexibility are everything
    • [92] Kelley, D.E., Skeletal muscle fat oxidation: timing and flexibility are everything. J. Clin. Invest. 115:7 (2005), 1699–1702.
    • (2005) J. Clin. Invest. , vol.115 , Issue.7 , pp. 1699-1702
    • Kelley, D.E.1
  • 93
    • 4544288672 scopus 로고    scopus 로고
    • Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data
    • [93] Vo, T.D., Greenberg, H.J., Palsson, B.O., Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. 279:38 (2004), 39532–39540.
    • (2004) J. Biol. Chem. , vol.279 , Issue.38 , pp. 39532-39540
    • Vo, T.D.1    Greenberg, H.J.2    Palsson, B.O.3
  • 94
    • 0038035142 scopus 로고    scopus 로고
    • Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function
    • [94] Wang, W., et al. Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function. J. Biol. Chem. 278:29 (2003), 27016–27023.
    • (2003) J. Biol. Chem. , vol.278 , Issue.29 , pp. 27016-27023
    • Wang, W.1
  • 95
    • 84858266319 scopus 로고    scopus 로고
    • The role of AMP-activated protein kinase in the functional effects of vascular endothelial growth factor-A and -B in human aortic endothelial cells
    • [95] Reihill, J.A., Ewart, M.A., Salt, I.P., The role of AMP-activated protein kinase in the functional effects of vascular endothelial growth factor-A and -B in human aortic endothelial cells. Vasc. Cell, 3, 2011, 9.
    • (2011) Vasc. Cell , vol.3 , pp. 9
    • Reihill, J.A.1    Ewart, M.A.2    Salt, I.P.3
  • 96
    • 85047689953 scopus 로고
    • 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?
    • [96] Corton, J.M., et al. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?. Eur. J. Biochem. 229:2 (1995), 558–565.
    • (1995) Eur. J. Biochem. , vol.229 , Issue.2 , pp. 558-565
    • Corton, J.M.1
  • 97
    • 84861819258 scopus 로고    scopus 로고
    • Malonyl-CoA: the regulator of fatty acid synthesis and oxidation
    • [97] Foster, D.W., Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest. 122:6 (2012), 1958–1959.
    • (2012) J. Clin. Invest. , vol.122 , Issue.6 , pp. 1958-1959
    • Foster, D.W.1
  • 98
    • 84862278857 scopus 로고    scopus 로고
    • The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells
    • [98] Smolkova, K., Jezek, P., The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. Int. J. Cell Biol., 2012, 2012, 273947.
    • (2012) Int. J. Cell Biol. , vol.2012 , pp. 273947
    • Smolkova, K.1    Jezek, P.2
  • 99
    • 84857668167 scopus 로고    scopus 로고
    • Regulation and limitations to fatty acid oxidation during exercise
    • [99] Jeppesen, J., Kiens, B., Regulation and limitations to fatty acid oxidation during exercise. J. Physiol. 590:5 (2012), 1059–1068.
    • (2012) J. Physiol. , vol.590 , Issue.5 , pp. 1059-1068
    • Jeppesen, J.1    Kiens, B.2
  • 100
    • 0036228690 scopus 로고    scopus 로고
    • Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes
    • [100] Stahl, A., et al. Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Dev. Cell 2:4 (2002), 477–488.
    • (2002) Dev. Cell , vol.2 , Issue.4 , pp. 477-488
    • Stahl, A.1
  • 101
    • 51649099019 scopus 로고    scopus 로고
    • Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts)
    • [101] Ehehalt, R., et al. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts). BMC Cell Biol., 9, 2008, 45.
    • (2008) BMC Cell Biol. , vol.9 , pp. 45
    • Ehehalt, R.1
  • 102
    • 77951976294 scopus 로고    scopus 로고
    • Fatty acid transport across the cell membrane: regulation by fatty acid transporters
    • [102] Schwenk, R.W., et al. Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot. Essent. Fat. Acids 82:4–6 (2010), 149–154.
    • (2010) Prostaglandins Leukot. Essent. Fat. Acids , vol.82 , Issue.4-6 , pp. 149-154
    • Schwenk, R.W.1
  • 103
    • 0037424401 scopus 로고    scopus 로고
    • Rapid flip-flop of oleic acid across the plasma membrane of adipocytes
    • [103] Kamp, F., et al. Rapid flip-flop of oleic acid across the plasma membrane of adipocytes. J. Biol. Chem. 278:10 (2003), 7988–7995.
    • (2003) J. Biol. Chem. , vol.278 , Issue.10 , pp. 7988-7995
    • Kamp, F.1
  • 104
    • 0037047316 scopus 로고    scopus 로고
    • Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells
    • [104] Huang, H., et al. Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells. J. Biol. Chem. 277:32 (2002), 29139–29151.
    • (2002) J. Biol. Chem. , vol.277 , Issue.32 , pp. 29139-29151
    • Huang, H.1
  • 105
    • 0034693232 scopus 로고    scopus 로고
    • Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice
    • [105] Coburn, C.T., et al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem. 275:42 (2000), 32523–32529.
    • (2000) J. Biol. Chem. , vol.275 , Issue.42 , pp. 32523-32529
    • Coburn, C.T.1
  • 106
    • 0031738276 scopus 로고    scopus 로고
    • Myocardial CD36 expression and fatty acid accumulation in patients with type I and II CD36 deficiency
    • [106] Watanabe, K., et al. Myocardial CD36 expression and fatty acid accumulation in patients with type I and II CD36 deficiency. Ann. Nucl. Med. 12:5 (1998), 261–266.
    • (1998) Ann. Nucl. Med. , vol.12 , Issue.5 , pp. 261-266
    • Watanabe, K.1
  • 107
    • 79954988524 scopus 로고    scopus 로고
    • Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells
    • [107] Mitchell, R.W., et al. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J. Neurochem. 117:4 (2011), 735–746.
    • (2011) J. Neurochem. , vol.117 , Issue.4 , pp. 735-746
    • Mitchell, R.W.1
  • 108
    • 0027280397 scopus 로고
    • CD36 is a receptor for oxidized low density lipoprotein
    • [108] Endemann, G., et al. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 268:16 (1993), 11811–11816.
    • (1993) J. Biol. Chem. , vol.268 , Issue.16 , pp. 11811-11816
    • Endemann, G.1
  • 109
    • 69949101473 scopus 로고    scopus 로고
    • Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment
    • [109] Schafer, Z.T., et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461:7260 (2009), 109–113.
    • (2009) Nature , vol.461 , Issue.7260 , pp. 109-113
    • Schafer, Z.T.1
  • 110
    • 0035933369 scopus 로고    scopus 로고
    • Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells
    • [110] Dagher, Z., et al. Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. Circ. Res. 88:12 (2001), 1276–1282.
    • (2001) Circ. Res. , vol.88 , Issue.12 , pp. 1276-1282
    • Dagher, Z.1
  • 111
    • 0023910290 scopus 로고
    • Aspects of fatty acid metabolism in vascular endothelial cells
    • [111] Hulsmann, W.C., Dubelaar, M.L., Aspects of fatty acid metabolism in vascular endothelial cells. Biochimie 70:5 (1988), 681–686.
    • (1988) Biochimie , vol.70 , Issue.5 , pp. 681-686
    • Hulsmann, W.C.1    Dubelaar, M.L.2
  • 112
    • 84922468705 scopus 로고    scopus 로고
    • Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport
    • [112] Yang, C., et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell. 56:3 (2012), 414–424.
    • (2012) Mol Cell. , vol.56 , Issue.3 , pp. 414-424
    • Yang, C.1
  • 113
    • 79957774646 scopus 로고    scopus 로고
    • Pyruvate carboxylase is required for glutamine-independent growth of tumor cells
    • [113] Cheng, T., et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc. Natl. Acad. Sci. U. S. A. 108:21 (2011), 8674–8679.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , Issue.21 , pp. 8674-8679
    • Cheng, T.1
  • 114
    • 79955601028 scopus 로고    scopus 로고
    • Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells
    • [114] Pike, L.S., et al. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim. Biophys. Acta 1807:6 (2011), 726–734.
    • (2011) Biochim. Biophys. Acta , vol.1807 , Issue.6 , pp. 726-734
    • Pike, L.S.1
  • 115
    • 84866976187 scopus 로고    scopus 로고
    • Inhibition of fatty acid metabolism reduces human myeloma cells proliferation
    • [115] Tirado-Velez, J.M., et al. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation. PLoS One, 7(9), 2012, e46484.
    • (2012) PLoS One , vol.7 , Issue.9
    • Tirado-Velez, J.M.1
  • 116
    • 84926618078 scopus 로고    scopus 로고
    • Lipid catabolism via CPT1 as a therapeutic target for prostate cancer
    • [116] Schlaepfer, I.R., et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther. 13:10 (2014), 2361–2371.
    • (2014) Mol. Cancer Ther. , vol.13 , Issue.10 , pp. 2361-2371
    • Schlaepfer, I.R.1
  • 117
    • 84924287407 scopus 로고    scopus 로고
    • Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability
    • [117] Patella, F., et al. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability. Mol. Cell. Proteomics 14:3 (2015), 621–634.
    • (2015) Mol. Cell. Proteomics , vol.14 , Issue.3 , pp. 621-634
    • Patella, F.1
  • 118
    • 85014805386 scopus 로고    scopus 로고
    • Compositions of UCP inhibitors, Fas antibody, a fatty acid metabolism inhibitor and/or a glucose metabolism inhibitor
    • [118] Newell, M.K., Newell, E., Villobos-Menvey, E., Compositions of UCP inhibitors, Fas antibody, a fatty acid metabolism inhibitor and/or a glucose metabolism inhibitor. Google Patents (Patent number: US7510710 B2), 2009.
    • (2009) Google Patents (B2)
    • Newell, M.K.1    Newell, E.2    Villobos-Menvey, E.3
  • 119
    • 34547800233 scopus 로고    scopus 로고
    • A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study
    • [119] Holubarsch, C.J., et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin. Sci. (Lond.) 113:4 (2007), 205–212.
    • (2007) Clin. Sci. (Lond.) , vol.113 , Issue.4 , pp. 205-212
    • Holubarsch, C.J.1
  • 120
    • 84864480525 scopus 로고    scopus 로고
    • Effect of chronic CPT-1 inhibition on myocardial ischemia-reperfusion injury (I/R) in a model of diet-induced obesity
    • [120] Maarman, G., et al. Effect of chronic CPT-1 inhibition on myocardial ischemia-reperfusion injury (I/R) in a model of diet-induced obesity. Cardiovasc. Drugs Ther. 26:3 (2012), 205–216.
    • (2012) Cardiovasc. Drugs Ther. , vol.26 , Issue.3 , pp. 205-216
    • Maarman, G.1
  • 121
    • 0021141393 scopus 로고
    • Changes in myocardial substrate utilisation and protection of ischemic stressed myocardium by oxfenicine [(S)-4-hydroxyphenylglycine]
    • [121] Korb, H., et al. Changes in myocardial substrate utilisation and protection of ischemic stressed myocardium by oxfenicine [(S)-4-hydroxyphenylglycine]. Naunyn Schmiedeberg's Arch. Pharmacol. 327:1 (1984), 70–74.
    • (1984) Naunyn Schmiedeberg's Arch. Pharmacol. , vol.327 , Issue.1 , pp. 70-74
    • Korb, H.1
  • 122
    • 0033653158 scopus 로고    scopus 로고
    • Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart
    • [122] Kennedy, J.A., et al. Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart. J. Cardiovasc. Pharmacol. 36:6 (2000), 794–801.
    • (2000) J. Cardiovasc. Pharmacol. , vol.36 , Issue.6 , pp. 794-801
    • Kennedy, J.A.1
  • 123
    • 0030602865 scopus 로고    scopus 로고
    • Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone
    • [123] Kennedy, J.A., Unger, S.A., Horowitz, J.D., Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem. Pharmacol. 52:2 (1996), 273–280.
    • (1996) Biochem. Pharmacol. , vol.52 , Issue.2 , pp. 273-280
    • Kennedy, J.A.1    Unger, S.A.2    Horowitz, J.D.3
  • 124
    • 0034927508 scopus 로고    scopus 로고
    • Inhibition of mitochondrial carnitine palmitoyltransferase-1 by a trimetazidine derivative, S-15176
    • [124] Hamdan, M., et al. Inhibition of mitochondrial carnitine palmitoyltransferase-1 by a trimetazidine derivative, S-15176. Pharmacol. Res. 44:2 (2001), 99–104.
    • (2001) Pharmacol. Res. , vol.44 , Issue.2 , pp. 99-104
    • Hamdan, M.1
  • 125
    • 84919819995 scopus 로고    scopus 로고
    • Randomized double-blind placebo-controlled trial of perhexiline in heart failure with preserved ejection fraction syndrome
    • [125] Singh, S., et al. Randomized double-blind placebo-controlled trial of perhexiline in heart failure with preserved ejection fraction syndrome. Futur. Cardiol. 10:6 (2014), 693–698.
    • (2014) Futur. Cardiol. , vol.10 , Issue.6 , pp. 693-698
    • Singh, S.1
  • 126
    • 84924984745 scopus 로고    scopus 로고
    • Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy
    • [126] Beadle, R.M., et al. Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy. JACC Heart Fail. 3:3 (2015), 202–211.
    • (2015) JACC Heart Fail. , vol.3 , Issue.3 , pp. 202-211
    • Beadle, R.M.1
  • 127
    • 32044448471 scopus 로고    scopus 로고
    • Effect of the anti-anginal agent, perhexiline, on neutrophil, valvular and vascular superoxide formation
    • [127] Kennedy, J.A., et al. Effect of the anti-anginal agent, perhexiline, on neutrophil, valvular and vascular superoxide formation. Eur. J. Pharmacol. 531:1–3 (2006), 13–19.
    • (2006) Eur. J. Pharmacol. , vol.531 , Issue.1-3 , pp. 13-19
    • Kennedy, J.A.1
  • 128
    • 84944351826 scopus 로고    scopus 로고
    • Comparative effectiveness of ranolazine versus traditional therapies in chronic stable angina pectoris and concomitant diabetes mellitus and impact on health care resource utilization and cardiac interventions
    • [128] Page, R.L. 2nd, et al. Comparative effectiveness of ranolazine versus traditional therapies in chronic stable angina pectoris and concomitant diabetes mellitus and impact on health care resource utilization and cardiac interventions. Am. J. Cardiol. 116:9 (2015), 1321–1328.
    • (2015) Am. J. Cardiol. , vol.116 , Issue.9 , pp. 1321-1328
    • Page, R.L.1
  • 129
    • 84930065939 scopus 로고    scopus 로고
    • Effects of ranolazine on left ventricular diastolic and systolic function in patients with chronic coronary disease and stable angina
    • [129] Babalis, D., et al. Effects of ranolazine on left ventricular diastolic and systolic function in patients with chronic coronary disease and stable angina. Hell. J. Cardiol. 56:3 (2015), 237–241.
    • (2015) Hell. J. Cardiol. , vol.56 , Issue.3 , pp. 237-241
    • Babalis, D.1
  • 130
    • 0019122736 scopus 로고
    • Beneficial effect of enhanced myocardial carbohydrate utilisation after oxfenicine (L-hydroxyphenylglycine) in angina pectoris
    • [130] Bergman, G., et al. Beneficial effect of enhanced myocardial carbohydrate utilisation after oxfenicine (L-hydroxyphenylglycine) in angina pectoris. Eur. Heart J. 1:4 (1980), 247–253.
    • (1980) Eur. Heart J. , vol.1 , Issue.4 , pp. 247-253
    • Bergman, G.1
  • 131
    • 84929336905 scopus 로고    scopus 로고
    • Ranolazine for the treatment of atrial fibrillation
    • [131] Rosa, G.M., et al. Ranolazine for the treatment of atrial fibrillation. Expert Opin. Investig. Drugs 24:6 (2015), 825–836.
    • (2015) Expert Opin. Investig. Drugs , vol.24 , Issue.6 , pp. 825-836
    • Rosa, G.M.1
  • 132
    • 84928619211 scopus 로고    scopus 로고
    • Ranolazine in the treatment of atrial fibrillation: results of the dose-ranging RAFFAELLO (Ranolazine in Atrial Fibrillation Following An ELectricaL CardiOversion) study
    • [132] De Ferrari, G.M., et al. Ranolazine in the treatment of atrial fibrillation: results of the dose-ranging RAFFAELLO (Ranolazine in Atrial Fibrillation Following An ELectricaL CardiOversion) study. Heart Rhythm. 12:5 (2015), 872–878.
    • (2015) Heart Rhythm. , vol.12 , Issue.5 , pp. 872-878
    • De Ferrari, G.M.1
  • 133
    • 0028855519 scopus 로고
    • Physiological and molecular mechanisms involved in nutritional regulation of fatty-acid synthesis
    • [133] Hillgartner, F., Salati, L.M., Goodridge, A.G., Physiological and molecular mechanisms involved in nutritional regulation of fatty-acid synthesis. Physiol. Rev. 75:1 (1995), 47–76.
    • (1995) Physiol. Rev. , vol.75 , Issue.1 , pp. 47-76
    • Hillgartner, F.1    Salati, L.M.2    Goodridge, A.G.3
  • 134
    • 77950605484 scopus 로고    scopus 로고
    • Fatty acid synthase as a potential therapeutic target in cancer
    • [134] Flavin, R., et al. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 6:4 (2010), 551–562.
    • (2010) Future Oncol. , vol.6 , Issue.4 , pp. 551-562
    • Flavin, R.1
  • 135
    • 84883706496 scopus 로고    scopus 로고
    • Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids
    • [135] Zaidi, N., et al. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 52:4 (2013), 585–589.
    • (2013) Prog. Lipid Res. , vol.52 , Issue.4 , pp. 585-589
    • Zaidi, N.1
  • 136
    • 84881372774 scopus 로고    scopus 로고
    • Cellular fatty acid metabolism and cancer
    • [136] Currie, E., et al. Cellular fatty acid metabolism and cancer. Cell Metab. 18:2 (2013), 153–161.
    • (2013) Cell Metab. , vol.18 , Issue.2 , pp. 153-161
    • Currie, E.1
  • 137
    • 57449112521 scopus 로고    scopus 로고
    • Cohort study of fatty acid synthase expression and patient survival in colon cancer
    • [137] Ogino, S., et al. Cohort study of fatty acid synthase expression and patient survival in colon cancer. J. Clin. Oncol. 26:35 (2008), 5713–5720.
    • (2008) J. Clin. Oncol. , vol.26 , Issue.35 , pp. 5713-5720
    • Ogino, S.1
  • 138
    • 0029829119 scopus 로고    scopus 로고
    • Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer
    • [138] Shurbaji, M.S., Kalbfleisch, J.H., Thurmond, T.S., Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Hum. Pathol. 27:9 (1996), 917–921.
    • (1996) Hum. Pathol. , vol.27 , Issue.9 , pp. 917-921
    • Shurbaji, M.S.1    Kalbfleisch, J.H.2    Thurmond, T.S.3
  • 139
    • 20144389083 scopus 로고    scopus 로고
    • Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma
    • [139] Visca, P., et al. Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticancer Res. 24:6 (2004), 4169–4173.
    • (2004) Anticancer Res. , vol.24 , Issue.6 , pp. 4169-4173
    • Visca, P.1
  • 140
    • 84934922887 scopus 로고    scopus 로고
    • Fatty acid synthase inhibition engages a novel caspase-2 regulatory mechanism to induce ovarian cancer cell death
    • [140] Yang, C.S., et al. Fatty acid synthase inhibition engages a novel caspase-2 regulatory mechanism to induce ovarian cancer cell death. Oncogene 34:25 (2015), 3264–3272.
    • (2015) Oncogene , vol.34 , Issue.25 , pp. 3264-3272
    • Yang, C.S.1
  • 141
    • 84982949213 scopus 로고    scopus 로고
    • Lipid desaturation - the next step in targeting lipogenesis in cancer?
    • [141] Peck, B., Schulze, A., Lipid desaturation - the next step in targeting lipogenesis in cancer?. FEBS J. 283:15 (2016), 2767–2778.
    • (2016) FEBS J. , vol.283 , Issue.15 , pp. 2767-2778
    • Peck, B.1    Schulze, A.2
  • 142
    • 78951483920 scopus 로고    scopus 로고
    • De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation
    • [142] Wei, X., et al. De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. J. Biol. Chem. 286:4 (2011), 2933–2945.
    • (2011) J. Biol. Chem. , vol.286 , Issue.4 , pp. 2933-2945
    • Wei, X.1
  • 143
    • 33750129055 scopus 로고    scopus 로고
    • Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor
    • [143] Browne, C.D., Hindmarsh, E.J., Smith, J.W., Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB J. 20:12 (2006), 2027–2035.
    • (2006) FASEB J. , vol.20 , Issue.12 , pp. 2027-2035
    • Browne, C.D.1    Hindmarsh, E.J.2    Smith, J.W.3
  • 144
    • 84865861802 scopus 로고    scopus 로고
    • The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas
    • [144] Seguin, F., et al. The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas. Br. J. Cancer 107:6 (2012), 977–987.
    • (2012) Br. J. Cancer , vol.107 , Issue.6 , pp. 977-987
    • Seguin, F.1
  • 145
    • 84905380433 scopus 로고    scopus 로고
    • Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer
    • [145] Zaytseva, Y.Y., et al. Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer. Carcinogenesis 35:6 (2014), 1341–1351.
    • (2014) Carcinogenesis , vol.35 , Issue.6 , pp. 1341-1351
    • Zaytseva, Y.Y.1
  • 146
    • 84948172078 scopus 로고    scopus 로고
    • Vascular nitric oxide: beyond eNOS
    • [146] Zhao, Y., Vanhoutte, P.M., Leung, S.W., Vascular nitric oxide: beyond eNOS. J. Pharmacol. Sci. 129:2 (2015), 83–94.
    • (2015) J. Pharmacol. Sci. , vol.129 , Issue.2 , pp. 83-94
    • Zhao, Y.1    Vanhoutte, P.M.2    Leung, S.W.3
  • 147
    • 12344308106 scopus 로고    scopus 로고
    • Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology
    • [147] Tuteja, N., et al. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J. Biomed. Biotechnol. 2004:4 (2004), 227–237.
    • (2004) J. Biomed. Biotechnol. , vol.2004 , Issue.4 , pp. 227-237
    • Tuteja, N.1
  • 148
    • 0029049330 scopus 로고
    • Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury
    • [148] Guo, J.P., et al. Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury. Am. J. Phys. 269:3 Pt 2 (1995), H1122–H1131.
    • (1995) Am. J. Phys. , vol.269 , Issue.3 , pp. H1122-H1131
    • Guo, J.P.1
  • 149
    • 75149148563 scopus 로고    scopus 로고
    • Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer
    • [149] DeBerardinis, R.J., Cheng, T., Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:3 (2010), 313–324.
    • (2010) Oncogene , vol.29 , Issue.3 , pp. 313-324
    • DeBerardinis, R.J.1    Cheng, T.2
  • 150
    • 0032896832 scopus 로고    scopus 로고
    • Rat liver endothelial cell glutamine transporter and glutaminase expression contrast with parenchymal cells
    • [150] Lohmann, R., Souba, W.W., Bode, B.P., Rat liver endothelial cell glutamine transporter and glutaminase expression contrast with parenchymal cells. Am. J. Phys. 276:3 Pt 1 (1999), G743–G750.
    • (1999) Am. J. Phys. , vol.276 , Issue.3 , pp. G743-G750
    • Lohmann, R.1    Souba, W.W.2    Bode, B.P.3
  • 151
    • 46749104479 scopus 로고    scopus 로고
    • Premature senescence of human endothelial cells induced by inhibition of glutaminase
    • [151] Unterluggauer, H., et al. Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 9:4 (2008), 247–259.
    • (2008) Biogerontology , vol.9 , Issue.4 , pp. 247-259
    • Unterluggauer, H.1
  • 152
    • 0035131450 scopus 로고    scopus 로고
    • Presence of glutamine:fructose-6-phosphate amidotransferase for glucosamine-6-phosphate synthesis in endothelial cells: effects of hyperglycaemia and glutamine
    • [152] Wu, G., et al. Presence of glutamine:fructose-6-phosphate amidotransferase for glucosamine-6-phosphate synthesis in endothelial cells: effects of hyperglycaemia and glutamine. Diabetologia 44:2 (2001), 196–202.
    • (2001) Diabetologia , vol.44 , Issue.2 , pp. 196-202
    • Wu, G.1
  • 153
    • 64749116346 scopus 로고    scopus 로고
    • c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
    • [153] Gao, P., et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:7239 (2009), 762–765.
    • (2009) Nature , vol.458 , Issue.7239 , pp. 762-765
    • Gao, P.1
  • 154
    • 77952212178 scopus 로고    scopus 로고
    • Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
    • [154] Hu, W., et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. U. S. A. 107:16 (2010), 7455–7460.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , Issue.16 , pp. 7455-7460
    • Hu, W.1
  • 155
    • 57749088701 scopus 로고    scopus 로고
    • Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
    • [155] Wise, D.R., et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. U. S. A. 105:48 (2008), 18782–18787.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , Issue.48 , pp. 18782-18787
    • Wise, D.R.1
  • 156
    • 64949158435 scopus 로고    scopus 로고
    • A novel glutaminase isoform in mammalian tissues
    • [156] de la Rosa, V., et al. A novel glutaminase isoform in mammalian tissues. Neurochem. Int. 55:1–3 (2009), 76–84.
    • (2009) Neurochem. Int. , vol.55 , Issue.1-3 , pp. 76-84
    • de la Rosa, V.1
  • 157
    • 0029113227 scopus 로고
    • Interstitial fluid concentrations of glycerol, glucose, and amino acids in human quadricep muscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle
    • [157] Maggs, D.G., et al. Interstitial fluid concentrations of glycerol, glucose, and amino acids in human quadricep muscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle. J. Clin. Invest. 96:1 (1995), 370–377.
    • (1995) J. Clin. Invest. , vol.96 , Issue.1 , pp. 370-377
    • Maggs, D.G.1
  • 158
    • 0027145124 scopus 로고
    • Glutamine and cancer
    • [158] Souba, W.W., Glutamine and cancer. Ann. Surg. 218:6 (1993), 715–728.
    • (1993) Ann. Surg. , vol.218 , Issue.6 , pp. 715-728
    • Souba, W.W.1
  • 159
    • 0029126636 scopus 로고
    • Molecular regulation of lung endothelial glutamine synthetase expression
    • (discussion 335)
    • [159] Abcouwer, S.F., et al. Molecular regulation of lung endothelial glutamine synthetase expression. Surgery 118:2 (1995), 325–334 (discussion 335).
    • (1995) Surgery , vol.118 , Issue.2 , pp. 325-334
    • Abcouwer, S.F.1
  • 160
    • 30944464435 scopus 로고    scopus 로고
    • Changes in aortic endothelial gene expressions and relaxation responses following chronic short-term insulin treatment in diabetic rats
    • [160] Kobayashi, T., et al. Changes in aortic endothelial gene expressions and relaxation responses following chronic short-term insulin treatment in diabetic rats. Atherosclerosis 185:1 (2006), 47–57.
    • (2006) Atherosclerosis , vol.185 , Issue.1 , pp. 47-57
    • Kobayashi, T.1
  • 161
    • 84883117997 scopus 로고    scopus 로고
    • Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes
    • [161] Qi, L., et al. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA 310:8 (2013), 821–828.
    • (2013) JAMA , vol.310 , Issue.8 , pp. 821-828
    • Qi, L.1
  • 162
    • 0037372730 scopus 로고    scopus 로고
    • Glutamine and glutamate—their central role in cell metabolism and function
    • [162] Newsholme, P., et al. Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem. Funct. 21:1 (2003), 1–9.
    • (2003) Cell Biochem. Funct. , vol.21 , Issue.1 , pp. 1-9
    • Newsholme, P.1
  • 163
    • 84897392385 scopus 로고    scopus 로고
    • Serine and glycine metabolism in cancer
    • [163] Amelio, I., et al. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39:4 (2014), 191–198.
    • (2014) Trends Biochem. Sci. , vol.39 , Issue.4 , pp. 191-198
    • Amelio, I.1
  • 164
    • 84877593365 scopus 로고    scopus 로고
    • Genomic approach to identify factors that drive the formation of three-dimensional structures by EA.hy926 endothelial cells
    • [164] Ma, X., et al. Genomic approach to identify factors that drive the formation of three-dimensional structures by EA.hy926 endothelial cells. PLoS One, 8(5), 2013, e64402.
    • (2013) PLoS One , vol.8 , Issue.5 , pp. e64402
    • Ma, X.1
  • 165
    • 39749175013 scopus 로고    scopus 로고
    • Nitric oxide synthase inhibition promotes endothelium-dependent vasodilatation and the antihypertensive effect of L-serine
    • [165] Mishra, R.C., et al. Nitric oxide synthase inhibition promotes endothelium-dependent vasodilatation and the antihypertensive effect of L-serine. Hypertension 51:3 (2008), 791–796.
    • (2008) Hypertension , vol.51 , Issue.3 , pp. 791-796
    • Mishra, R.C.1
  • 166
    • 59849123922 scopus 로고    scopus 로고
    • L-Serine lowers while glycine increases blood pressure in chronic L-NAME-treated and spontaneously hypertensive rats
    • [166] Mishra, R.C., et al. L-Serine lowers while glycine increases blood pressure in chronic L-NAME-treated and spontaneously hypertensive rats. J. Hypertens. 26:12 (2008), 2339–2348.
    • (2008) J. Hypertens. , vol.26 , Issue.12 , pp. 2339-2348
    • Mishra, R.C.1
  • 167
    • 84960172990 scopus 로고    scopus 로고
    • A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance
    • [167] Jang, C., et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22:4 (2016), 421–426.
    • (2016) Nat. Med. , vol.22 , Issue.4 , pp. 421-426
    • Jang, C.1
  • 168
    • 84925491295 scopus 로고    scopus 로고
    • L-Leucine and NO-mediated cardiovascular function
    • [168] Yang, Y., et al. L-Leucine and NO-mediated cardiovascular function. Amino Acids 47:3 (2015), 435–447.
    • (2015) Amino Acids , vol.47 , Issue.3 , pp. 435-447
    • Yang, Y.1
  • 169
    • 0035863102 scopus 로고    scopus 로고
    • Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis
    • [169] Wu, G., et al. Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem. J. 353:Pt 2 (2001), 245–252.
    • (2001) Biochem. J. , vol.353 , pp. 245-252
    • Wu, G.1
  • 170
    • 85014847653 scopus 로고    scopus 로고
    • Glutaminase stimulates the proliferation of human endothelial cells
    • (no. 1 Supplement 957.3)
    • [170] Durante, W., et al. Glutaminase stimulates the proliferation of human endothelial cells. FASEB J., 30, 2016 (no. 1 Supplement 957.3).
    • (2016) FASEB J. , vol.30
    • Durante, W.1
  • 171
    • 84857116578 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
    • [171] Ray, P.D., Huang, B.W., Tsuji, Y., Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24:5 (2012), 981–990.
    • (2012) Cell. Signal. , vol.24 , Issue.5 , pp. 981-990
    • Ray, P.D.1    Huang, B.W.2    Tsuji, Y.3
  • 172
    • 0016681098 scopus 로고
    • Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration
    • [172] Boveris, A., Cadenas, E., Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 54:3 (1975), 311–314.
    • (1975) FEBS Lett. , vol.54 , Issue.3 , pp. 311-314
    • Boveris, A.1    Cadenas, E.2
  • 173
    • 0036319021 scopus 로고    scopus 로고
    • Generation of reactive oxygen species by the mitochondrial electron transport chain
    • [173] Liu, Y., Fiskum, G., Schubert, D., Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80:5 (2002), 780–787.
    • (2002) J. Neurochem. , vol.80 , Issue.5 , pp. 780-787
    • Liu, Y.1    Fiskum, G.2    Schubert, D.3
  • 174
    • 34250825264 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species-mediated signaling in endothelial cells
    • [174] Zhang, D.X., Gutterman, D.D., Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 292:5 (2007), H2023–H2031.
    • (2007) Am. J. Physiol. Heart Circ. Physiol. , vol.292 , Issue.5 , pp. H2023-H2031
    • Zhang, D.X.1    Gutterman, D.D.2
  • 175
    • 77952480033 scopus 로고    scopus 로고
    • Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis
    • [175] Kaneto, H., et al. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat. Inflamm., 2010, 2010, 453892.
    • (2010) Mediat. Inflamm. , vol.2010 , pp. 453892
    • Kaneto, H.1
  • 176
    • 33748310586 scopus 로고    scopus 로고
    • Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway
    • [176] Ouedraogo, R., et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes 55:6 (2006), 1840–1846.
    • (2006) Diabetes , vol.55 , Issue.6 , pp. 1840-1846
    • Ouedraogo, R.1
  • 177
    • 77955509429 scopus 로고    scopus 로고
    • Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes
    • [177] Makino, A., Scott, B.T., Dillmann, W.H., Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia 53:8 (2010), 1783–1794.
    • (2010) Diabetologia , vol.53 , Issue.8 , pp. 1783-1794
    • Makino, A.1    Scott, B.T.2    Dillmann, W.H.3
  • 178
    • 77249126523 scopus 로고    scopus 로고
    • Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species
    • [178] Dranka, B.P., Hill, B.G., Darley-Usmar, V.M., Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. Free Radic. Biol. Med. 48:7 (2010), 905–914.
    • (2010) Free Radic. Biol. Med. , vol.48 , Issue.7 , pp. 905-914
    • Dranka, B.P.1    Hill, B.G.2    Darley-Usmar, V.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.